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Abstract: Quasi-interpolation is a powerful tool for approximating functions using radial basis
functions (RBFs) such as Gaussian kernels. This avoids solving large systems of equations as in
RBF interpolation. However, quasi-interpolation with Gaussian kernels on compact intervals can
have significant errors near the boundaries. This paper proposes a quasi-interpolation method with
Gaussian kernels using Chebyshev points and boundary corrections to improve the approximation
near the boundaries. The boundary corrections use a linear approximation of the function beyond the
interval to estimate the truncation error and add correction terms. Numerical studies on test functions
show that the proposed method reduces errors significantly near boundaries compared to quasi-
interpolation without corrections, for both equally spaced and Chebyshev points. The convergence
and accuracy with the boundary corrections are generally better with Chebyshev points compared to
equally spaced points. The proposed method provides an efficient way to perform quasi-interpolation
on compact intervals while controlling the boundary errors. This study introduces a novel approach
to quasi-interpolation modification, which significantly enhances convergence rates and minimizes
errors at boundary points, thereby advancing the methods for boundary approximation.

Keywords: quasi-interpolation; radial basis functions; boundary corrections; chebyshev points;
univariate interpolation

1. Introduction

Let f be a d-variate real valued function defined on the bounded domain Ω ⊂ Rd.
There is an extensive research in the literature to iterpolate/approximate such a function
f over an equally spaced grid of points using radial basis functions (RBF) with a high
degree of accuracy [1,2]. As [1] argued that radial basis functions overcome the problems
of using high dimensional polynomials to attain the specified degree of smoothness for
the interpolants, they became very popular among the applied scientists for use in applied
problems [3–6].

Suppose, the data on the function values. f (xi), are available for a set of points xi,
i = 1, . . . , N. Then a radial basis function (RBF) interpolant can be defied as follows

I f (x) =
N

∑
j=1

cjϕ(rj) (1)

where rj is the Euclidean distance between the point x and the grid point xj with
rj = ∥x − xj∥ and cj are the constants which are determined from the constraints

f (xi) = I f (xi), i = 1, . . . , N (2)

One of the most popular choice for the radial basis function is the Gaussian kernel for
ϕ, that is,

ϕ(x) = ϕh(x) =
1√
2πh

e−x2/(2h2) (3)
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where h is a scale parameter which determines the degree of smoothness in the interpolant.
The convergence properties of the RBF interpolation with the Gaussian kernel depend on
the distances between the grid points xi and the parameter h for the kernel.

Users find it very attractive due to its simplicity in definition and high-degree of
accuracy. However, to obtain the constants cj, one needs to solve a system of N linear
equations and quite often the system is ill-conditioned, resulting in unstable solutions.
The ill-conditioning of the system of equations with the Gaussian kernel depends on the
shape parameter h as define above. Though there are a number of modifications proposed
in the literature to overcome the ill-conditioning of the systems [7,8], all such proposals
are computationally complex and that restricts their use only on a equally spaced grid for
functions defined on lower-dimensional domains.

One particular and powerful tool for tackling multidimensional problems is quasi-
interpolation [9,10], which avoids solving a large system of ill-conditioned linear equations
and is very popularly used in science and engineering. A major advantage of quasi-
interpolation is that the interpolant retains the smoothness of the kernel function being
used. The quasi-interpolation with Gaussian kernels has simplicity in its definition and
has good shape properties (convex, concave, or linear depending on the original function).
The interpolant also retains the property of exponential decay at infinity of the Gaussian
kernel. As quasi-interpolation provides direct solutions without any need to solve large
algebraic systems of equations [11], when compared to other mesh-free techniques such
as RBF interpolation, this approach can approximate the function in less computational
time in higher dimensions. Quasi-interpolation has been successfully applied to scattered
data approximation and interpolation, numerical solutions to partial differential equations,
and quadrature.

