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Applications of Double ARA Integral Transform
Rania Saadeh

Department of Mathematics, Faculty of Science, Zarqa University, Zarqa 13132, Jordan; rsaadeh@zu.edu.jo

Abstract: This paper describes our construction of a new double transform, which we call the
double ARA transform (DARAT). Our novel double-integral transform can be used to solve partial
differential equations and other problems. We discuss some fundamental characteristics of our
approach, including existence, linearity, and several findings relating to partial derivatives and the
double convolution theorem. DARAT can be used to precisely solve a variety of partial differential
equations, including the heat equation, wave equation, telegraph equation, Klein–Gordon equation,
and others, all of which are crucial for physical applications. Herein, we use DARAT to solve model
integral equations to obtain exact solutions. We conclude that our novel method is easier to use than
comparable transforms.
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1. Introduction

Integral transformations are considered to be the most efficient method for solving
partial differential equations (PDE). PDEs can mathematically describe a wide range of
phenomena in mathematical physics and several other scientific domains, which makes
them valueable [1–13]. Using integral transforms, these equations can also be changed to
identify precise PDE solutions. The straightforward power of transform techniques has
inspired ongoing research aimed at understanding and enhancing them.

Many integral transforms have been developed and put into practice to solve partial
and integral differential equations. These transforms enable us to obtain the exact solutions
of target equations without the need for linearization or discretization. They are used to
convert partial differential equations into ordinary equations when using a single transform
and into algebraic equations when using a double integral transform. Examples include
the Laplace transform [14], novel transform [15], M-transform [16], Sumudu transform [17],
Elzaki transform [18], natural transform [19], Kamal transform [20], Aboodh transform [21],
and ARA transform [22,23], but there are many others [24–27].

Double transformations are considered to be extremely successful in handling PDEs
compared to other numerical approaches, as they have been extensively used to solve PDEs
with unknown functions of two variables. [28–30]. Extensions of double transforms have
been developed in the relevant literature, such as the double Laplace transform, double
Shehu transform [29], double Kamal transform [30], double Sumudu transform [31–36],
double Elzaki transform [37], double Laplace–Sumudu transform [38] and ARA–Sumudu
transform [39–42]. All the double transforms cited above can be considered as special cases
of the general double transform described by Meddahi et al. [43], but there is value in the
study of special variants of double transforms for comparison and consideration, as the
endeavor reveals the unique properties of each one and facilitates understanding of their
respective best applications [44].

Saadeh and others recently introduced the ARA transform [23], a novel integral
transform. In this paper, we describe our creation of a new double ARA transform that takes
advantage of this powerful transform approach. It has some novel properties, including
the ability to generate numerous transforms by altering the value of the index n, and it can
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overcome the singularity point at zero, as introduced in [23]. This new strategy is what we
call the double ARA transform (DARAT).

This paper describes and proves the main properties and theorems of DARAT. More-
over, we compute the values of DARAT for some elementary functions. We establish some
new relations of DARAT with partial derivatives and the double convolution property.
Some of these results are implemented to solve PDEs.

We also show the novelty of DARAT in terms of its advantages over the ARA transform,
including its simplicity and versatility in application. Moreover, unlike other transforms,
when we apply DARAT on constants, the same constants emerge in the results: the trans-
formed constants are constants without any variables, which reduces the computational
load when we use the transform to solve equations.

Many researchers have studied solutions of partial differential equations, and one
of the most important techniques that has been developed is the double transform. Its
strength lies in its ability to produce exact, rather than approximate, solutions [31–36]. In
this study, we implement DARAT to solve PDEs of the form

Aqxx(x, t) + Bqxt(x, t) + Cqtt(x, t) + Dqx(x, t) + Eqt(x, t) + Fq(x, t) = r(x, t),

under the following conditions: q(x, t) is the unknown function, r(x, t) is a given source
function, and A, B, C, D, E, F, and M are constants.

We have established a general formula for the solution of the above problem, and we
will later use it to solve some examples.

The structure of this paper is as follows: Section 2 introduces fundamental con-
cepts and properties of the ARA transformation, Section 3 presents the new double trans-
form DARAT and some properties and theorems, Section 4 describes the method for
using DARAT in solving PDEs, and Section 5 presents some problems and their solutions
using DARAT.

2. Basic Definitions and Theorems of the ARA Transform

In this section, we introduce the definition and the basic properties of the ARA trans-
form [23].

