
Citation: Vladimirova, D.;

Pervadchuk, V.; Konstantinov, Y.

Manufacture of Microstructured

Optical Fibers: Problem of Optimal

Control of Silica Capillary Drawing

Process. Computation 2024, 12, 86.

https://doi.org/10.3390/

computation12050086

Academic Editor: Alexander

Pchelintsev

Received: 11 March 2024

Revised: 19 April 2024

Accepted: 20 April 2024

Published: 23 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Manufacture of Microstructured Optical Fibers: Problem of
Optimal Control of Silica Capillary Drawing Process
Daria Vladimirova 1, Vladimir Pervadchuk 1 and Yuri Konstantinov 2,*

1 Applied Mathematics Department, Perm National Research Polytechnic University,
Komsomolsky Avenue 29, 614990 Perm, Russia; vladimirova.dar@gmail.com (D.V.);
pervadchuk@mail.ru (V.P.)

2 Perm Federal Research Center, Ural Branch, Russian Academy of Sciences, 13a Lenin Street,
614990 Perm, Russia

* Correspondence: yuri.al.konstantinov@ro.ru; Tel.: +7-912-882-58-61

Abstract: The effective control of any technological process is essential in ensuring high-quality
finished products. This is particularly true in manufacturing knowledge-intensive and high-tech
products, including microstructured photonic crystal fibers (PCF). This paper addresses the issues
of stabilizing the optimal control of the silica capillary drawing process. The silica capillaries are
the main components of PCF. A modified mathematical model proposed by the authors is used as
the basic model of capillary drawing. The uniqueness of this model is that it takes into account the
main forces acting during drawing (gravity, inertia, viscosity, surface tension, pressure inside the
drawn capillary), as well as all types of heat transfer (heat conduction, convection, radiation). In
the first stage, the system of partial differential equations describing heat and mass transfer was
linearized. Then, the problem of the optimal control of the drawing process was formulated, and
optimization systems for the isothermal and non-isothermal cases were obtained. In the isothermal
case, optimal adjustments of the drawing speed were obtained for different objective functionals.
Thus, the proposed approach allows for the constant monitoring and adjustment of the observed state
parameters (for example, the outer radius of the capillary). This is possible due to the optimal control
of the drawing speed to obtain high-quality preforms. The ability to control and promptly eliminate
geometric defects in the capillary was confirmed by the analysis of the numerical calculations,
according to which even 15% deviations in the outer radius of the capillary during the drawing
process can be reduced to 4–5% by controlling only the capillary drawing speed.

Keywords: microstructured optical fibers; silica capillary; optimal control; simulation

1. Introduction

Fiber optics has been one of the most promising and rapidly developing high-tech
industries for the last couple of decades [1–3]. This is due to the ever-increasing application
of fiber optic technologies in various sectors of the economy: communications [4,5], naviga-
tion [6], medicine [7], new materials [8,9], fiber sensorics [10–13], etc. [14,15]. Instrument
engineering is very indicative in this regard, as fiber optics has caused a true revolution, re-
sulting in a generation of instruments and devices based on new physical principles [16–21].
As mentioned above, the manufacture of optical fibers is a rather expensive and complex
process [18]. Therefore, despite the extensive research on fiber optics, many unsolved
problems remain. In our opinion, there are two main reasons for such a situation: first, the
lack of study of many issues and, therefore, the lack of information; second, the fact that the
practical implementation of modern technologies is often performed ahead of full scientific
description and research. All of the above applies fully to the problem of control, including
the optimal control of the silica capillary drawing processes for microstructured optical
fibers. These are often referred to as photonic crystal fibers (PCF), hollow fibers or holey

Computation 2024, 12, 86. https://doi.org/10.3390/computation12050086 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation12050086
https://doi.org/10.3390/computation12050086
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-7820-7736
https://doi.org/10.3390/computation12050086
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation12050086?type=check_update&version=1


Computation 2024, 12, 86 2 of 21

fibers [22–24]. They are used in optical telecommunications [25], optical metrology [26],
sensorics [27] and other fields.

There are two fundamentally different technologies for PCF manufacture. The first
of them, called “stack and draw”, consists of lining the core with several layers of thin
glass capillaries, each of which typically has a round or six-sided cross-section [28]. The
second manufacturing method is based on the multiple drilling of parallel holes in a solid
cylindrical silica preform [29]. The main quality criterion during the drawing stage is the
preservation of all geometric proportions and cross-sectional shapes of the preform and
the fiber.