Maz’ya and Schmidt [12] discussed the convergence rates of some of the quasi-
interpolation methods commonly in use. Even though quasi-interpolation operators have
generally used functions defined on R, there are some applications that require functions
to be defined on a compact interval to allow efficient approximation, such as boundary
integral equations and treatment of partial differential equations. Müller and Varnhorn [13]
applied the quasi interpolation method to functions with Hölder continuous derivatives
and established convergence rates for the quasi-interpolants. In contrast to functions
defined on all real numbers, R, a truncation error has to be controlled for the functions,
which are defined on a compact subset. This article starts with an explanation of why
Chebyshev grids exist and provides numerical study. Followed by the derivation of bound-
ary corrections to describe how to derive them with rigorous theoretical justification and
apply boundary corrections. Then, the numerical experiments section provides extensive
qualitative and quantitative evidence of the benefits provided by the boundary correc-
tions, including computations and error estimation. In the last section, it concluded with a
summary of this article. The novelty of our study lies in the introduction of a pioneering
quasi-interpolation modification technique, aimed at improving convergence behaviour
and reducing boundary errors.

2. Quasi-Interpolation with Gaussian Kernels

The main motivation for the quasi-interpolation is as follows. Consider the convolution
of the univariate function f with the Gaussian kernel ϕ,

L f (x) =
∫ ∞

−∞
f (t)h−1ϕ((x − t)/h)dt (4)

where
ϕ(x) =

1√
2π

e−x2/2

is the probability density function (p.d.f.) of the standard Gaussian distribution with mean
0 and standard deviation 1. Cheney [14] showed that the convolution L f (x) converges to f
as h → 0, with the convergence being uniform on compact sets [14]. The rate of convergence



Computation 2024, 12, 100 3 of 16

depends upon the smoothness of the function f . Now, the convolution operator can be
approximated by its discrete counter-part:

Qh f (x) = ∑
i∈Z

f (ih)
1
h

ϕ

(
(x − ih)

h

)
. (5)

Due to this representation of the convolution operator, one can establish the conver-
gence properties of the quasi-interpolant Qh f on a compact subset of R with equally spaced
points on R. For practical purposes, one can consider without loss of generality the compact
set [−1, 1] as the support for the function f , where one wishes to study the interpolation.
Also note that, Qh f is defined on an infinite grid. For practical implementation, we define

Q̂h f (x) =
N

∑
j=1

f (xj)ϕ

( x − xj

h

)
, (6)

where x1, x2, . . . , xN are equally spaced points in the interval [−1, 1] and h = xj − xj−1. As
the number of points N → ∞, the distance between the points h → 0 and convergence
results hold. However, it is easy to observe that the discrete convolution operator Q̂h f only
approximates the integral ∫ 1

−1
f (t)h−1ϕ((t − x)/h)dt. (7)

If the function f is defined beyond the in the interval [−1, 1], the approximation by
this quasi-interpolation is not good around the boundary of −1 and 1.

In this article, we will study the error due to this truncation at the boundary and will
present numerical examples. In Section 2, we will present the some mathemetical approach
to correct the approximation near the boundary. We will also study the performance of our
boundary correction for some numerical examples.

Chebyshev Points

The points

xk = cos
(
(2k − 1)π

2N

)
, (8)

for k = 1, . . . , N are called Chebyshev points. They are the roots of the degree N Chebyshev
polynomial defined by

TN(x) = cos(N arccos x),

for x ∈ [−1, 1]. The Chebyshev polynomials satisfy the recursion formula T0(x) = 1,
T1(x) = x, . . ., Tk+1(x) = 2xTk(x)− Tk−1(x), for k ≥ 1, and thus the leading coefficient of
Tk is 2k−1. Moreover, observe that

|TN(x)| = | cos(N arccos(x))| ≤ 1

for x ∈ [−1, 1]. Thus, if x1, . . . , xN are Chebyshev points, then

|(x − x1) · · · (x − xN)| =
∣∣∣∣ 1
2N−1 TN(x)

∣∣∣∣ ≤ ∣∣∣∣ 1
2N−1

∣∣∣∣,
for x ∈ [−1, 1].