Definition 1. The ARA integral transform of order n of a continuous function q(t) on the interval
(0, ∞) is defined as

Gn[q(t)](s) = Q(n, s) = s
∫ ∞

0
tn−1e−stq(t)dt, s > 0. (1)

The ARA integral transform of order one, denoted by G1[q(t)], is defined as

G1[q(t)](s) = Q(s) = s
∫ ∞

0
e−stq(t)dt, s > 0. (2)

For simplicity, let us denote G1[q(t)] by G[q(t)]. Our study focuses on ARA transform
of order one, only.

Lemma 1. The inverse ARA integral transform of order one of a piecewise continuous function
q(t) on the interval (0, ∞) is defined as

G−1[Q(s)] = 1
2πi
∫ c+i∞

c−i∞
est

s
[
s
∫ ∞

0 e−stq(t)dt
]
ds

= 1
2πi
∫ c+i∞

c−i∞
est

s [Q(s)]ds = q(t), t > 0.
(3)

Theorem 1. If q(t) is a piecewise continuous integrable function in every finite interval
0 ≤ t ≤ α, α > 0, and q(t) is of exponential order, that is, if it satisfies

|q(t)| ≤ Reαt, t ∈ [0, α], (4)
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where R is a positive real constant independent of t, then the ARA transform G exists for all s > α.

Proof. Using the definition of the ARA transform, we obtain

|G[q(t)| = |Q(s)| = |s
∫ ∞

0
e−stq(t)dt|.

Using the property of improper integral, we obtain

|Q(s)| = |s
∫ ∞

0 e−stq(t)dt| ≤ s|
∫ ∞

0 e−stq(t)dt|

≤ s
∫ ∞

0 e−st|q(t)|dt ≤ s
∫ ∞

0 e−stReαtdt

= sR
∫ ∞

0 e−(s−α)tdt = sR
s−α .

Thus, the improper integral converges for all s > α, and G[q(t)] exists. 2

In the following arguments, we state some basic properties of the ARA transform of
order one.

Assume that Q(s) = G[q(t)] and P(s) = G[p(t)] and a, b ∈ R. Then, we have

G[a q(t) + b p(t)] = a Gn[q(t)] + b Gn[p(t)].

G−1[a Q(n, s) + b P(n, s)] = a Gn
−1[Q(n, s)] + b Gn

−1[P(n, s)].

G[tα] =
Γ(α+n)
sα+n−1 , α > 0.

G
[
eat] = sΓ(n)

(s−a)n , a ∈ R.

G[sinat] = as
s2+a2 , a ∈ R.

G
[
q(n)(t)

]
= snQ(s)−∑n

k=1 sn−kq(k−1)(0).

3. Double ARA Transform (DARAT)

This section introduces DARAT, a novel double ARA transform. We provide the
fundamental properties and characteristics including the existence conditions, linearity,
and the inverse of our proposed double transform. Moreover, some important properties
and results are provided and used to compute DARAT for some elementary functions. The
double convolution theorem and the derivatives properties of the new transform are also
presented and illustrated.

Definition 2. Let q(x, t) be a continuous function of two positive variables x and t. Then, DARAT
of q(x, t) is defined as

GxGt[q(x, t)] = Q(v, s) = vs
∫ ∞

0

∫ ∞

0
e−(vx+st)q(x, t)dxdt, v, s > 0 , (5)

provided that the integral exists.

Clearly, DARAT is a linear integral transformation, as shown below.

GxGt[A q(x, t) + B p(x, t)] = vs
∫ ∞

0

∫ ∞
0 e−(vx+st)[A q(x, t) + B p(x, t)]dxdt

= Avs
∫ ∞

0

∫ ∞
0 e−(vx+st)[q(x, t)]dxdt + Bvs

∫ ∞
0

∫ ∞
0 e−(vx+st)[p(x, t)]dxdt

= A GxGt[ q(x, t)] + B GxGt[ p(x, t)].
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where A and B are constants and GxGt[q(x, t)] , GxGt[ p(x, t)] exist.
The inverse DARAT is given by

G−1
x G−1

t [Q(v, s)] = G−1
x

[
G−1

t [Q(v, s)]
]

=
(

1
2πi

) ∫ c+i∞
c−i∞

evx

v dv
(

1
2πi

) ∫ r+i∞
r−i∞

est

s Q(v, s)ds = q(x, t).
(6)

In the following, we present some properties of DARAT.