The industrial manufacture of capillaries or glass tubes for PCF (for the “stack and
draw” process) is achieved by one of the known methods, such as the Danner process or the
Vello process (Danner and Vello), as well as drawing tubes vertically up or down [30–32].
All these processes involve drawing an “infinitely long” glass tube from the melt, from
which pieces longer than 1 m are cut off. The Danner process is a horizontal drawing
process, the Vello process is a vertical drawing process with deflection, and the drawing
process is the Vello process but without deflection. The main optical and mechanical
properties of silica fibers depend on many factors [31]. The first is the quality of the
initial preform. Here, the evaluation of its taper and the presence of small internal defects
and bonds play an important role. However, equally important factors are the chosen
technological modes of the manufacturing process. Critical among them is the so-called
drawing ratio (the correlation of the fiber drawing speed and the silica preform feeding
speed), as well as the parameters of the furnace that heats the preform [33]. An important
aspect of the drawing manufacturing process is the shape control of the drawn tube [34].
There are several modeling approaches to estimate the capillary shape. For axisymmetric
tubes, models for the calculation of the tube cross-sectional area and capillary wall thickness
are well known [35]. The shape of the tube can also be estimated by observing the value
constancy of the outer and inner radii of the glass tube [36,37]. Previous works show that
the constancy of the geometrical characteristics of the tubes is influenced by the drawing
speed, the pressure inside the tube, the temperature of the furnace and the silica melt.
However, it is the drawing speed that has a significant effect on the shape variation of the
cylindrical tube [38]. Therefore, the drawing speed is used as a control action to achieve
constant geometric characteristics in tubes in several works [35,38,39].

The problem of drawing a whole silica fiber was studied in [40], but, here, the profile
formation of the drawn fiber was carried out based on the balance of the surface forces and
agreement with experimental data. As shown for a particular drawing machine, there is
an upper limit to the drawing speed at which the fiber can be drawn without breaking,
and the practical ranges of the drawing speed and furnace temperature are determined to
make the drawing process feasible. Results regarding the stability ranges of the process
parameters were obtained in [37], where the critical ratios of the drawing process were
calculated and a study was conducted concerning the influence of the furnace design on the
stability of the drawing. Considering that the drawing speed is mainly chosen as a control
parameter in optimization problems, the results obtained in these works can be considered
important in the context of this study. In [41,42], the process of whole fiber drawing was
also studied, and it also proposed a variational method to calculate the optimal parameters
of its drawing process. Note that the process described in these works can be considered
as an asymptotic approximation of the case described in this paper. It should be noted
that there are significant differences in the formulation of optimization problems for the
processes of drawing solid preforms and capillaries. In the first case, the control of the
drawing process is reduced to the observation of the geometric shape of the outer surface
of the silica cylinder. In the second case, it is important to observe the inner surface to avoid
the implosion or inflation of the capillary [34,36]. The issues regarding the optimal control
of the silica capillary drawing process in the variational formulation are studied in [35,39];
first-order optimality conditions are obtained, and a gradient method to find the optimal
state of the system is proposed.
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The control system that exists in practice is usually based on the well-known theory
of PID controllers [43]. According to this theory, the outer radius of the tube is constantly
monitored during the drawing process. Based on the measurement results, a corresponding
control action is generated, which dampens the perturbations (radius deviations). Fur-
thermore, measurements are taken at only one point located far enough from the furnace
outlet. Therefore, if the deviations are larger than allowed, a part of the capillary will be
substandard.

A slightly different approach is proposed in this paper:

(1) radius deviations are measured in a certain area, i.e., at several points;
(2) the measuring area and the radius control point are spaced along the length of the

flow, with the measuring area as close as possible to the furnace outlet;
(3) the control action (change in drawing speed) is determined from the solution of the

optimal control problem of the distributed system.

This formulation of the problem allows us to obtain more complete information about
the system perturbations and to completely or partially level out the perturbations (mea-
surement and control areas are separated) and also allows the control action to be optimal.