Using this argument, Ref. [15] showed that a polynomial approximation to a real-
valued continuous function f defined on [−1, 1] can have a convergence rate at the order of
2N−1 if the approximation is evaluated at the Chebyshev points which is a lot better than
the convergence rates O(N−1) achieved by the equally spaced points.

The faster convergence rates with polynomial interpolation evaluated at the Cheby-
shev points is our main motivation for using Chebyshev points in the quasi interpolation
problems under consideration. In this research paper, we will investigate the Chebyshev
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points as an alternative to the equally spaced grid points to evaluate the performance and
convergence results numerically of our proposed quasi-interpolation algorithm with Gaus-
sian kernel and boundary corrections. The modified quasi-interpolation with Chebyshev
points can be formulated as

Q̂h f (x) =
N

∑
j=1

|xj − xj−1|
h

f (xj)ϕ

( x − xj

h

)
, (9)

where x1, x2, . . . , xN are the Chebyshev points in the interval [−1, 1].
In the absence of established theoretical results on the convergence rates for the quasi-

interpolation with Gaussian kernels evaluated at the Chebyshev points, we will study
numerically with different examples.

3. Boundary Corrections Formula

We have mentioned earlier that the convolution operator L f (x) converges to f (x) as
h → 0 in the Gaussian kernel. However, the discrete quasi interpolant Q̂h f (x) approximates
the integral ∫ 1

−1
f (t)

1
h

ϕ

(
t − x

h

)
dt (10)

as N → ∞. We can now write the convolution as:

L f (x) =
∫ ∞

−∞
f (t)h−1ϕ((t − x)/h)dt

=
∫ −1

−∞
f (t)

1√
2πh

e−(t−x)2/(2h2)dt +
∫ 1

−1
f (t)

1√
2πh

e−(t−x)2/(2h2)dt

+
∫ ∞

1
f (t)

1√
2πh

e−(t−x)2/(2h2)dt

= I1 + I2 + I3

where

I1 =
∫ −1

−∞
f (t)

1√
2πh

e−(t−x)2/(2h2)dt,

I2 =
∫ 1

−1
f (t)

1√
2πh

e−(t−x)2/(2h2)dt,

and
I3 =

∫ ∞

1
f (t)

1√
2πh

e−(t−x)2/(2h2)dt

We have noted that Q̂h f (x) approximates the integral I2. If x is much closer to the
boundary, the integrand in I1 will be small and I1 may be negligible. Similarly, if x is
far away from the boundary, the integrand in I3 will be small and I3 might be negligible.
Therefore, if the point of interpolation x is well within the interval [−1, 1], both the integrals
I1 and I3 will negligible and the approximation of I2 using the quasi-interpolant Q̂h f (x)
will be a good approximation of the convolution L f (x) and in turn that will converge to
f (x) as h → 0 and N → ∞. However, if the point of interpolation x is close to the boundary
of −1 or 1, the integrals I1 and I3 are not negligible.

To improve the approximation of f (x), when x is close to the boundary, we need
to have some approximation to the integrals I1 and I3. as we do not know the form of
f (x) outside the interval [−1, 1], we approximate it with two linear functions which are
continuous and differentiable at x = −1 and x = 1. Let us assume,

f (x) = a1(x + 1) + b1, for x ≤ −1

f (x) = a2(x − 1) + b2, for x ≥ 1.
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From continuity, we must have

b1 = f (−1), b2 = f (1)

and
a1 = f ′(−1), a2 = f ′(1).

Using these approximations, one write I1 as

I1 =
∫ −1

−∞
(a1(t + 1) + b1)

1
h
√

2π
e−(t−x)2/(2h2)dt

= a1

∫ −1

−∞
(t − x)

1
h
√

2π
e−(t−x)2/(2h2)dt

+(a1(x + 1) + b1)
∫ −1

−∞

1
h
√

2π
e−(t−x)2/(2h2)dt

= a1 I11 + (a1(x + 1) + b1)I12

Now,

I11 =
∫ −1

−∞
(t − x)

1
h
√

2π
e−(t−x)2/(2h2)dt

=
∫ −(x+1)/h

−∞
uh

1√
2π

e−u2/2du

= − h√
2π

e−(x+1)2/(2h2) = −h · ϕ

(
x + 1

h

)
where

ϕ(x) =
1√
2π

e−x2/2.