Property 1. Let q(x, t) = w(x)u(t), x > 0, t > 0. Then

GxGt[q(x, t)] = Gx[w(x)]Gt[u(t)].

Proof of Property 1.

GxGt[q(x, t)] = GxGt[w(x)u(t)] = vs
∫ ∞

0

∫ ∞
0 e−(vx+st)[w(x)u(t)]dxdt

= v
∫ ∞

0 w(x)e−vxdx·s
∫ ∞

0 u(t)e−stdt

= Gx[w(x)]Gt[u(t)].

2

3.1. DARAT for Some Elementary Functions

In this section, we apply DARAT for some basic functions.

i. Let q(x, t) = 1, x > 0, t > 0. Then,

GxGt[1] = vs
∫ ∞

0

∫ ∞

0
e−(vx+st)dxdt = v

∫ ∞

0
e−vxdx·s

∫ ∞

0
e−stdt = Gx[1]Gt[1] = 1,

where Re(v) > 0 and Re(s) > 0.
ii. Let q(x, t) = xαtβ , x > 0 , t > 0 and α, β be constants. Then,

GxGt

[
xαtβ

]
= vs

∫ ∞

0

∫ ∞

0
e−(vx+st)

[
xαtβ

]
dxdt = v

∫ ∞

0
e−vx[xα]dx·s

∫ ∞

0
e−st

[
tβ
]
dt = Gx[xα]Gt

[
tβ
]
.

From the properties of ARA transform, we obtain

GxGt

[
xαtβ

]
= Gx[xα]Gt

[
tβ
]
=

Γ(α + 1)Γ(β + 1)
vα sβ

, Re(α) > −1 and Re(β) > −1.

iii. Let q(x, t) = eαx+βt, x > 0, t > 0 and α, β be constants. Then,

GxGt
[
eαx+βt] = vs

∫ ∞
0

∫ ∞
0 e−(vx+st)[eαx+βt]dxdt

= v
∫ ∞

0 e−vx[eαx]dx·s
∫ ∞

0 e−st[eβt]dt = Gx[eαx]Gt
[
eβt].

From the properties of ARA transform, we obtain

GxGt

[
eαx+βt

]
=

v s
(v− α)(s− β)

.

Similarly,

GxGt

[
ei(αx+βt)

]
=

v s
(v− iα)(s− iβ)

.
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Using some properties of complex analysis, we find

GxGt

[
ei(αx+βt)

]
= vs(sv−αβ)+ivs(vβ+sα)

(v2+α2)(s2+β2)
.

sin x = eix−e−ix

2i , cos x = eix+e−ix

2 sinhx = ex−e−x

2 , cosh x = ex+e−x

2 .

Following, we find DARAT of the following functions as

GxGt[sin(αx + βt)] = vs(vβ+sα)
(v2+α2)(s2+β2)

.

GxGt[cos(αx + βt)] = vs(sv−αβ)
(v2+α2)(s2+β2)

.

GxGt[sinh(αx + βt)] = vs(vβ+sα)
(v2−α2)(s2−β2)

.

GxGt[cosh(αx + βt)] = vs(sv+αβ)
(v2−α2)(s2−β2)

.

iv. Let q(x, t) = J0
(
c
√

xy
)
. Then,

GxGt

[
J0

(
c
√

xt
)]

= vs
∫ ∞

0

∫ ∞
0 e−vx−st J0

(
c
√

xt
)

dxdt

= s
∞∫
0

e−stdt v
∞∫
0

e−v x J0
(
c
√

xy
)
dx

= Gt

[
e−

c2t
4s

]
= 4vs

4vs+c2 ,

where J0 is the modified Bessel function of order zero.

3.2. Existence Conditions for DARAT

Let q(x, t) be a function of exponential orders α and β as x → ∞ and t→ ∞ . If there
exists a positive N such that ∀x > X and t > T, we have

|q(x, t)| ≤ Neαx+βt.

We can write q(x, t) = O
(
eαx+βt) as x → ∞ and t→ ∞ , v > α and s > β.

Theorem 2. Let q(x, t) be a continuous function on the region [0, X)× [0, T) of exponential orders
α and β . Then, GxGt[q(x, t)] exists for v and s provided that Re(v) > α and Re(s) > β.

