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Abstract: This study conducts buckling and free vibration analyses of multi-directional functionally
graded sandwich plates subjected to various boundary conditions. Two scenarios are considered:
a functionally graded (FG) skin with a homogeneous hard core, and an FG skin with a homogeneous
soft core. Utilizing refined plate models, which incorporate a parabolic distribution of transverse
shear stresses while ensuring zero shear stresses on both the upper and lower surfaces, equations
of motion are derived using Hamilton’s principle. Analytical solutions for the buckling and free
vibration analyses of multi-directional FG sandwich plates under diverse boundary conditions are
developed and presented. The obtained results are validated against the existing literature for both
the buckling and free vibration analyses. The composition of metal–ceramic-based FG materials
varies longitudinally and transversely, following a power law. Various types of sandwich plates
are considered, accounting for plate symmetry and layer thicknesses. This investigation explores
the influence of several parameters on buckling and free vibration behaviors.

Keywords: buckling; free vibration; hard core; soft core; multi-directional FGM

1. Introduction

Composite materials blend two or more substances with varying properties to create
unique characteristics absent in their individual components. Functionally graded materials
(FGMs) represent a specific class of composites distinguished by directional variations in
their material properties [1]. While unidirectional FGMs vary their properties along a single
axis, multi-directional (MD) graded materials introduce variations along multiple axes,
enhancing their performance [2].

Various methodologies have been proposed for analyzing the free vibration of plates,
beams, and shells, including the energy method for plates [3], Galerkin–Vlasov’s method
for tapered plates [4], and the Rayleigh–Ritz method for rotating hard-coating cylindrical
shells [5]. For 2-D FGMs, studies have explored their free vibration behavior under differ-
ent boundary conditions, revealing variations in their frequency based on the boundary
conditions [6]. A semi-analytical numerical method was employed in solving the problems
of the bending analysis of 2-D functionally graded (FG) circular and annular plates [7] and
their impact analysis [8].

Buckling and frequency analyses were conducted on a two-directional (2-D) FG circu-
lar plate using the differential quadrature method (DQM) for both clamped and simply
supported boundary conditions. The results indicated a higher critical buckling load for

Computation 2024, 12, 65. https://doi.org/10.3390/computation12040065 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation12040065
https://doi.org/10.3390/computation12040065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-3333-5902
https://orcid.org/0000-0002-7377-781X
https://orcid.org/0000-0002-3445-9210
https://doi.org/10.3390/computation12040065
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation12040065?type=check_update&version=2


Computation 2024, 12, 65 2 of 20

the clamped plate compared to the simply supported configuration [9]. Additionally, fi-
nite element analysis and analytical techniques like the third-order shear deformation
plate theory have provided us with understanding of the static deflection and buckling
characteristics of FGM plates [10,11].

The free vibration and buckling of 2-D FGM plates were investigated using a non-
uniform rational B-spline technique [12]. Estimating the material properties of FGMs is
crucial, with empirical relationships available for ideal FGMs. However, certain parameters
like the stress–strain transfer ratio (q) remain mathematically unquantifiable, necessitat-
ing experimental validation [13]. Several material combination experiments have been
conducted to explore the parameter q empirically [14].

A free vibration analysis of multi-directional FG piezoelectric annular plates has been
conducted using the differential quadrature method (DQM). Radial and thickness grada-
tions were incorporated, revealing that radial gradation enhances plate stiffness, resulting
in higher frequency responses [15]. Static and dynamic analyses of three-dimensional
shells composed of multi-directional FG material (MD FGM) have been carried out using
polyhedral finite element methods. That study explored the effects of shell thickness and
slenderness on structural behavior [16]. The bending analysis of multilayer panels of FGMs
was performed using a higher-order layer-wise model, with Young’s modulus determined
via the Halpin–Tsai method and Poisson’s ratio via the rule of mixture [17]. In a thermal
environment, numerical and experimental investigations were used to examine the free
vibration of unidirectional and bi-directional porous FG curved panels. The evaluation
of temperature-dependent (TD) material properties showed lower frequencies compared
to temperature-independent (TID) properties [18]. A strain gradient elasticity theory was
employed to study the dynamic response of square microplates with multi-directional FGM
properties under a moving concentrated load [19]. The optimization of multi-directional
FG plates under thermal effects was achieved through free vibration analysis [20]. Further-
more, a free vibration analysis of tri-directional FG beams under magneto-electro-elastic
fields utilized the DQM and higher-order deformation theory [21,22]. In another study,
the analysis of MD FG sandwich plates covered both FG skin with a homogeneous core and
FG cores with homogeneous skin configurations, with the former demonstrating higher
natural frequencies [23].

Singh and Kumari [24] proposed an approximate analytical solution for analyzing
the free vibration of composite FG rectangular plates. By applying a modified version
of Hamilton’s principle, they derived governing equations, considering all stresses and
displacements as primary variables. The solution was obtained using the extended Kan-
torovich method, along with Fourier and power series approaches. Singh et al. [25] intro-
duced a framework for accurately analyzing the free vibration of in-plane FG orthotropic
rectangular plates integrated with piezoelectric sensory layers, considering both their elastic
and viscoelastic properties. Numerical studies have explored the effects of in-plane grada-
tion and viscoelasticity on vibration responses, revealing significant alterations in flexural
frequencies and mode shapes. Vaishali et al. [26] proposed an innovative multi-physical
probabilistic vibration analysis approach for FG materials. They combined Gaussian Pro-
cess Regression (GPR) with finite element simulations, aided by a Monte Carlo Simulation,
resulting in significant computational efficiency. By integrating machine learning with
physics-based modeling, system uncertainty can be efficiently quantified.

Malikan and Eremeyev [27] developed a novel hyperbolic, polynomial higher-order
elasticity theory for thick FGM beams. Their model addressed a critical drawback in
material composition and incorporated a unique shape function for shear stress distribution.
Through rigorous validation and comparative analyses, they demonstrated the efficacy of
their approach. Their findings underscored the significance of higher-order beam theories
and stretching effects. Importantly, their investigation into FGM beams with different
boundary conditions revealed the marked effects of material imperfections, emphasizing
the practical implications of their work for structural mechanics and material engineering.
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Functionally graded materials undergo changes in their properties through adjust-
ments in their microstructure, material composition, and porosity. Manufacturing tech-
niques such as solid-state, liquid-state, or deposition processes enable the fabrication of
these materials [28,29]. The research on FG structures, including plates, disks, and beams,
has predominantly focused on unidirectional FGMs, as evidenced by the existing liter-
ature [30–32]. Fabrication methods must minimize the delamination that results from
differences in the materials’ physical and chemical characteristics, necessitating techniques
that ensure consistent thermo-mechanical properties [33]. While existing methods suit
the fabrication of unidirectional FGMs, multi-directional gradation poses unique challenges.
Functionally graded additive manufacturing (FGAM) emerges as a promising solution
due to its ability to produce components with material gradients in various directions,
offering advantages such as reduced material wastage, the absence of tooling requirements,
and decreased manufacturing time and costs [34]. Various material modeling techniques
exist, with rule of mixture (ROM) models often providing the best results for material
combinations when compared to experimental data [35].