We also simplify,

I12 =
∫ −1

−∞

1
h
√

2π
e−(t−x)2/(2h2)dt

=
∫ −(x+1)/h

−∞

1√
2π

e−u2/2du = Φ
(
− (x + 1)

h

)
where Φ(x) is the distribution function of the standard Gaussian distribution

Φ(x) =
∫ x

−∞
ϕ(u)du.

Therefore, with the linear approximation of the function f (x), the integral I1 can be
approximated by

I1 ≈ −a1hϕ

(
x + 1

h

)
+ (a1(x + 1) + b1)Φ

(
− (x + 1)

h

)
.

Similarly, the integral I3 can be approximated by

I3 ≈ a2hϕ

(
1 − x

h

)
+ (a2(x − 1) + b2)

[
1 − Φ

(
(1 − x)

h

)]
.
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Combining all of them together, we propose the quasi-interpolation function with
boundary corrections as follows:

Q̃h f (x) = −a1hϕ

(
x + 1

h

)
+ (a1(x + 1) + b1)Φ

(
− (x + 1)

h

)
Q̂h f (x) + a2hϕ

(
1 − x

h

)
+ (a2(x − 1) + b2)

[
1 − Φ

(
(1 − x)

h

)]
.

Now, note that as h → 0, I1 → 0 and I3 → 0 for all x ∈ (−1, 1). For x = −1, I1 → b1/2
and for x = 1, I3 → b2/2 as h → 0. Therefore, the convergence of the quasi-interpolation
function Q̃h f (x) at x = −1 and x = 1 needs to be investigated in more detail and it may be
possible that this interpolation may not converge at these two points.

4. Numerical Experiments

In this section, we investigate the performance of our proposed quasi-interpolation
with boundary corrections, Q̃h f (x) with equally spaced grid poits as well as Chebyshev
points. For this purpose, we consider the following 4 test functions, which are widely used
in the literature [6,16,17]:

• f1(x) = sin(4πx).
• f2(x) = cosh(x) exp(sinh(x)).

• f3(x) = exp
(

1
1+x2

)
tanh(x/10π)/(1 + 16x3).

• f4(x) = −2xe−x cos(20x).

The performance of quasi-interpolation with and without boundary corrections were
evaluated in a grid of 100 points in the interval [−1, 1]. As the metric for performance, we
compute maximum absolute error and the root mean-square error as defined below:

max error = max
i

| f (xi)− Q̃h f (xi)| (11)

RMS Error =

√
1
n

n

∑
i=1

( f (xi)− Q̃h f (xi))2 (12)

where n = 100 and xi’s are the grid points at which the function is approximated.
In Figure 1, we illustrate the approximation using N = 100 equally spaced grid

points. Observe that the error of the interpolated function is considerably large at the
boundary points of the interval [−1, 1], while the errors for interiors points are small when
no boundary corrections were used. On the other hand, the errors are very similar for all
points, when the boundary corrections are used.

Similar to the equally-spaced grid points for interpolations, the results for interpolation
with Chebyshev points are shown in Figure 2 for the function f1(x). We again observe
that the error are higher at the boundaries x = −1 and x = 1 when there are no boundary
corrections and the errors reduce with the boundary corrections.

In Table 1, we present the absolute maximum error and RMS error for the quasi-
interpolation of the function f1(x) with and without boundary corrections. We observe that
the interpolation results converge nicely as N increases for both equally spaced points and
Chebyshev points. The errors for the interpolation with boundary corrections are always
smaller than those without the boundary corrections for higher values of N.
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(a) (b)

(c) (d)

Figure 1. The function approximation for f1(x) and the absolute errors with N = 100 equally spaced
grid points. (a) Interpolation without boundary correction, (b) Errors without boundary correction,
(c) Interpolation with boundary correction, and (d) Errors with boundary correction.