Proof. Using the definition of DARAT, we find

|Q(v, s)| = |vs
∫ ∞

0

∫ ∞
0 e−(vx+st)[q(x, t)]dxdt| ≤ vs

∫ ∞
0

∫ ∞
0 e−(vx+st)|q(x, t)|dxdt

≤ Nv
∫ ∞

0 e−(v−α)xdx·s
∫ ∞

0 e−(s−β)tdt

= Nvs
(v−α)(s−β)

, Re(v) > α and Re(s) > β.

Thus, GxGt[q(x, t)] exists for v and s provided Re(v) > α and Re(s) > β. 2

3.3. Some Theorems of DARAT

Theorem 3. (Shifting Property). Let q(x, t) be a continuous function and GxGt[q(x, t)] = Q(v, s).
Then,

GxGt

[
eαx+βtq(x, t)

]
=

vs
(v− α)(s− β)

Q(v− α, s− β). (7)
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Proof. From the definition of DARAT, we find

GxGt
[
eαx+βtq(x, t)

]
= vs

(v−α)(s−β)
Q(v− α, s− β).

GxGt
[
eαx+βtq(x, t)

]
= vs

∫ ∞
0

∫ ∞
0 e−(v−α)x−(s−β)t[q(x, t)]dxdt

= vs
(v−α)(s−β) (v− α)(s− β)

∫ ∞
0

∫ ∞
0 e−(v−α)xe−(s−β)t[q(x, t)]dxdt

= v
(v−α)

s
(s−β)

Q(v− α, s− β).

2

Theorem 4. (Periodic Function). Let GxGt[q(x, t)] exist, where q(x, t) describes a periodic function
of periods α and β such that

q(x + α, t + β) = q(x, t) , ∀x, y.

Then,

Gt[q(x, t)] =
1(

1− e−(vα+sβ)
)(vs

∫ α

0

∫ β

0
e−(vx+st)(q(x, t))dxdt

)
(8)

Proof. Using the definition of DARAT, we obtain

GxGt[q(x, t)] = vs
∫ ∞

0

∫ ∞

0
e−(vx+st)[q(x, t)]dxdt. (9)

Using the property of improper integral, Equation (9) can be written as

GxGt[q(x, t)] = vs
∫ α

0

∫ β

0
e−(vx+st)(q(x, t))dxdt + vs

∫ ∞

α

∫ ∞

β
e−(vx+st)(q(x, t))dxdt. (10)

Putting x = α + ρ and t = β + τ on the second integral in Equation (10), we obtain

Q(v, s) = vs
∫ α

0

∫ β

0
e−(vx+st)(q(x, t))dxdt + vs

∫ ∞

0

∫ ∞

0
e−(v(α+ρ)+s(β+τ))(q(α + ρ, β + τ))dρdτ. (11)

Using the periodicity of the function q(x, t), Equation (11) can be written as

Q(v, s) = vs
∫ α

0

∫ β

0
e−(vx+st)(q(x, t))dxdt + e−(vα+sβ)vs

∫ ∞

0

∫ ∞

0
e−(vρ+sτ)(q(ρ, τ))dρdτ. (12)

Using the definition of DARAT, we obtain

Q(v, s) = vs
∫ α

0

∫ β

0
e−(vx+st)(q(x, t))dxdt + e−(vα+sβ)Q(v, s). (13)

Thus, Equation (12) can be simplified as

Q(v, s) =
1(

1− e−(vα+sβ)
)(vs

∫ α

0

∫ β

0
e−(vx+st)(q(x, t))dxdt

)
.

2
Theorem 5. (Heaviside Function). Let GxGt[q(x, t)] exist and GxGt[q(x, t)] = Q(v, s) . Then,

GxGt[q(x− δ, t− ε)H(x− δ, t− ε)] = e−vδ−sεQ(v, s). (14)
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where H(x− δ, t− ε) is the Heaviside unit step function defined as

H(x− δ, t− ε) =

{
1 , x > δ, t > ε
0 , Otherwise.

Proof. Using the definition of DARAT, we find

GxGt[q(x− δ, t− ε)H(x− δ, t− ε)] = vs
∫ ∞

0

∫ ∞
0 e−(vx+st)(q(x− δ, t− ε)H(x− δ, t− ε))dxdt

= vs
∫ ∞

0

∫ ∞
0 e−(vx+st)(q(x− δ, t− ε))dxdt.