A delamination analysis within multilayered FG beam configurations was performed
with a specific emphasis on understanding the time-dependent strain energy release rate.
The study included different models of nonlinear creep behavior, particularly in ten-
sion and compression scenarios [36]. Dastjerdi et al. [37] employed a highly efficient
quasi-3D theory to investigate the nonlinear hygro-thermo-mechanical bending analysis of
a thick FGM rotating disk in a hygro-thermal environment, taking porosity into account
as a structural defect. Their analysis incorporates two applied quasi-3D displacement
fields, where the strain along the thickness is non-zero, unlike in conventional plate the-
ories. Karami and Ghayesh [38] explored the significance of micromechanical models in
analyzing the forced vibrations of multi-layered microplates subjected to a moving load.
Their microplate comprised an FGM core and metal foam face sheets. The problem was
modelled using a quasi-3D shear deformable method and modified couple stress theory.
The same authors [39] investigated the vibrations of sandwich microshells featuring porous
FG face sheets, considering in-surface curvilinear motions. The motion equations were
derived using Hamilton’s principle, employing a curvilinear framework for a modified
couple stress scheme that incorporated length-scale parameters. The vibration modes for
curvilinear and normal displacements were assumed using trigonometric functions, and
natural frequencies were determined numerically.

Despite the extensive research on unidirectional graded plates, research on multi-
directional gradation remains limited. Multi-directional gradation promises optimized
structures with enhanced performance compared to unidirectional grading. Thus, this
paper investigates the free vibration and buckling analysis of multi-directional FG plates
using refined plate theories. Our analysis considers a face sheet made of FGM with
a homogeneous core composed of ceramic (hard core) or metal (soft core). The results of
the proposed methods are validated against the existing literature for both buckling and
free vibration analyses. Furthermore, a detailed parametric analysis explores the effects
of grading index and geometry on the frequency and buckling load of multi-directional
FG plates.

2. Mathematical Modeling
2.1. Preliminary Concepts and Definitions

Figure 1 depicts a multi-directional FGM sandwich plate with its dimensions along
the x, y, and z axes denoted as length (a), width (b), and thickness (h), respectively.
The sandwich plate comprises two face sheets (top and bottom) sandwiching a core layer.
In Figure 1, the x and y axes represent the midplane, while the z axis is perpendicular to
the midplane.
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Figure 1. Multi-directional FGM sandwich plate.

A power law variation in the volume fraction of the FGM’s metal and ceramic con-
stituents is represented by Equations (1) and (2). This investigation focuses on metal (Al)
and ceramic (Al2O3), with their compositions varying longitudinally (px) and transversely
(pz). The material properties of the FGM sandwich plate are influenced by the volume frac-
tions of these constituents along both its longitudinal and transverse directions, following
a power law relationship. The volume fraction of metal in a multi-directional sandwich
plate is expressed as shown in Equation (1):

V(1)(x, z) =
(

z−h1
h1−h2

)pz(
1 − x

2a
)px

V(2)(x, z) = 1

V(3)(x, z) =
(

z−h4
h3−h4

)pz(
1 − x

2a
)px

(1)

where V(n) (n = 1, 2, 3) represents the volume fraction function of Layer n, while pz
and px denote the volume fraction indices in the transverse and longitudinal directions,
respectively. Type A has an FG face sheet and homogeneous hard core, while Type B has
an FG face sheet and homogeneous soft core. Figure 2 presents the different layers of
the material. The layer thicknesses, denoted by the coordinate points h1 = −h/2, h2, h3, and
h4 = h/2 in the z direction, determine the sandwich configuration.
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Figure 2. Material variation with thickness of multi-directional FGM sandwich plate: FGM containing
face sheets and a homogeneous core (Type A: hard core, Type B: soft core).

2.2. Modeling of FG Sandwich Plate

The effective material properties of the plate, i.e., its Young’s modulus E, Poisson’s ratio
ν, and mass density ρ, can be expressed by the rule of mixture, as shown in Equation (2) [40].

P(n)(x, z) = (P1 − P2)V(n)(x, z) + P2 (2)

where P(n) is the effective material property of the FGM of Layer n. For Type A, P1 and
P2 are the properties of the top and bottom faces of Layer 1, respectively, and vice versa
for Layer 3, depending on the volume fraction V(n) (n = 1, 2, 3). For Type B, P1 and P2 are
the properties of Layer 3 and Layer 1, respectively. The discussion of the two types of FGM
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sandwich plates, Type A with a hard core and Type B with a soft core, will be presented in
subsequent sections. In this study, the Poisson’s ratio of the plate is considered constant,
as its impact on deformation is deemed significantly less impactful than that of Young’s
modulus [41].

2.3. Displacement Field and Strains

In the multi-directional FGM sandwich plate, the in-plane displacements u and v are
accounted for in the x and y directions, respectively, while the transverse displacement w
occurs in the z direction. These displacements can be expressed as follows, using refined
shear deformation theory, as shown in Equations (3)–(6):

u(x, y, z, t) = u0(x, y, t)− z ∂wb
∂x − f (z) ∂wb

∂x
v(x, y, z, t) = v0(x, y, t)− z ∂wb

∂y − f (z) ∂wb
∂y

w(x, y, z, t) = wb(x, y, t) + ws(x, y, t)
(3)

In this study, two different shape functions are considered, as follows:

f (z) = − 1
4 z + 5

3 z
( z

h
)2 for Model 1

f (z) = z − h
π sin

(
πz
h
)

for Model 2
(4)

where u0, v0, wb, and ws are the in-plane and transverse displacements of the mid-
dle plane. The strains associated with the displacements in Equation (3) are given by
Equations (5) and (6):

εx = ε0
x + z kb

x + f ks
x

εy = ε0
y + z kb

y + f ks
y

γxy = γ0
xy + z kb

xy + f ks
xy

γyz = g γs
yz

γxz = g γs
xz

εz = 0

(5)

where
ε0

x = ∂u0
∂x , kb

x = − ∂2wb
∂x2 , ks

x = − ∂2ws
∂x2

ε0
y = ∂v0

∂y , kb
y = − ∂2wb

∂y2 , ks
y = − ∂2ws

∂y2

γ0
xy = ∂u0

∂y + ∂v0
∂x , kb

xy = −2 ∂2wb
∂x∂y , ks

xy = −2 ∂2ws
∂x∂y

γs
yz =

∂ws
∂y , γs

xz =
∂ws
∂x

g(z) = 1 − f ′(z), f ′(z) = d f (z)
dz

(6)

The stress–strain relationship of a multi-directional FGM sandwich plate can be ex-
pressed as shown in Equations (7) and (8):

σx
σy
τxy


(n)

=

 Q11 Q12 0
Q12 Q22 0
0 0 Q66

(n)
εx
εy
γxy


and

{
τyz
τzx

}(n)

=

[
Q44 0
0 Q55

](n){
γyz
γzx

} (7)

where
Q(n)

11 (x, z) = Q(n)
22 (x, z) = E(n)(x,z)

1−ν2

Q12 = ν · Q(n)
11 (x, z)

Q(n)
44 (x, z) = Q(n)

55 = Q(n)
66 = E(n)(x,z)

2(1+ν)

(8)
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2.4. Governing Equations

Hamilton’s principle (Equation (9)) is employed here to derive the equations of motion:

0 =

t∫
0

(δU + δV − δK) dt (9)

Here, δU represents the variation of strain energy, δV denotes the variation of work done,
and δK signifies the variation of kinetic energy. The variation of the strain energy of
the plate is expressed as shown in Equation (10):