(a) (b)

(c) (d)

Figure 2. The function approximation for f1(x) and the absolute errors with N = 100 Chebyshev
points. (a) Interpolation without boundary correction, (b) Errors without boundary correction,
(c) Interpolation with boundary correction, and (d) Errors with boundary correction.
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Table 1. Performance metrics with maximum absolute error and RMS error for the quasi-interpolation
with equally spaced points and Chebyshev points with and without boundary corrections for the
function f1(x).

Equal Chebyshev
Without With Without With

Correction Correction Correction Correction
N Max Error RMS Error Max Error RMS Error Max Error RMS Error Max Error RMS Error

10 0.9583 0.4448 1.0025 0.4734 1.2046 0.4529 1.3020 0.5961
102 0.0893 5.6 × 10−4 0.0310 4.9 × 10−4 0.0903 7.1 × 10−4 0.0598 6.3 × 10−4

103 0.0091 8.9 × 10−7 8.9 × 10−4 5.7 × 10−8 0.0098 2.6 × 10−6 0.0034 1.6 × 10−6

104 9.1 × 10−4 8.3 × 10−9 8.8 × 10−5 8.3 × 10−11 9.9 × 10−4 5.3 × 10−8 5.2 × 10−4 4.4 × 10−8

The approximations to the function f2(x) with N = 10 equally spaced grid points
are presented in Figure 3. We observe that when there is no boundary correction, the
quasi-interpolation approximates the function well for points which are smaller than 0.9.
However, the approximation is poor at the edges. But when the boundary corrections are
used, the quasi-interpolation picked up the correct shape of the even at the edges, though
the approximation is not very good with N = 10 points only. The errors are also increasing
nearer the upper boundary of the interval [−1, 1] even with boundary corrections.

(a) (b)

(c) (d)

Figure 3. The function approximation for f2(x) and the absolute errors with N = 10 equally spaced
grid points. (a) Interpolation without boundary correction, (b) Errors without boundary correction,
(c) Interpolation with boundary correction, and (d) Errors with boundary correction.

Similar approximations to f2(x) with N = 10 Chebyshev points are made in Figure 4.
We observe almost a similar pattern with the errors as observed for the case with equally
spaced points.

Detailed performance metrics for varying values of grid points n are presented in
Table 2 for the function f2(x). We observe that the approximations do not converge so well
for the equally spaced points with or without corrections. However, the errors become
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smaller with the increase in N for Chebyshev points. In this example, the performance of
the Chebyshev points are better than the equally spaced points. In both cases, the error
with boundary corrections are small that the interpolation without boundary corrections.

(a) (b)

(c) (d)

Figure 4. The function approximation for f2(x) and the absolute errors with N = 10 Chebyshev
grid points. (a) Interpolation without boundary correction, (b) Errors without boundary correction,
(c) Interpolation with boundary correction, and (d) Errors with boundary correction.

Table 2. Performance metrics with maximum absolute error and RMS error for the quasi-interpolation
with equally spaced points and Chebyshev points with and without boundary corrections for the
function f2(x).

Equal Chebyshev
Without With Without With

Correction Correction Correction Correction
N Max Error RMS Error Max Error RMS Error Max Error RMS Error Max Error RMS Error

10 1.7683 0.0964 1.1617 0.1453 1.8394 0.1290 1.3123 0.2567
102 0.3013 0.0011 0.5102 0.0028 0.4218 0.0045 0.3903 0.0040
103 0.1429 2.0 × 10−4 0.0950 9.0 × 10−5 0.2475 6.5 × 10−4 0.0371 3.53 × 10−5

104 0.1432 2.0 × 10−4 0.0950 9.0 × 10−5 0.2413 5.8 × 10−4 0.0037 5.0 × 10−7

For N = 10 equally spaced points, the quasi-interpolation approximations evaluated
at 100 points in the interval [−1, 1] are presented in Figure 5 with and without boundary
corrections for the function f3(x). Observe that the function f3 is almost 0 at all points
except for a spike at −0.4. As the function is nearly 0 at boundary, the approximations with
or without corrections do not differ much. For N = 10 points only, the peak at x = −0.4 is
missed but it still approximates with a smooth peak at that point instead of a sharp peak.