Let us explain the essence of the proposed approach in more detail. The study is based
on a nonlinear dynamic model that describes the process of drawing a silica capillary. The
model is represented by a system of differential equations of motion, continuity and energy
for the functions of the melt velocity, outer and inner radii and capillary temperature. The
model takes into account all types of heat exchange with the environment, the influence of
inertial forces, etc. By comparing the calculated data with experimental data, the model is
checked for its adequacy. Acceptable congruence between these results is shown, which
makes it possible to use the proposed model when solving the problem of the optimal
stabilizing control of a distributed system. Next, the original system of differential equations
is linearized. For a linearized system, the problem of the optimal control of the drawing
speed is formulated and solved. One of the variants of the Lagrange method is used, which
makes it possible to reduce the optimization problem to solving a boundary value problem.
In this case, an explicit representation of the optimal drawing speed as a function of time is
obtained. For the numerical implementation of the optimization system, the finite element
method of the Comsol Multiphysics package is used. The influence of the effect of optimal
stabilizing control on the evolution of the geometric defect of the preform is analyzed.

The overall objective of this work is to systematize and solve the optimal control
problem of capillary drawing processes, and, finally, to provide recommendations for the
selection of process regimes leading to a stable drawing process.

2. Mathematical Modeling of the Capillary Drawing Process
2.1. General Mathematical Model of Silica Capillary Drawing

Several works [31–33] are devoted to the mathematical modeling of capillary drawing
technological processes, in which an analysis of the mathematical aspects and features of
the models is given, and numerical results are presented. The mathematical model of such
a process is described by a system of partial derivative equations, namely the equations of
motion, continuity and energy.

It should be noted that the first works in this direction referred to the drawing of
continuous fibers, and now there is a wide range of such models that allow us to consider
the problems in different formulations and calculate different types of heat transfer [33]. As
for the mathematical models of capillary drawing (Figure 1), they were proposed somewhat
later, specifically in the early 2000s. At that time, a paper [31] was published presenting
a quasi-one-dimensional model of capillary drawing. This model takes into account the
effects of the inertial forces, viscous friction forces, surface tension and pressure inside the
capillary, as well as all types of heat exchange.
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Figure 1. Configuration of measurement area.

In the proposed work, a modified model of tube drawing is presented. Compared to
the above model, it differs in that the radiative heat transfer is considered more strictly. First,
it considers that the thermal conductivity of silica is due to two mechanisms: molecular
and radiative conductivity [44]:

λ = λc +
16σ0nc

2

3βK
T3, (1)

where λc is the molecular (conductive) component, σ0 is the Stefan–Boltzmann constant,
nc is the refractive index of light, βK is the Rosseland mean extinction coefficient of the
silica and T is the temperature of the silica. Second, in deriving the energy equation, the
contribution of radiation to the temperature distribution in the capillary is evaluated more
rigorously. The Planck, Stefan–Boltzmann and Lambert laws are used for this purpose [45].
It is known that the radiation spectrum of a black body at temperature T is determined by
Planck’s law:

Eν∗ = 2π
hν∗3

c2 · 1
exp(hν∗/kBT)− 1

, (2)

where c is the speed of light, ν∗ is the frequency, kB is the Boltzmann constant and h is
the Planck constant. For the integral flux density, according to the Stefan–Boltzmann law,
we have

E =

∞∫
0

Eν∗dν∗ = σ0T4. (3)

Radiant heat exchange between bodies is determined by Lambert’s law: the amount
of energy radiated by a surface element dA2 in the direction of element dA1 (Figure 2) is
proportional to the energy radiated along the normal EndA2, multiplied by the value of the
elementary solid angle dΩ and cos α2, i.e.,

dQ = EndA2dΩ cos θ2, En =
E
π

. (4)
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Figure 2. Radiant heat transfer during capillary drawing.

Real technical materials do not absorb radiation completely. To characterize them, the
concept of the degree of blackness ε (ε < 1) is used, and Planck’s and Stefan–Boltzmann’s
laws are applied with this correction coefficient. For example, for the flux density, instead of
(3), we use the expression E = εσ0T4. Let us denote by n1 the normal to the point A1 of the
silica fiber surface, and by A1 A2 the segment connecting points A1 and A2 (Figure 2). The
resulting radiation flux at the surface point is the sum of the flux of its own radiation and
the absorbed flux. Consequently, the following relation expresses the law of conservation
of energy (in the approach of a black body, dΩ = ds

r2 ):

q(A1, t) = σ0T4(A1, t)− 1
π

∫
ω1

σ0T4(A2, t)· 1
r2 · cos(n2, A1 A2) cos(n1, A1 A2)ds. (5)