(15)

Putting x− δ = ρ and t− ε = τ in Equation (15), we obtain

GxGt[u(x− δ, t− ε)H(x− δ, t− ε)] = vs
∫ ∞

0

∫ ∞

0
e−v(δ+ρ)−s(ε+τ)(q(ρ, τ))dρdτ. (16)

Thus, Equation (16) can be simplified as

GxGt[q(x− δ, t− ε)H(x− δ, t− ε)] = e−vδ−sε

(
vs
∫ ∞

0

∫ ∞

0
e−vρ−sτ(q(ρ, τ))dρdτ

)
= e−vδ−sεQ(v, s). (17)

2

Theorem 6. (Convolution Theorem). Let GxGt[q(x, t)] and GxGt[p(x, t)] exist and GxGt[q(x, t)] =
Q(v, s) , GxGt[p(x, t)] = P(v, s) . Then,

GxGt[q(x, t) ∗ ∗p(x, t)] =
1

v s
Q(v, s)P(v, s), (18)

where q(x, t) ∗ ∗p(x, t) =
∫ x

0

∫ t
0 q(x− ρ, t− τ)p(ρ, τ)dρdτ and the symbol ∗∗ denotes the

double convolution with respect to x and t.

Proof. Using the definition of DARAT, we find

GxGt[q(x, t) ∗ ∗p(x, t)] = vs
∫ ∞

0

∫ ∞
0 e−(vx+st)[q(x, t) ∗ ∗p(x, t)]dxdt

= vs
∫ ∞

0

∫ ∞
0 e−(vx+st)

(∫ x
0

∫ t
0 q(x− ρ, t− τ)p(ρ, τ)dρdτ

)
dxdt.

(19)

Using the Heaviside unit step function, Equation (19) can be written as

GxGt[(q ∗ ∗p)(x, t)] = vs
∫ ∞

0

∫ ∞

0
e−(vx+st)

(∫ ∞

0

∫ ∞

0
q(x− ρ, t− τ)H(x− ρ, t− τ)p(ρ, τ)dρdτ

)
dxdt. (20)

Thus, Equation (20) can be written as

GxGt[u ∗ ∗w(x, t)] = v
∫ ∞

0

∫ ∞
0 p(ρ, τ)dρdτ

(
s
∫ ∞

0

∫ ∞
0 e−v(x+ρ)−s(t+τ)q(x− ρ, t− τ)H(x− ρ, t− τ)

)
dxdt

=
∫ ∞

0

∫ ∞
0 p(ρ, τ)dρdτ(e−vρ−sτQ(v, s))

= Q(v, s)
∫ ∞

0

∫ ∞
0 e−vρ−sτ p(ρ, τ)dρdτ = 1

vs Q(v, s)P(v, s).

2

Theorem 7. (Derivatives Properties). Let q(x, t) be a continuous function and GxGt[q(x, t)] =
Q(v, s) . Then, we obtain the following derivatives properties:
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GxGt

[
∂q(x,t)

∂t

]
= sQ(v, s)− s G[q(x, 0)].

GxGt

[
∂q(x,t)

∂t

]
= sQ(v, s)− s G[q(x, 0)].

GxGt

[
∂q(x,t)

∂x

]
= vQ(v, s)− v G[q(0, t)].

GxGt

[
∂2q(x,t)

∂t2

]
= s2Q(v, s)− s2G[q(x, 0)]− s G

[
∂q(x,0)

∂t

]
.

GxGt

[
∂2q(x,t)

∂x2

]
= v2Q(v, s)− v2G[q(0, t)]− v G

[
∂q(0,t)

∂x

]
.

GxGt

[
∂2q(x,t)

∂x∂t

]
= vsQ(v, s)− vsG[q(x, 0)]− vsG[q(0, t)] + vsq(0, 0).

Proof.
Proof of part a) : GxGt

[
∂q(x,t)

∂t

]
= vs

∫ ∞
0

∫ ∞
0 e−(st+vx)

[
∂q(x,t)

∂t

]
dxdt

= v
∫ ∞

0 e−vxdx·s
∫ ∞

0 e−st
(

∂q(x,t)
∂t

)
dt.

(21)

Using integration by part for the second integration, we obtain

s
∫ ∞

0
e−st

(
∂q(x, t)

∂t

)
dt = s

(
−q(x, 0) + s

∫ ∞

0
e−stq(x, t)dt

)
.