δ U =
∫
V

[
σxδ εx + σyδ εy + τxyδ γxy + τyzδ γyz + τxzδ γxz

]
dV

=
∫
A

[
Nxδ ε0

x + Nyδ ε0
y + Nxyδ γ0

xy + Mb
xδ kb

x + Mb
yδ kb

y + Mb
xyδ kb

xy

+Ms
xδ ks

x + Ms
yδ ks

y + Ms
xyδ ks

xy + Ss
yzδ γs

yz + Ss
xzδ γs

xz

]
dA = 0

(10)

where A is the top surface and the stress resultants N, M, and S are defined as

(
Ni, Mb

i , Ms
i

)
=

3
∑

n=1

hn+1∫
hn

(1, z, f )σidz, (i = x, y, xy)

(
Ss

xz, Ss
yz

)
=

3
∑

n=1

hn+1∫
hn

g
(
τxz, τyz

)
dz

(11)

The variation of the work done by the in-plane load
(

N0
x , N0

y , N0
xy

)
can be expressed as

δV = −
∫
A

Nδ(wb + ws)dA (12)

with

N =

[
N0

x
∂2(wb + ws)

∂x2 + N0
y

∂2(wb + ws)

∂y2 + 2N0
xy

∂2(wb + ws)

∂x∂y

]
(13)

The variation in the kinetic energy of the plate can be expressed as

δ K =
h/2∫

−h/2

∫
A

( .
uδ

.
u +

.
vδ

.
v +

.
wδ

.
w
)

ρ(z) dA dz

=
∫
A

{
I0
[ .
u0δ

.
u0 +

.
v0δ

.
v0 +

( .
wb +

.
ws

)(
δ

.
wb + δ

.
ws

)]
−I1

( .
u0

∂δ
.

wb
∂x + ∂

.
wb
∂x δ

.
u0 +

.
v0

∂δ
.

wb
∂y + ∂

.
wb
∂y δ

.
v0

)
−I2

( .
u0

∂δ
.

ws
∂x + ∂

.
ws
∂x δ

.
u0 +

.
v0

∂δ
.

ws
∂y + ∂

.
ws
∂y δ

.
v0

)
+J1

(
∂

.
wb
∂x

∂δ
.

wb
∂x + ∂

.
wb
∂y

∂δ
.

wb
∂y

)
+ K2

(
∂

.
ws
∂x

∂δ
.

ws
∂x + ∂

.
ws
∂y

∂δ
.

ws
∂y

)
+J2

(
∂

.
wb
∂x

∂δ
.

ws
∂x + ∂

.
ws
∂x

∂δ
.

wb
∂x + ∂

.
wb
∂y

∂δ
.

ws
∂y + ∂

.
ws
∂y

∂δ
.

wb
∂y

)}
dA

(14)

The notation with a dot superscript denotes differentiation with respect to the time
variable t, where ρ(z) represents the mass density defined by Equation (3) and (Ii, Ji, Ki)
denote mass inertias, expressed as

(I0, I1, I2) =
3
∑

n=1

hn+1∫
hn

(
1, z, z2)ρ(z)dz

(J1, J2, K2) =
3
∑

n=1

hn+1∫
hn

(
f , z f , f 2)ρ(z)dz

(15)
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By substituting Equations (10), (12), and (14) into Equation (9), the following can
be derived:

δ u0 : ∂Nx
∂x +

∂Nxy
∂y = I0

..
u0 − I1

∂
..
wb
∂x − J1

∂
..
ws
∂x

δ v0 : ∂Nxy
∂x +

∂Ny
∂y = I0

..
v0 − I1

∂
..
wb
∂y − J1

∂
..
ws
∂y

δ wb : ∂2 Mb
x

∂x2 + 2
∂2 Mb

xy
∂x∂y +

∂2 Mb
y

∂y2 + N = I0
( ..
wb +

..
ws

)
+ I1

(
∂

..
u0

∂x + ∂
..
v0

∂y

)
− I2∇2 ..

wb − J2∇2 ..
ws

δ ws : ∂2 Ms
x

∂x2 + 2
∂2 Ms

xy
∂x∂y +

∂2 Ms
y

∂y2 + ∂Ss
xz

∂x +
∂Ss

yz
∂y + N = I0

( ..
wb +

..
ws

)
+ J1

(
∂

..
u0

∂x + ∂
..
v0

∂y

)
− J2∇2 ..

wb − K2∇2 ..
ws

(16)

By substituting Equation (7) into Equation (11) and integrating across the thickness of
the plate, the stress resultants can be expressed compactly in terms of strains as follows:

N
Mb

Ms

 =

A B Bs

B D Ds

Bs Ds Hs


ε

kb

ks

 (17)

in which

N =
{

Nx, Ny, Nxy
}t, Mb =

{
Mb

x, Mb
y, Mb

xy

}t
, Ms =

{
Ms

x, Ms
y, Ms

xy

}t

ε =
{

ε0
x, ε0

y, γ0
xy

}t
, kb =

{
kb

x, kb
y, kb

xy

}t
, ks =

{
ks

x, ks
y, ks

xy

}t

A =

 A11 A12 0
A12 A22 0
0 0 A66

, B =

 B11 B12 0
B12 B22 0
0 0 B66

, D =

 D11 D12 0
D12 D22 0
0 0 D66


Bs =

 Bs
11 Bs

12 0
Bs

12 Bs
22 0

0 0 Bs
66

, Ds =

 Ds
11 Ds

12 0
Ds

12 Ds
22 0

0 0 Ds
66

, Hs =

 Hs
11 Hs

12 0
Hs

12 Hs
22 0

0 0 Hs
66


S =

{
Ss

xz, Ss
yz

}t
, γ =

{
γ0

xz, γ0
yz

}t
, As =

[
As

44 0
0 As

55

]
(18)

The stiffness components are given as
A11 B11 D11 Bs

11 Ds
11 Hs

11
A12 B12 D12 Bs

12 Ds
12 Hs

12
A66 B66 D66 Bs

66 Ds
66 Hs

66

 =
h/2∫

−h/2
Q11

(
1, z, z2, f (z), z f (z), f 2(z)

)
1
ν
1−ν

2

dz

(A22, B22, D22, Bs
22, Ds

22, Hs
22) =

(
A11, B11, D11, Bs

11, Ds
11, Hs

11
)

As
44 = As

55 =
h/2∫

−h/2
Q44[g(z)]

2dz

(19)

By introducing Equation (17) into Equation (16), the equations of motion can be
rephrased in terms of displacements (u0, v0, wb, ws). The resulting equations take the
following forms:

A11
∂2u0
∂x2 + A66

∂2u0
∂y2 + (A12 + A66)

∂2v
∂x∂y − B11

∂3wb
∂x3 − (B12 + 2B66)

∂3wb
∂x∂y2

−Bs
11

∂3ws
∂x3 −

(
Bs

12 + 2Bs
66
) ∂3ws

∂x∂y2 = I0
..
u0 − I1

∂
..
wb
∂x − J1

∂
..
ws
∂x

(A12 + A66)
∂2u0
∂x∂y + A66

∂2v0
∂x2 + A22

∂2v0
∂y2 − (B12 + 2B66)

∂3wb
∂x2∂y − B22

∂3wb
∂y3

−Bs
22

∂3ws
∂y3 −

(
Bs

12 + 2Bs
66
) ∂3ws

∂x2∂y = I0
..
v0 − I1

∂
..
wb
∂y − J1

∂
..
ws
∂y

B11
∂3u0
∂x3 + (B12 + 2B66)

∂3u0
∂x∂y2 + (B12 + 2B66)