Figure 6 shows the approximation to the function with N = 10 Chebyshev points.
Similarly, it also misses out the peak at x = −0.4. This approximation is almost constant at
all points in [−1, 1]. With Chebyshev points also, we do not see any substantial difference
in quasi-interpolation approximation with or without boundary corrections.
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(a) (b)

(c) (d)

Figure 5. The function approximation for f3(x) and the absolute errors with N = 10 equally spaced
grid points. (a) Interpolation without boundary correction, (b) Errors without boundary correction,
(c) Interpolation with boundary correction, and (d) Errors with boundary correction.

(a) (b)

(c) (d)

Figure 6. The function approximation for f3(x) and the absolute errors with N = 10 Chebyshev
grid points. (a) Interpolation without boundary correction, (b) Errors without boundary correction,
(c) Interpolation with boundary correction, and (d) Errors with boundary correction.
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From Table 3, we observe that the convergence of the quasi-interpolation approxima-
tions with equally spaced points is slower with very small errors are attained only for large
values of N. the performance of the Chebyshev points is even worse than equally spaced
points for small N. However, Chebyshev points also yield similar small errors for very
large values of N.

Table 3. Performance metrics with maximum absolute error and RMS error for the quasi-interpolation
with equally spaced points and Chebyshev points with and without boundary corrections for the
function f3(x).

Equal Chebyshev
Without With Without With

Correction Correction Correction Correction
N Max Error RMS Error Max Error RMS Error Max Error RMS Error Max Error RMS Error

10 0.7553 0.0503 0.7553 0.0503 1.2743 0.0174 1.2743 0.0174
102 0.7729 0.0083 0.7729 0.0083 6.2833 0.8648 6.2833 0.8648
103 0.0380 1.5 × 10−5 0.0380 1.5 × 10−5 2.3462 0.0550 2.3462 0.0550
104 0.0051 2.7 × 10−7 0.0051 2.7 × 10−7 0.0052 3.0 × 10−7 0.0052 2.7 × 10−7

Finally, Figure 7 shows the quasi-interpolation approximations for the function f4(x)
with N = 100 equally spaced points for interpolation. We observe that the approximations
are not too bad for the points x away from the left boundary −1. However, at the points
closed to the boundary x = −1, the errors in approximation are large, with boundary
corrections, the errors reduce a little but still there are large error near the boundary.

(a) (b)

(c) (d)

Figure 7. The function approximation for f4(x) and the absolute errors with N = 100 equally spaced
grid points. (a) Interpolation without boundary correction, (b) Errors without boundary correction,
(c) Interpolation with boundary correction, and (d) Errors with boundary correction.
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The quasi-interpolation approximations of f4(x) using N = 100 Chebyshev points
are shown in Figure 8. It also shows a similar pattern as with equally spaced points. the
boundary correction did not produce any significant improvement for this problem.

(a) (b)

(c) (d)

Figure 8. The function approximation for f4(x) and the absolute errors with N = 100 Chebyshev
points. (a) Interpolation without boundary correction, (b) Errors without boundary correction,
(c) Interpolation with boundary correction, and (d) Errors with boundary correction.

The detailed errors reported in Table 4 shows that the interpolation without boundary
corrections did not improve much even with large number of grid points N with equally
space points. We have a slightly better approximation with boundary corrections for equally
space points. However, the real improvement with boundary corrections is noticeable with
Chebyshev points. In this case, we have a very good convergence rate with boundary
corrections and poor performance when we do not use a boundary correction. The calcula-
tions detailed in the article were performed using MATLAB 2021b within a Windows 10
environment, leveraging the processing power of an Intel i7 8th generation core.

Table 4. Performance metrics with maximum absolute error and RMS error for the quasi-interpolation
with equally spaced points and Chebyshev points with and without boundary corrections for the
function f4(x).