Substituting the above value in (21), we obtain the required result as

∴ GxGt

[
∂q(x,t)

∂t

]
= sQ(v, s)− sG[q(x, 0)].

Proof of part c) : GxGt

[
∂2u(x,t)

∂t2

]
= vs

∫ ∞
0

∫ ∞
0 e−(st+vx)

[
∂2u(x,t)

∂t2

]
dxdt

= v
∫ ∞

0 e−vxdx·s
∫ ∞

0 e−st
(

∂2u(x,t)
∂t2

)
dt.

Using integration by part again for the second integration, we obtain

s
∫ ∞

0
e−st

(
∂2u(x, t)

∂t2

)
dt = s

(
−∂u(x, 0)

∂t
+ s

∫ ∞

0
e−st

(
∂u(x, t)

∂t

)
dt
)

.

Using the result in part a, we have

GxGt

[
∂2u(x, t)

∂t2

]
= s2Q(v, s)− s2G[u(x, 0)]− sG

[
∂u(x, 0)

∂x

]
. (22)

The proof of the remaining relations can be obtained by similar arguments. 2

3.4. Comparisons of DARAT and Other Transforms

This section presents some comparisons between DARAT and the double Laplace
transform, double ARA–Sumud transform, and double Laplace–Sumudu transform for
some functions.

• The double Laplace transform of a function q(x, t) is given by LxLt[q(x, t)] = Q(v, s) =∫ ∞
0

∫ ∞
0 e−(vx+st)q(x, t)dxdt, v, s > 0.

• The double ARA–Sumudu transform of a function q(x, t) is given by GxSt[q(x, t)] =
Q(v, s) = v

s
∫ ∞

0

∫ ∞
0 e−(vx+t/s)q(x, t)dxdt, v, s > 0.

• The double Laplace–ARA transform of a function q(x, t) is given by LxGt[q(x, t)] =
Q(v, s) = s

∫ ∞
0

∫ ∞
0 e−(vx+st)q(x, t)dxdt, v, s > 0.

In the following table, Table 1, we present the values of the previous double transforms
for some functions. As these results show, we note that the values from DARAT are simpler
than those obtained by other transforms, suggesting DARAT’s potential for simplifying
analogous computations.
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Table 1. Comparisons between DARAT and other transforms.

q(x,t) GxGt[q(x,t)] LxLt[q(x,t)] GxSt[q(x,t)] LxGt[q(x,t)]

1 1 1
v s 1 1

v s

xαtβ Γ(α+1)Γ(β+1)
vα sβ

Γ(α+1)Γ(β+1)
vα+1 sβ+1

Γ(α+1)Γ(β+1) sβ

vα
Γ(α+1)Γ(β+1)

vα+1 sβ

eαx+βt v s
(v−α)(s−β)

v s
(v−α)(s−β)

v
(v−α)(1−βs)

s
(v−α)(s−β)

sin(αx + βt) vs(vβ+sα)
(v2+α2)(s2+β2)

(vβ+sα)
(v2+α2)(s2+β2)

αv(1+vs)
(v2+α2)(1+β2s2)

s(vβ+sα)
(v2+α2)(s2+β2)

4. Method of Double ARA Transform

To illustrate the method of using DARAT for solving PDEs, let us consider the follow-
ing PDE with two independent variables x and t :

Aqxx(x, t) + Bqxt(x, t) + Cqtt(x, t) + Dqx(x, t) + Eqt(x, t) + Fq(x, t) = r(x, t). (23)

Assume initial conditions of

q(x, 0) = h1(x), qt(x, 0) = h2(x) (24)

and boundary conditions of

q(0, t) = k1(t), qx(0, t) = k2(t). (25)

Let us further assume that q(0, 0) = M, where q(x, t) is the unknown function, r(x, t)
is a given function, and A, B, C, D, E, F, and M are constants.

The main idea of this method is to operate DARAT to Equation (23) and the ARA
transform to the initial and boundary conditions in Equations (24) and (25) as follows.

Operating the ARA transform to the prescribed conditions yields

G[q(x, 0)] = G[h1(x)] = H1(v) = H1, G[qt(x, 0)] = G[h2(x))] = H2(v) = H2.
G[q(0, t)] = G[k1(t)] = K1(s) = K1, G[ux(0, t)] = G[k2(t)] = K2(s) = K2.