∂3v0
∂x2∂y + B22

∂3v0
∂y3 − D11

∂4wb
∂x4

−2(D12 + 2D66)
∂4wb

∂x2∂y2 − D22
∂4wb
∂y4 − Ds

11
∂4ws
∂x4 − 2

(
Ds

12 + 2Ds
66
) ∂4ws

∂x2∂y2

−Ds
22

∂4ws
∂y4 + N = I0

( ..
wb +

..
ws

)
+ I1

(
∂

..
u0

∂x + ∂
..
v0

∂y

)
− I2∇2 ..

wb − J2∇2 ..
ws

Bs
11

∂3u0
∂x3 +

(
Bs

12 + 2Bs
66
) ∂3u0

∂x∂y2 +
(

Bs
12 + 2Bs

66
) ∂3v0

∂x2∂y + Bs
22

∂3v0
∂y3 − Ds

11
∂4wb
∂x4

−2
(

Ds
12 + 2Ds

66
) ∂4wb

∂x2∂y2 − Ds
22

∂4wb
∂y4 − Hs

11
∂4ws
∂x4 − 2

(
Hs

12 + 2Hs
66
) ∂4ws

∂x2∂y2 − Hs
22

∂4ws
∂y4

+As
55

∂2ws
∂x2 + As

44
∂2ws
∂y2 + N = I0

( ..
wb +

..
ws

)
+ J1

(
∂

..
u0

∂x + ∂
..
v0

∂y

)
− J2∇2 ..

wb − K2∇2 ..
ws

(20)
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The exact solution to the set of Equation (20), describing the P-FGMs multi-directional
functionality graded sandwich plate under various boundary conditions, can be derived.
The boundary conditions for an arbitrary edge include both its simply supported and
clamped conditions:

• Clamped (C):

u0 = v0 = wb = ∂wb/∂x =∂wb/∂y =ws = ∂ws/∂x =∂ws/∂y = 0,
at x = 0, y = 0, b

(21)

• Simply supported (S):

v0 = wb = ∂wb/∂y =ws = ∂ws/∂y = 0, at x = 0, a
u0 = wb = ∂wb/∂x =ws = ∂ws/∂x = 0, at y = 0, b

(22)

The following representation of the displacement quantities that fulfill the aforemen-
tioned boundary conditions is applicable to our specific problem:


u0
v0
wb
ws

 =


Umn

∂Xm(x)
∂x Yn(y)eiωt

VmnXn(x) ∂Yn(y)
∂y eiωt

WbmnXn(x)Yn(y)eiωt

WsmnXn(x)Yn(y)eiωt

 (23)

where Umn, Vmn, Wbmn, and Wsmn are arbitrary parameters and ω = ωmn denotes the eigenfre-
quency associated with the (m,n)th eigenmode. The functions Xm(x) and Yn(y) are suggested
here to satisfy, at least, the geometric boundary conditions given in Equations (21) and (22)
and represent the approximate shapes of the deflected surface of the plate. These functions,
for the different boundary condition cases, are listed in Table 1. Note that λ = mπ/a and
µ = nπ/b.

Table 1. The admissible functions for the various boundary conditions [42].

Boundary Conditions x = 0 y = 0 x = a y = b Xm(x) Yn(y)

SSSS S S S S sin(λx) sin(µx)
CSCS C S C S sin2(λx) sin(µx)
CCCC C C C C sin2(λx) sin2(µx)
FCFC F C F C cos2(λx)·[sin2(λx) + 1] sin2(µx)

By substituting Equation (23) into the governing Equation (20) and multiplying each
equation by its corresponding eigenfunction, and then integrating over the solution domain,
we can derive the following equations after performing certain mathematical manipulations:


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 − βN a34 − βN
a41 a42 a43 − βN a44 − βN

 −ω2


m11 0 m13 m14

0 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44


·


Umn
Vmn
Wmn
Xmn

 =


0
0
0
0

 (24)

in which
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a11 = A11α12 + A66α8 a12 = (A12 + A66)α8 a13 = −B11α12 − (B12 + 2B66)α8 a14 = −
(

Bs
12 + 2Bs

66
)
α8 − Bs

11α12

a21 = (A12 + A66)α10 a22 = A22α4 + A66α10 a23 = −B22α4 − (B12 + 2B66)α10 a24 = −
(

Bs
12 + 2B66

)
α10 − Bs

22α4

a31 = B11α13 + (B12 + 2B66)α11
a32 = (B12 + 2B66)α11

+B22α5

a33 = −D11α13 − 2(D12 + 2D66)α11

−D22α5

a34 = −Ds
11α13 − 2

(
Ds

12 + 2Ds
66
)
α11

−Ds
66α5

a41 = Bs
11α13 +

(
Bs

12 + 2Bs
66
)
α11

a42 =
(

Bs
12 + 2Bs

66
)
α11

+Bs
22α5

a43 = −Ds
11α13 − 2

(
Ds

12 + 2Ds
66
)
α11

−Ds
22α5

a44 = −Hs
11α13 − 2

(
Hs

12 + 2Hs
66
)
α11

−Hs
22α5 + As

44α9 + As
55α3

N = N0
x

ξ1 = N0
y /N0

x

(25)

and
m11 = −I0α6
m13 = −I1α6, m32 = −I1α3
m14 = J1α6, m33 = −I0α1 + I2(α3 + α9)
m22 = −I0α2, m34 = −I0α1 + J2(α3 + α9)
m23 = I1α2, m41 = −J1α9
m24 = J1α2, m42 = −J1α3
m31 = −I1α9, m44 = −I0α1 + K2(α3 + α9)

(26)

with
β = ξ1α3 + α9

(α1, α3, α5) =
b∫

0

a∫
0
(XmYn, XmY′′

n , XmY′′′
n )XmYndxdy

(α2, α4, α10) =
b∫

0

a∫
0
(XmY′

n, XmY′′
n , X′′

mY′
n)XmY′

ndxdy

(α6, α8, α12) =
b∫

0

a∫
0
(X′

mYn, X′
mY′′

n , X′′′
mYn)X′

mYndxdy

(α7, α9, α11, α13) =
b∫

0

a∫
0
(X′

mY′
n, X′′

mYn, X′
mY′′

n , X′′′
m Yn)XmYndxdy

(27)

3. Numerical Results and Discussion

In this section, we explore several numerical examples to assess the accuracy of
the two proposed theories in analyzing the buckling and free vibration of multi-directional
FG sandwich plates under different boundary conditions. A range of sandwich plate
configurations, comprising both symmetric and non-symmetric FGMs, are examined to
demonstrate the versatility of these theories.

The subsequent discussions aim to underscore the precision and relevance of the pre-
sented theories in capturing the plate’s behavior under varied conditions. The considered
configuration schemes of the sandwich plates include:

1. (1-0-1) FGM sandwich plate, consisting of two layers of equal thickness without a core,
where h1 = h2 = 0.

2. (1-2-1) FGM sandwich plate, with the core thickness equal to the sum of the face
thicknesses: h2 = −h/4, h3 = h/4.

3. (1-1-1) FGM sandwich plate, comprising three equal-thickness layers: h2 = −h/6,
h3 = h/6.

4. (2-2-1) FGM sandwich plate, featuring a core thickness twice that of the upper face
and equal to the lower one, defined by h2 = −h/10, h3 = 3h/10.

5. (1-1-2) FGM sandwich plate, with a core thickness equal to that of the lower face and
with the thickness of the upper face twice that of the core: h2 = −h/4, h3 = 0.