Equal Chebyshev
Without With Without With

Correction Correction Correction Correction
N Max Error RMS Error Max Error RMS Error Max Error RMS Error Max Error RMS Error

10 4.8540 1.7682 3.8431 1.2506 4.7270 1.8765 6.9656 3.1055
102 0.3860 0.0111 0.3612 0.0107 0.7711 0.0288 0.6329 0.0222
103 0.5991 0.0036 0.4356 0.0019 1.0812 0.0117 0.0477 5.9 × 10−5

104 0.6599 0.0044 0.4419 0.0020 1.1164 0.0125 0.0148 2.5 × 10−6
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The execution times in seconds for the proposed quasi-interpolations algorithms
with and without boundary corrections are given in Table 5. All time are reported for
interpolation on a grid of 100 points in the interval [−1, 1]. We observe that the execution
times are quite small even when the number of points used in the interpolation N is as high
as 10,000. The execution times for the quasi-interpolation with boundary corrections are
higher than those without boundary corrections, but the time required for interpolation
with equally spaced points are almost similar with the time required for interpolation with
the Chebyshev points.

Table 5. Execution times (in seconds) for the quasi-interpolation with equally spaced points and
Chebyshev points with and without boundary corrections.

Equal Chebyshev
Function N Without With Without With

Correction Correction Correction Correction

f1 10 0.011239 0.014522 0.010205 0.016102
100 0.011023 0.016676 0.009124 0.016008
1000 0.010513 0.019334 0.010005 0.017596

10,000 0.015518 0.025141 0.015375 0.021826

f2 10 0.009056 0.015789 0.009593 0.01635
100 0.009874 0.016175 0.008597 0.015441
1000 0.009885 0.018126 0.010193 0.018209

10,000 0.015531 0.023131 0.016509 0.022192

f3 10 0.008346 0.016715 0.009125 0.01613
100 0.011124 0.016526 0.00895 0.01632
1000 0.0128 0.017859 0.012898 0.018343

10,000 0.016643 0.022995 0.016581 0.023208

f4 10 0.012326 0.015656 0.01014 0.015537
100 0.00898 0.016466 0.009816 0.017255
1000 0.010226 0.017338 0.01101 0.017479

10,000 0.015796 0.023332 0.016352 0.021948

5. Discussion and Funding

In this article, we have proposed a quasi-interpolation method with Gaussian ker-
nels using Chebyshev points and boundary corrections. We noted that the usual quasi-
interpolation approximates the function quite well for the points well within the compact
interval of estimation, However, they do not approximate well when the interpolation
points are close to the boundary. As a remedial measure, we have considered linear ap-
proximations of the function f beyond our close interval [−1, 1], which is continuous and
differentiable at the boundary points of x = −1 and x = 1. Using that linear shape of
the function f , we propose some corrections terms go to 0 if the point x is well within
the interval [−1, 1] and h → 0. Therefore, the approximation with or without boundary
corrections should work similarly for points within the interval [−1, 1]. However, the
boundary corrections contribute significantly, if x is close to the boundary −1 or 1 and the
function f is not close to 0 at those points.

In our numerical studies, we have shown that for all functions, the Chebyshev points
for interpolation produce reasonable convergence results with or without boundary cor-
rections. The function f1(x) = sin(4πx) is a periodic function with equal periods and
amplitudes. In this example, the boundary corrections with Chebyshev points provides
a little improvement over the interpolation without corrections, but the performance for
equally spaced points are better than the Chebyshev points.

For the exponentially increasing function f2(x) = cosh(x) exp(sinh(x)), the approxi-
mations are not too bad near the lower boundary of −1 as the value of f2 nears 0 at that
boundary, but as the function increases steeply at the upper boundary x = 1, the quasi
interpolation without boundary correction completely misses the increasing pattern near
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the boundary and starts decreasing with small values of N. With boundary corrections,
that problem at x = 1 is no longer there and also the approximation at the lower end point
x = −1 is even better. For smaller values of N, equally spaced points provide a better
approximation than the Chebyshev points, but with large values of N Chebyshev points
with boundary corrections provide the the best approximations. Thus, for such functions,
Chebyshev points has a better convergence rate.