Importantly, R(v, s) = R = GxGt[r(x, t)].
Next, by operating DARAT to both sides of Equation (23), we obtain

Aqxx(x, t) + Bqxt(x, t) + Cqtt(x, t) + Dqx(x, t) + Eqt(x, t) + Fq(x, t) = r(x, t),
GxGt[Aqxx(x, t) + Bqxt(x, t) + Cqtt(x, t) + Dqx(x, t) + Eqt(x, t) + Fq(x, t)] = GxGt[r(x, t)].

The derivative properties of DARAT and the above conditions yield

A
[
v2Q(v, s)− v2G1 − vG2

]
+ B[vsQ(v, s)− svF1 − vsG1 + vsM] + C

[
s2Q(v, s)− s2F1 − sF2

]
+

+D[vQ(v, s)− vG1] + E[sQ(v, s)− sF1] + F[Q(v, s)] = R(v, s).
(26)

Equation (26) can be simplified as follows:

Q(v, s) =
(

Av2 + Bvs + Dv
)
G1 + AvG2 − BvsM +

(
Bvs + Cs2 + Es

)
F1 + CsF2 + R

Av2 + Bvs + Cs2 + Dv + Es + F
(27)

Operating with the inverse DARAT on both sides of Equation (27), we obtain

q(x, t) = G−1
x G−1

t

[(
Av2 + Bvs + Dv

)
G1 + AvG2 − BvsM +

(
Bvs + Cs2 + Es

)
F1 + CsF2 + R

Av2 + Bvs + Cs2 + Dv + Es + F

]
(28)

where q(x, t) represents the term arising from the known function r(x, t) and all conditions.
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5. Applications of the Double ARA Transform

Many physical phenomena can be modeled by a set of governing equations, several of
them being partial differential equations. One may encounter PDEs in many branches of
sciences, including but not limited to the following:

• Quantum mechanics
• Particle physics
• Astrophysics
• Chemistry
• Biology
• Environmental science

Nonetheless, solving the partial differential equations that emerge in these fields is
another challenge altogether. The current state of mathematics is unable to generate closed
solution, and more advances are yet to come. Still, many numerical techniques have been
developed for solving PDEs. In this section, we introduce solutions for some familiar PDEs,
such as the wave equation, heat equation, telegraph equation, and others. All the following
figures for the selected examples were obtained using Mathematica 13 software.

5.1. Example 1

Let us consider the homogeneous wave equation,

qxx(x, t)− qtt(x, t) = 0, where x and t ≥ 0, (29)

with the initial conditions q(x, 0) = sin x, qt(x, 0) = 2, and the boundary conditions
q(0, t) = 2t, qx(0, t) = cos t.

Applying the ARA transform to the initial conditions and boundary conditions yields

F1 =
v

v2 + 1
, F2 = 2 , G1 =

2
s

, G2 =
s2

s2 + 1
.

By substituting the values of the functions F1 , F2, G1 , G2 and A = 1, C = −1, B =
D = E = F = R = M = 0 into the obtained formula in Equation (28), we obtain

Q(v, s) =
2
s
+

vs2

(s2 + 1)(v2 + 1)
. (30)

Applying the inverse DARAT to Equation (29), the solution of Equation (30) is

u(x, t) = G−1
x G−1

t

[
2
s
+

vs2

(s2 + 1)(v2 + 1)

]
= 2t + cos t sin x.

5.2. Example 2

Let us consider the homogeneous Laplace equation

qxx(x, t) + qtt(x, t) = 0, x and t > 0, (31)

with the initial conditions q(x, 0) = 0, qt(x, 0) = cos x, and the boundary conditions
q(0, t) = sinht, qx(0, t) = 0.

Upon applying the ARA transform to the initial and boundary conditions, we obtain

F1 = 0 , F2 =
v2

v2 + 1
, G1 =

s
s2 − 1

, G2 = 0.
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By substituting the values of the functions F1 , F2, G1 , G2 and A = 1, C = 1, B = D =
E = F = M = R = 0 in the general formula in Equation (28), we obtain

Q(v, s) =
v2s

(s2 − 1)(v2 + 1)
. (32)

Then, by applying the inverse DARAT to Equation (32), the solution of Equation (31) is

q(x, t) = G−1
x G−1

t

[
v2s

(s2 − 1)(v2 + 1)

]
= cos xsinht.