The material combinations include aluminum and alumina, each with the following
properties [23]:

• Ceramic (alumina, Al2O3): Young’s modulus Ec = 380 GPa, Poisson’s ratio vc = 0.3,
density ρc = 3800 kg/m3;
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• Metal (aluminum, Al): Young’s modulus Em = 70 GPa, Poisson’s ratio vm = 0.3, density
ρm = 2702 kg/m3.

3.1. FG Sandwich Plates
3.1.1. Free Vibration Analysis of FG Sandwich Plates

The face sheet comprises a functionally graded material with properties varying
along the pz direction. A power law distribution is utilized for the FG face sheet, while
the core consists of a homogeneous material. When the core material is pure ceramic
(alumina), it is referred to as “hard-core”, and when it is pure metal (aluminum) it is called
“soft-core”. Table 2 displays the fundamental frequency results obtained from the two
proposed methods for a/h = 10 and px = 0, in the case of a hard core. The results indicate
that the sandwich plate with the (1-2-1) scheme exhibits the highest frequency because of
its thicker ceramic core, leading to greater stiffness. Subsequently, a decrease in natural
frequency was observed for the (2-2-1) scheme, followed by the (1-1-1), (2-1-2), and (1-0-1)
schemes. Their frequency diminishes with an increase in the grading parameter pz.

Table 2. Dimensionless fundamental frequency ω of FG sandwich plates (a/h = 10 and px = 0). Type
A: hard core.

pz Theory 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

0

3D [43] 1.8268 1.8268 1.8268 1.8268 1.8268
SSDT [44] 1.8245 1.8245 1.8245 1.8245 1.8245
TSDT [44] 1.8245 1.8245 1.8245 1.8245 1.8245
FSDT [44] 1.8244 1.8244 1.8244 1.8244 1.8244

NFSDT [45] 1.8244 1.8244 1.8244 1.8244 1.8244
Present 1 1.8245 1.8245 1.8245 1.8245 1.8245
Present 2 1.8245 1.8245 1.8245 1.8245 1.8245

0.5

3D [43] 1.4461 1.4861 1.5213 1.5493 1.5767
SSDT [44] 1.4444 1.4842 1.5193 1.5520 1.5745
TSDT [44] 1.4442 1.4841 1.5192 1.5520 1.5727
FSDT [44] 1.4417 1.4816 1.5170 1.5500 1.5727

NFSDT [45] 1.4442 1.4841 1.5192 1.5471 1.5745
Present 1 1.4446 1.4844 1.5195 1.5474 1.5747
Present 2 1.4447 1.4845 1.5195 1.5474 1.5747

1

3D [43] 1.2447 1.3018 1.3552 1.3976 1.4414
SSDT [44] 1.2434 1.3002 1.3534 1.4079 1.4393
TSDT [44] 1.2432 1.3001 1.3533 1.4079 1.4393
FSDT [44] 1.2403 1.2973 1.3507 1.4056 1.4372

NFSDT [45] 1.2429 1.3000 1.3533 1.3956 1.4393
Present 1 1.2437 1.3005 1.3537 1.3959 1.4396
Present 2 1.2438 1.3006 1.3537 1.3959 1.4396

5

3D [43] 0.9448 0.9810 1.0453 1.1098 1.1757
SSDT [44] 0.9463 0.9821 1.0448 1.1474 1.1740
TSDT [44] 0.9460 0.9818 1.0447 1.1473 1.1740
FSDT [44] 0.9426 0.9787 1.0418 1.1447 1.1716

NFSDT [45] 0.9431 0.9796 1.0435 1.1077 1.1735
Present 1 0.9467 0.9824 1.0451 1.1094 1.1743
Present 2 0.9469 0.9826 1.0453 1.1095 1.1744

Additionally, an analysis was conducted for a/h = 5 and px = 0 for both hard-core and
soft-core materials, as presented in Tables 3 and 4. The analysis reveals that the soft-core
material yields lower frequencies than the hard-core material for homogeneous materials.
Moreover, as the plate thickness transitions from a/h = 10 to a/h = 5, there is a noticeable
decrease in the frequency outcomes.
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Table 3. Dimensionless fundamental frequency ω of FG sandwich plates (a/h = 5 and nx = 0). Type A:
hard core.

nz Theory 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

0
3D [43] 1.6771 1.6771 1.6771 1.6771 1.6771

NFSDT [45] 1.6697 1.6697 1.6697 1.6697 1.6697
Present 1 1.6701 1.6701 1.6701 1.6701 1.6701

0.5
3D [43] 1.3536 1.3905 1.4218 1.4454 1.4694

NFSDT [45] 1.3473 1.3841 1.4152 1.4386 1.4626
Present 1 1.3478 1.3844 1.4154 1.4388 1.4628

1
3D [43] 1.1749 1.2292 1.2777 1.3143 1.3534

NFSDT [45] 1.1691 1.2232 1.2714 1.3078 1.3467
Present 1 1.1703 1.2238 1.2717 1.3082 1.3471

5
3D [43] 0.8909 0.9336 0.9980 1.0561 1.1190

NFSDT [45] 0.8853 0.9286 0.9916 1.0488 1.1118
Present 1 0.89528 0.9365 0.9959 1.0533 1.1136

10
3D [43] 0.8683 0.8923 0.9498 1.0095 1.0729

NFSDT [45] 0.8599 0.8860 0.9428 1.0012 1.0648
Present 1 0.8725 0.8998 0.9508 1.0095 1.0679

Table 4. Dimensionless fundamental frequency ω of FG sandwich plates (a/h = 5 and nx = 0). Type B:
soft core.

nz Theory 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

0
3D [43] 0.8529 0.8529 0.8529 0.8529 0.8529

NFSDT [45] 0.8491 0.8491 0.8491 0.8491 0.8491
Present 1 0.8501 0.8501 0.8501 0.8501 0.8501

0.5
3D [43] 1.3789 1.3206 1.2805 1.2453 1.2258

NFSDT [45] 1.3686 1.3115 1.2729 1.2380 1.2185
Present 1 1.3829 1.3284 1.2859 1.2509 1.2255

1
3D [43] 1.5090 1.4333 1.3824 1.3420 1.3213

NFSDT [45] 1.4915 1.4156 1.3702 1.3302 1.3104
Present 1 1.5176 1.4557 1.4036 1.3625 1.3289

5
3D [43] 1.6587 1.5801 1.5028 1.4601 1.4267

NFSDT [45] 1.6305 1.5125 1.4589 1.4195 1.4026
Present 1 1.6585 1.6181 1.5665 1.5212 1.4748

10
3D [43] 1.6728 1.6091 1.5267 1.4831 1.4410

NFSDT [45] 1.6495 1.5196 1.4642 1.4266 1.4101
Present 1 1.6679 1.6394 1.5931 1.5484 1.5018

When nz = 0.5, the hard-core plate exhibits higher frequencies than the soft-core plate
for all instances, except for the 1-0-1 scheme, where the soft core demonstrates higher
frequencies. Conversely, at nz = 1, the soft core demonstrates higher frequencies than
the hard core, except for the 1-2-1 scheme. Beyond nz > 5, it is observed that the soft-core
material consistently yields higher frequencies than the hard-core material.

3.1.2. Buckling Analysis of FG Sandwich Plates

The buckling analysis results mirror the trends observed in the frequency analysis, as
summarized in Table 5. Similar to the frequency outcomes, the buckling analysis focuses
on a square plate with a hard core material undergoing uniaxial compression, particularly
at a/h = 10. Among the different schemes examined, the (1-2-1) configuration demonstrates
the highest buckling load, followed by (2-2-1), (1-1-1), (2-1-2), and (1-0-1), in descending
order of buckling strength. Notably, there is a consistent decrease in buckling load with
the increasing grading parameter pz. This pattern underscores the significant influence
of the grading parameter on the buckling behavior of square plates with a hard core
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material under uniaxial compression, with various schemes exhibiting distinct levels of
structural stability.