The function f3(x) = exp
(

1
1+x2

)
tanh(x/10π)/(1 + 16x3) is constant for most part of

the interval [−1, 1] with a sudden peak at x = −0.4. Since this function is almost zero near
the point x = −0.4, −1 and 1. The boundary corrections do not have any significant effect
on the approximation. With small values of N, the interpolation points missed out the peak
and had a very poor approximation. However, as N increases substantially to 10,000, both
equally spaced points and Chebyshev points based interpolation performs similarly.

Our last function f4(x) = −2xe−x cos(20x) has oscillatory behaviour with exponential
damping. the magnitude of the function is maximum at the lower end point x = −1 and it
oscillates with a very small amplitude at the upper boundary of x = 1. For this behaviour,
the maximum errors in approximations are observed near the lower boundary. In this
example, there is almost no convergence or very slow convergence when there are no
boundary corrections. With boundary corrections and Chebyshev points we observe a
dramatic improvement in approximation.

Finally, we observed from our numerical studies that boundary corrections only play
a significant role when the function f is away from 0 near the boundary. In this study,
we have approximated the function f beyond the compact interval of [−1, 1] using linear
functions. However, the approximation may not perform well if the function is very
different from linear around the boundary. To improve one can derive similar boundary
correction terms for quadratic or polynomial approximations. Another problem to note
that our approximation uses the same direction of the function at the boundary, that is, if
it is increasing at −1, it remain increasing linearly at that point and if that is decreasing,
it is decreasing at that point. Due to the nature of approximation, it does not matter if
the function changes the direction at a point far way from the boundary. But if the the
boundary x = −1 or x = 1 are the stationary points or points of inflection, then boundary
corrections may bring in more errors in approximations.

In this study, we have applied quasi-interpolation with boundary corrections only
for univariate functions, however, one can extend the boundary corrections to higher
dimensions as well though that will require some mathematically intensive derivation of
the integrals at the boundaries and there is no easy simplifications. As a future extension of
this study, one can explore that.

6. Conclusions

This paper presented a quasi-interpolation method using Gaussian kernels with
Chebyshev points and boundary corrections to improve approximation accuracy near
the boundaries for functions defined on compact intervals.

The proposed boundary corrections estimate the truncation error at the boundaries by
approximating the function’s continuation beyond the interval using linear functions. This
allows adding correction terms to the standard quasi-interpolation formula.

Numerical studies on test functions showed that the boundary corrections significantly
reduced errors near the boundaries compared to quasi-interpolation without corrections.
The convergence and accuracy with the corrections were generally better using Chebyshev
points instead of equally spaced points.

The results demonstrate that the proposed approach provides an efficient and accurate
way to perform quasi-interpolation for functions on compact intervals. It overcomes the
issue of large boundary errors in standard quasi-interpolation.

The application of quasi-interpolation holds significant promise across a spectrum
of disciplines. In physics, it can facilitate accurate modelling in the simulation of particle
interactions, fluid dynamics, and electromagnetic fields. In mechanics, quasi-interpolation
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techniques can enhance finite element analysis by providing more precise representations
of structural behaviour under varying loads and boundary conditions.

7. Recommendation for Future Research

Studying theoretical convergence rates with the proposed boundary corrections Ex-
tending the boundary corrections approach to higher dimensions Using polynomial or
spline approximations beyond boundaries instead of linear Applying the method to solve
PDEs and integral equations on compact domains Overall, this work enhances quasi-
interpolation with Gaussian kernels for problems requiring function approximation on
compact intervals with high accuracy near the boundaries. The proposed corrections pro-
vide a computationally simple way to improve boundary performance. It is imperative
to acknowledge the nature of the comparison between the accuracy of Chebyshev points
and equally spaced points, as highlighted in Tables 1 and 3. Our study has shown that
Chebyshev points generally yield superior accuracy, particularly for certain functions and
smaller values of N, we recognize that the performance may vary depending on the specific
characteristics of the functions and the magnitude of N. This understanding underscores
the importance of further research to explore the factors influencing the performance of
different grid point distributions, ultimately guiding the selection of the most suitable
approach for specific applications.
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