5.3. Example 3

Let us consider the homogeneous telegraph equation,

qxx(x, t) = qtt(x, t) + 4qt(x, t) + 4q(x, t), x, t ≥ 0, (33)

with the initial conditions q(x, 0) = 1 + e2x , qt(x, 0) = −2. and the boundary conditions
q(0, t) = 1 + e−2t , qx(0, t) = 2.

Applying the ARA transform to the initial and boundary conditions, we obtain

F1 = 1 +
v

v− 2
, F2 = −2 , G1 = 1 +

s
s + 2

, G2 = 2.

By substituting the values of the functions F1 , F2, G1 , G2 and A = 1, C = −1,
E = F = −4, B = D = R = M = 0 in the general formula in Equation (28), we obtain

Q(v, s) =
v

v− 2
+

s
(s + 2)

. (34)

Then, by applying the inverse DARAT to Equation (34), the solution of Equation (33) is

q(x, t) = G−1
x G−1

t

[
v

v− 2
+

s
(s + 2)

]
= e2x + e−2t.

5.4. Example 4

Let us consider the nonhomogeneous heat equation,

qxx(x, t)− qt(x, t)− 3q(x, t) = −3, x and t ≥ 0, (35)

with the initial conditions q(x, 0) = 1 + sin x and the boundary conditions
q(0, t) = 1, qx(0, t) = e−4t.

Applying the ARA transform to the initial and boundary conditions, we obtain

F1 = 1 +
v

v2 + 1
, G1 = 1 , G2 =

s
s + 4

.

By substituting the values of the functions F1, G1, G2 and A = 1, E = −1, F = −3,
B = C = D = M = 0, R = 3 in the general formula in Equation (28), we obtain

Q(v, s) = 1 +
vs

(s + 4)(v2 + 1)
. (36)

Then, by applying the inverse DARAT to Equation (36), the solution of Equation (35) is

q(x, t) = G−1
x G−1

t

[
1 +

vs
(s + 4)(v2 + 1)

]
= 1 + e−4t sin x.
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5.5. Example 5

Let us consider the Klein–Gordon equation,

qtt(x, t)− q(x, t) = qxx(x, t)− cos x cos t, (37)

with the initial conditions q(x, 0) = cos x, qt(x, 0) = 0, and the boundary conditions
q(0, t) = cos t , qx(0, t) = 0.

Applying the ARA transform to the initial and boundary conditions, we obtain

F1 =
v2

v2 + 1
, F2 = 0 , G1 =

s2

s2 + 1
, G2 = 0.

By substituting the values of the functions F1, F2 , G1, and G2 and A = 1, C = −1,
F = 1, B = D = E = M = 0, R = v2s2

(s2+1)(v2+1) in the general formula in Equation (28),
we obtain

Q(v, s) =
v2s2

(s2 + 1)(v2 + 1)
. (38)

Then, by applying the inverse DARAT to Equation (38), the solution of Equation (37) is

q(x, t) = G−1
x G−1

t

[
v2s2

(s2 + 1)(v2 + 1)

]
= cos x cos t.

5.6. Example 6

Let us consider the integral equation

q(x, t) = 1− λ

x∫
0

t∫
0

g(r, u)dr du, (39)

where a and λ are two constants and q(x, t) is the unknown function.
Applying DARAT to Equation (39) and using the convolution theorem, we obtain

Q(v, s) = GxGt[1]− λGxGt[1∗∗q(x, t)] = 1− λ
1
vs

Q(s, u). (40)

Simplifying Equation (40) yields

Q(v, s) =
vs

vs + λ
. (41)

Then, running the inverse DARAT on Equation (41), we obtain the solution of Equa-
tion (39) as

q(x, t) = G−1
x G−1

t

[
vs

vs + λ

]
= J0

(
2
√

λxt
)

.

6. Conclusions

This work introduced DARAT, a novel transform technique. We described several
of its properties and theorems regarding linearity, existence, partial derivatives, and the
double convolution theorem. The expanded results were used to create a new formula for
resolving various types of PDEs, and we also used the obtained results of the convolution
theorem to solve some integral equations. We described a few numerical examples and
used this new double transform to obtain precise results. In the future, DARAT applica-
tions may be created and used to resolve coupled differential equations and systems and
PDEs with variable coefficients. As an additional benefit, we emphasize that this novel
double transform can be used in conjunction with an iterative numerical approach to solve
nonlinear PDEs.
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