Table 5. Dimensionless buckling load N of square plates under uniaxial compression (ξ1 = 0, a/h = 10).
Type A: hard core.

nz Theory 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

0

SSDT [44] 13.0061 13.0061 13.0061 13.0061 13.0061
TSDT [44] 13.0050 13.0050 13.0050 13.0050 13.0050
FSDT [44] 13.0045 13.0045 13.0045 13.0045 13.0045

NFSDT [45] 13.0045 13.0045 13.0045 13.0045 13.0045
Present 1 13.0049 13.0049 13.0049 13.0049 13.0049
Present 2 13.0061 13.0061 13.0061 13.0061 13.0061

0.5

SSDT [44] 7.3657 7.9420 8.4371 8.8104 9.2167
TSDT [44] 7.3644 7.9408 8.4365 8.8100 9.2168
FSDT [44] 7.3373 7.9132 8.4103 8.7867 9.1952

NFSDT [45] 7.3634 7.9403 8.4361 8.8095 9.2162
Present 1 7.3644 7.9408 8.4365 8.8099 9.2168
Present 2 7.3657 7.9419 8.4371 8.8104 9.2167

1

SSDT [44] 5.1685 5.8412 6.4654 6.9498 7.5063
TSDT [44] 5.1671 5.8401 6.4647 6.9494 7.5066
FSDT [44] 5.1424 5.8138 6.4389 6.9257 7.4837

NFSDT [45] 5.1648 5.8387 6.4641 6.9485 7.5056
Present 1 5.1671 5.8401 6.4647 6.9494 7.5066
Present 2 5.1685 5.8412 6.4654 6.9498 7.5063

5

SSDT [44] 2.6601 3.0441 3.5806 4.1129 4.7349
TSDT [44] 2.6582 3.0426 3.5796 4.1121 4.7347
FSDT [44] 2.6384 3.0225 3.5596 4.0929 4.7148

NFSDT [45] 2.6415 3.0282 3.5710 4.1024 4.7305
Present 1 2.6582 3.0426 3.5796 4.1121 4.7347
Present 2 2.6601 3.0441 3.5806 4.1129 4.7349

Moreover, a buckling analysis of square FG plates under biaxial compression was
conducted, as indicated in Table 6. This table provides a comprehensive comparison of
the dimensionless buckling loads for square plates across various theories and conditions,
offering insights into the impact of the grading parameter on the structural stability of
the plate. Similar to unidirectional loading, biaxial loading also results in a noticeable
decrease in the dimensionless buckling loads for all the schemes considered.

Table 6. Dimensionless buckling load N of square plates under biaxial compression (ξ1 = 1, a/h = 10).
Type A: hard core.

nz Theory 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

0

SSDT [44] 6.5030 6.5030 6.5030 6.5030 6.5030
TSDT [44] 6.5025 6.5025 6.5025 6.5025 6.5025
FSDT [44] 6.5022 6.5022 6.5022 6.5022 6.5022

NFSDT [45] 6.5022 6.5022 6.5022 6.5022 6.5022
Present 1 6.5025 6.5025 6.5025 6.5025 6.5025
Present 2 6.5030 6.5030 6.5030 6.5030 6.5030

0.5

SSDT [44] 3.6828 3.9710 4.2186 4.4052 4.6084
TSDT [44] 3.6822 3.9704 4.2182 4.4050 4.6084
FSDT [44] 3.6687 3.9566 4.2052 4.3934 4.5976

NFSDT [45] 3.6817 3.9702 4.2181 4.4047 4.6081
Present 1 3.6822 3.9704 4.2182 4.4049 4.6084
Present 2 3.6828 3.9709 4.2185 4.4052 4.6083
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Table 6. Cont.

nz Theory 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

1

SSDT [44] 2.5842 2.9206 3.2327 3.4749 3.7531
TSDT [44] 2.5836 2.9200 3.2324 3.4747 3.7533
FSDT [44] 2.5712 2.9069 3.2195 3.4629 3.7418

NFSDT [45] 2.5824 2.9193 3.2320 3.4742 3.7528
Present 1 2.5835 2.9200 3.2323 3.4747 3.7533
Present 2 2.5842 2.9206 3.2327 3.4749 3.7531

5

SSDT [44] 1.3300 1.5220 1.7903 2.0564 2.3674
TSDT [44] 1.3291 1.5213 1.7898 2.0561 2.3673
FSDT [44] 1.3192 1.5113 1.7798 2.0464 2.3574

NFSDT [45] 1.3208 1.5141 1.7855 2.0512 2.3652
Present 1 1.3291 1.5213 1.7898 2.0560 2.3673
Present 2 1.3300 1.5220 1.7903 2.0564 2.3674

3.2. Multi-Directional FG Sandwich Plates
3.2.1. Free Vibration Analysis of Multi-Directional FG Sandwich Plates

The free vibration analysis of a multi-directional FG skin with a homogeneous hard
core was conducted under various boundary conditions. Multi-directional gradation was
achieved by adjusting the parameters px and pz. The results are presented in Table 7.
Across all boundary conditions, the (1-2-1) scheme exhibits the highest frequency, followed
by (2-2-1), (1-1-1), (2-1-2), and (1-0-1). In all scenarios, maintaining a constant and zero
value for the parameter px while increasing pz from 0.5 to 1 and 5 results in a decrease in
frequency. Similarly, increasing px from 0 to 0.5 and up to 2 and then varying pz also leads
to a decreasing trend in frequency.

Table 7. Dimensionless fundamental frequency ω of square plates under various boundary conditions
(a/h = 10). Type A: hard core.

Boundary
Conditions px pz 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

SSSS

0 0.5 1.4446 1.4844 1.5195 1.5474 1.5747
0 1 1.2437 1.3005 1.3537 1.3959 1.4396
0 5 0.9467 0.9824 1.0451 1.1094 1.1743

0.5 0.5 1.3965 1.4302 1.4635 1.4949 1.5216
0.5 1 1.2113 1.2606 1.3109 1.3556 1.3983
0.5 5 0.9451 0.9748 1.0338 1.0981 1.1613
2 0.5 1.2835 1.3046 1.3353 1.3749 1.4024
2 1 1.1378 1.1708 1.2156 1.2655 1.3076
2 5 0.9414 0.9590 1.0103 1.0745 1.1341

CSCS

0 0.5 2.1285 2.1868 2.2375 2.2772 2.3165
0 1 1.8379 1.9218 1.9992 2.0599 2.1231
0 5 1.4017 1.4583 1.5511 1.6446 1.7399

0.5 0.5 2.0571 2.1080 2.1569 2.2018 2.2407
0.5 1 1.7894 1.8634 1.9373 2.0015 2.0638
0.5 5 1.3983 1.4469 1.5345 1.6280 1.7208
2 0.5 1.8894 1.9256 1.9718 2.0288 2.0697
2 1 1.6788 1.7321 1.7988 1.8708 1.9329
2 5 1.3899 1.4234 1.4999 1.5934 1.6813
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Table 7. Cont.

Boundary
Conditions px pz 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

CCCC

0 0.5 2.6386 2.7106 2.7725 2.8205 2.8684
0 1 2.2834 2.3877 2.4827 2.5565 2.6338
0 5 1.7439 1.8180 1.9334 2.0482 2.16583

0.5 0.5 2.5497 2.6139 2.6744 2.7287 2.7767
0.5 1 2.2225 2.3157 2.4069 2.4850 2.5616
0.5 5 1.7387 1.8038 1.9129 2.0277 2.1425
2 0.5 2.3406 2.3902 2.4486 2.5178 2.5689
2 1 2.0835 2.1538 2.2371 2.3250 2.4021
2 5 1.7257 1.7741 1.8701 1.9849 2.0939

FCFC

0 0.5 2.7884 2.8643 2.9290 2.9788 3.0289
0 1 2.4168 2.5271 2.6268 2.7038 2.7847
0 5 1.8478 1.9289 2.0510 2.1715 2.2954

0.5 0.5 2.6941 2.7629 2.8266 2.8830 2.9335
0.5 1 2.3519 2.4514 2.5474 2.6289 2.7094
0.5 5 1.8415 1.9137 2.0294 2.1499 2.2709
2 0.5 2.4724 2.5282 2.5906 2.6628 2.7171
2 1 2.2035 2.2809 2.3695 2.4614 2.5428
2 5 1.8257 1.8821 1.9843 2.1048 2.2199

Notably, the results reveal an intriguing observation: an increase in the parameter pz
has a more pronounced effect on the frequency parameter compared to px. Thus, enhancing
the ceramic composition of the material in its transverse direction demonstrates a more
significant influence on frequency than varying the ceramic composition of its longitudinal
direction. The frequency is observed to be at its maximum for the FCFC condition, followed
by the CCCC, CSCS, and SSSS conditions.

The free vibration analysis of a multi-directional FG skin combined with a homoge-
neous soft core was also conducted under various boundary conditions for different values
of px and pz. The results are presented in Table 8. In contrast to the hard-core sandwich
plate, the maximum frequency was observed for the (1-0-1) configuration, followed by
(2-1-2), (1-1-1), (2-2-1), and (1-2-1). Similar to the hard-core case, the soft-core frequency is
highest for the FCFC condition, followed by the CCCC, CSCS, and SSSS conditions.

Across all boundary conditions, maintaining a fixed and zero value for the parameter
px while increasing pz from 0.5 to 1 and 5 results in an increase in frequency. Conversely,
increasing px from 0 to 0.5 and up to 2 and varying pz leads to a similar increase in frequency.
The results underscore the fact that the parameter pz has a more significant influence on
the frequency parameter compared to px.

Table 8. Dimensionless fundamental frequency ω of square plates under various boundary conditions
(a/h = 10). Type B: soft core.

Boundary
Conditions px pz 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

SSSS

0 0.5 1.5758 1.5299 1.4876 1.4372 1.4173
0 1 1.7263 1.6846 1.6405 1.5798 1.5619
0 5 1.8422 1.8421 1.8179 1.7541 1.7494

0.5 0.5 1.6232 1.5879 1.5507 1.4986 1.4828
0.5 1 1.7452 1.7137 1.6749 1.6146 1.6000
0.5 5 1.8401 1.8441 1.8228 1.7601 1.7570
2 0.5 1.7017 1.6887 1.6627 1.6085 1.6006
2 1 1.7762 1.7652 1.7382 1.6791 1.6714
2 5 1.8354 1.8476 1.8323 1.7718 1.7720
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Table 8. Cont.

Boundary
Conditions px pz 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

CSCS

0 0.5 2.2702 2.1949 2.1305 2.0639 2.0299
0 1 2.4889 2.4125 2.3402 2.2608 2.2229
0 5 2.6799 2.6551 2.6007 2.5159 2.4809

0.5 0.5 2.3500 2.2855 2.2237 2.1542 2.1209
0.5 1 2.5258 2.4619 2.3942 2.3144 2.2771
0.5 5 2.6796 2.6609 2.6105 2.5266 2.4932
2 0.5 2.4776 2.4404 2.3886 2.3152 2.2845
2 1 2.5842 2.5476 2.4923 2.4127 2.3788
2 5 2.6778 2.6715 2.6289 2.5474 2.5171

CCCC

0 0.5 2.7695 2.6701 2.5885 2.5124 2.4665
0 1 3.0378 2.9312 2.8358 2.7455 2.6897
0 5 3.2917 3.2401 3.1577 3.0599 2.9948

0.5 0.5 2.8767 2.7864 2.7043 2.6239 2.5747
0.5 1 3.0912 2.9977 2.9053 2.8136 2.7552
0.5 5 3.2937 3.2499 3.1717 3.0748 3.0107
2 0.5 3.0449 2.9835 2.9084 2.8226 2.7694
2 1 3.1743 3.1116 3.0305 2.9380 2.8782
2 5 3.2958 3.2674 3.1982 3.1032 3.0417

FCFC

0 0.5 2.8951 2.7859 2.6987 2.6225 2.5716
0 1 3.1767 3.0559 2.9515 2.8615 2.7965
0 5 3.4568 3.3879 3.2907 3.1924 3.1092

0.5 0.5 3.0140 2.9116 2.8210 2.7402 2.6828
0.5 1 3.2383 3.1298 3.0265 2.9346 2.8647
0.5 5 3.4606 3.3999 3.3068 3.2091 3.1264
2 0.5 3.1988 3.1233 3.0364 2.9495 2.8830
2 1 3.3337 3.2555 3.1613 3.0677 2.9926
2 5 3.4659 3.4215 3.3372 3.2410 3.1601

3.2.2. Buckling Analysis of Multi-Directional Sandwich Plates

Likewise, a buckling analysis was carried out for a multi-directional FG skin paired
with a homogeneous hard core under various boundary conditions, incorporating different
values of px and pz. Across all boundary conditions, the (1-2-1) scheme consistently demon-
strated the highest frequency, followed by (2-2-1), (1-1-1), (2-1-2), and (1-0-1). The results
are presented in Table 9.

The buckling load undergoes a notable decrease when px remains at zero and pz varies
from 0.5 to 5. Additionally, as both px and pz are incrementally adjusted, the buckling load
decreases, with pz exerting a more significant influence than px. The maximum buckling
load was observed under the FCFC boundary condition, followed by the CCCC, CSCS, and
SSSS conditions.

The buckling analysis of a multi-directional FG skin with a homogeneous soft core was
conducted using similar parameter values. The results are presented in Table 10. Across all
boundary conditions, the (1-0-1) scheme consistently exhibits the highest buckling load,
followed by (2-1-2), (1-1-1), (2-2-1), and (1-1-1). The buckling load experiences a significant
increase when px is maintained at zero and pz varies from 0.5 to 5. Furthermore, incre-
mental adjustments in both px and pz result in an increased buckling load. The maximum
buckling load was observed under the FCFC condition, followed by the CCCC, CSCS, and
SSSS conditions.



Computation 2024, 12, 65 16 of 20

Table 9. Dimensionless buckling load N of square plates under various boundary conditions (ξ1 = 1,
a/h = 10). Type A: hard core.

Boundary
Conditions px pz 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

SSSS

0 0.5 3.6822 3.9704 4.2182 4.4049 4.6084
0 1 2.5836 2.9200 3.2324 3.4747 3.7533
0 5 1.3291 1.5213 1.7898 2.0560 2.3673

0.5 0.5 3.3400 3.6008 3.8391 4.0419 4.2426
0.5 1 2.3939 2.6942 2.9871 3.2338 3.5029
0.5 5 1.3132 1.4882 1.7421 2.0049 2.3062
2 0.5 2.6494 2.8539 3.0711 3.3002 3.5003
2 1 2.0109 2.2382 2.4909 2.7428 2.9958
2 5 1.2799 1.4213 1.6460 1.9017 2.1826

CSCS

0 0.5 6.8605 7.3953 7.8497 8.1872 8.5586
0 1 4.8432 5.4737 6.0517 6.4943 7.0067
0 5 2.5016 2.8785 3.3849 3.8795 4.4612

0.5 0.5 6.2201 6.7143 7.1567 7.5246 7.8959
0.5 1 4.4844 5.0537 5.5993 6.0509 6.5494
0.5 5 2.4677 2.8154 3.2956 3.7841 4.3477
2 0.5 4.9270 5.3365 5.7488 6.1675 6.5439
2 1 3.7581 4.2053 4.6824 5.1459 5.6195
2 5 2.3949 2.6880 3.1153 3.5909 4.1184

CCCC

0 0.5 9.2373 9.9552 10.5596 11.0035 11.4961
0 1 6.5513 7.4037 8.1779 8.7647 9.4479
0 5 3.3941 3.9213 4.6095 5.2737 6.0585

0.5 0.5 8.3721 9.0459 9.6401 10.1254 10.6224
0.5 1 6.0623 6.8391 7.5736 8.1735 8.8414
0.5 5 3.3439 3.8349 4.4887 5.1449 5.9063
2 0.5 6.6247 7.2047 7.7675 8.3230 8.8337
2 1 5.0717 5.6980 6.3470 6.9651 7.6049
2 5 3.2349 3.6606 4.2447 4.8841 5.5985

FCFC

0 0.5 10.8692 11.7121 12.4173 12.9312 13.5048
0 1 7.7331 8.7391 9.6467 10.3296 11.1282
0 5 4.0148 4.6515 5.4666 6.2465 7.1712

0.5 0.5 9.8488 10.6484 11.3463 11.9092 12.4918
0.5 1 7.1529 8.0755 8.9396 9.6388 10.4219
0.5 5 3.9521 4.5488 5.3239 6.0947 6.9926
2 0.5 7.7875 8.4932 9.1618 9.8086 10.4127
2 1 5.9771 6.7339 7.5029 8.2251 8.9797
2 5 3.8149 4.3412 5.0358 5.7873 6.6313

Table 10. Dimensionless buckling load N of square plates under various boundary conditions (ξ1 = 1,
a/h = 10). Type B: soft core.

Boundary
Conditions px pz 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

SSSS

0 0.5 3.9158 3.6018 3.3496 3.1017 2.9770
0 1 4.9809 4.5812 4.2423 3.8888 3.7302
0 5 6.3116 5.9908 5.6258 5.1429 4.9673

0.5 0.5 4.2926 3.9860 3.7234 3.4429 3.3158
0.5 1 5.2096 4.8331 4.4959 4.1236 3.9641
0.5 5 6.3410 6.0394 5.6855 5.2028 5.0310
2 0.5 5.0219 4.7482 4.4749 4.1298 3.9982
2 1 5.6446 5.3254 5.0012 4.5931 4.4361
2 5 6.3969 6.1343 5.8037 5.3219 5.1589
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Table 10. Cont.

Boundary
Conditions px pz 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

CSCS

0 0.5 6.9651 6.3522 5.8856 5.4808 5.2319
0 1 8.8733 8.0495 7.3940 6.8224 6.4704
0 5 11.4549 10.6674 9.8643 9.0650 8.5544

0.5 0.5 7.7135 7.0766 6.5604 6.0956 5.8111
0.5 1 9.3552 8.5479 7.8692 7.2585 6.8763
0.5 5 11.5328 10.7791 9.9902 9.1863 8.6741
2 0.5 9.1297 8.5002 7.9139 7.3319 6.9766
2 1 10.2468 9.5073 8.8092 8.1261 7.6953
2 5 11.6792 10.9948 10.2374 9.4264 8.9138

CCCC

0 0.5 9.0716 8.2251 7.6020 7.1061 6.7586
0 1 11.5691 10.3968 9.4986 8.8027 8.2856
0 5 15.1311 13.9037 12.7229 11.7333 10.9025

0.5 0.5 10.1175 9.2048 8.4892 7.9139 7.4925
0.5 1 12.2651 11.0898 10.1375 9.3863 8.8056
0.5 5 15.2571 14.0721 12.9036 11.9041 11.0635
2 0.5 12.0741 11.1201 10.2665 9.5369 8.9691
2 1 13.5375 12.4139 11.3971 10.5446 9.8545
2 5 15.4932 14.3959 13.2576 12.2414 11.3854

FCFC

0 0.5 10.4404 9.4306 8.7022 8.1545 7.7373
0 1 13.3239 11.9014 10.8357 10.0699 9.4331
0 5 17.5759 16.0092 14.5512 13.4495 12.3755

0.5 0.5 11.6978 10.5847 9.7294 9.0892 8.5673
0.5 1 14.1765 12.7309 11.5854 10.7529 10.0252
0.5 5 17.7400 16.2199 14.7711 13.6554 12.5642
2 0.5 14.0361 12.8349 11.7854 10.9667 10.2366
2 1 15.7264 14.3105 13.0605 12.1066 11.2195
2 5 18.0477 16.6251 15.2018 14.0618 12.9413

4. Conclusions

The comprehensive investigation outlined in this paper provides pivotal insights into
the buckling and free vibration behavior of multi-directional FG sandwich plates under
a spectrum of boundary conditions. Our rigorous validation process and in-depth analyses
offer a clear understanding of the materials’ responses across various load applications.
The consistency between the results of different shape function models underscores the reli-
ability of our analytical approach. The implications of this research are particularly salient
for design engineers and materials scientists focusing on the development of unidirectional
and multi-directional FG sandwich panels custom-designed for specialized applications.

The primary conclusions drawn from this study can be summarized as follows:

1. The boundary condition of FCFC invariably results in the highest frequency and
buckling load values when compared to other tested conditions such as CCCC, CSCS,
and SSSS. Noteworthy is the observation that the transverse grading parameter pz
demonstrates a more significant effect than the longitudinal grading parameter px on
these outcomes.

2. In the context of sandwich plates with a hard core, an increment in the values of both
px and pz is associated with a reduction in the plates’ natural frequency and buckling
load. This situation is reversed for materials with a soft core, where an increase in px
and pz corresponds to a decrease in their frequency and buckling load. This inverse
relationship is due to the increased presence of ceramic constituents in the FG material,
which are introduced as the grading parameters px and pz rise, thereby enhancing
the natural frequency due to their higher stiffness relative to metals.

3. Structural configurations that have a thicker core are shown to yield a higher stiffness.
Specifically, for cores predominantly made of ceramic, enhancing the ceramic layer



Computation 2024, 12, 65 18 of 20

thickness effectively introduces additional stiffness akin to rigid plates, which elevates
their natural frequencies. In contrast, for metal-based core configurations, an increase
in metal core thickness imparts greater flexibility to the structure, leading to a decrease
in its natural frequencies.

The insights gleaned from our research extend the existing knowledge base and
provide a robust foundation for the optimized design of FG sandwich plates, catering to the
evolving demands of advanced engineering applications. We anticipate that our findings
will spur further studies, potentially exploring even wider parameter spaces and boundary
conditions to enrich our understanding of the structural applications of FG materials.
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