Here, the integration is over the area ω1, which is the part of the thermocouple
boundary, which is visible from the point A1. The variable η is used to specify the distance
along the thermocouple. Then, the distance between the point A1 on the silica and the point

A2 on the thermocouple is |A1 A2| = ((η − x)2 + (Rp − R2)
2)

0.5
. Here, Rp is the radius of

the thermocouple, and R2 is the outer radius of the cylindrical surface of the silica.
Based on the heat fluxes for the elementary volume bounded by sections x = x∗,

x = x∗ + dx and the surface element dA1, the energy equation is obtained. Then, the
system of equations describing the motion and heat exchange during capillary drawing,
supplemented with initial and boundary conditions, has the form

ρ(R2
2 − R2

1)(
∂V
∂t

+ V
∂V
∂x

− g) =
∂

∂x
(3µ(R2

2 − R2
1)

∂V
∂x

+ γ(R1 + R2)),

∂R2
1

∂t
+

∂

∂x
(R2

1V) =
p0R2

1R2
2 − γ R1 R2(R1 + R2)

µ(R2
2 − R2

1)
,

∂R2
2

∂t
+

∂

∂x
(R2

2V) =
p0R2

1R2
2 − γ R1 R2(R1 + R2)

µ(R2
2 − R2

1)
, (6)
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(
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2 − R2
1
)
ρcp(
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∂t + V ∂T

∂x ) =
∂

∂x ((λc +
16σ0nc

2

3βK
T3)(R2

2 − R2
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−2R2

√
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(
∂R2
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ω0εn2

c σ0(T4 − T4
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)
+

+4n2
c σ0RpR2(Rp − R2)

l∫
0

(βεpT4
p (η)−εT(x)4)·(Rp−R2+k ∂R2

∂x (x−η))

((η−x)2+(Rp−R2)
2)

2 dη−

−2R1

√
1 +

(
∂R1
∂x

)2
h1(T − TH),

where V(t, x), R1(t, x), R2(t, x), T(t, x) are the velocity of the substance, the inner and
outer radii of the capillary and the melt temperature, respectively; x is the longitudinal
coordinate, t is the time and L is the length of the drawing area; p0 is the difference between
the internal and external pressures, Cp is the specific heat capacity of the melt, ρ is the melt
density, β is the absorption coefficient of the fiber surface, εp is the degree of blackness of the
heating element, ε is the degree of blackness of the melt, TH is the gas temperature inside
the tube, Ta is the ambient temperature, ω0 is the radiation coefficient from the preform
surface outside the furnace, γ is the surface tension coefficient, µ is the dynamic viscosity
of the melt, h1, h2 are the heat transfer coefficients from the inner and outer surfaces of the
furnace, respectively, l is the length of the heating zone, Tp is the furnace temperature and
k is the weighting coefficient,

k =

{
−1, R′ > 0,
1, R′ < 0 ,

R′ =
∂R
∂x

.

The system (6) is supplemented by initial and boundary conditions of the form

V(0, x) = Vf (0, x), R1(0, x) = R10(0, x), R2(0, x) = R20(0, x), T(0, x) = T0(0, x),

V(t, 0) = Vf (t, 0), R1(t, 0) = R10(t, 0), R2(t, 0) = R20(t, 0), T(t, 0) = T0(t, 0),
V(t, L) = Vd(t), ∂T

∂x (t, L) = 0.
(7)

Here, Vf is the law of the preform feed rate, Vd is the drawing speed, and R10, R20
are the functions for the determination of the initial and boundary values of the inner and
outer radius of the capillary; T0 is the law of the preform temperature change at x = 0 and
at the initial moment in time.

To verify the adequacy of the modified mathematical model (6), the numerical calcu-
lations were compared with the experimental data presented in [46]. In the cited work,
the results of 24 measurements of the finished product’s radii during capillary draw-
ing were presented. The preform was made of Suprasil F300 glass with an outer radius
R10 = 1.4 × 10−4 m and an inner radius R20 = 1.2 × 10−4 m. The preform was fed into the
furnace at a constant rate and the top of the tube was left open to the atmosphere. The
feed rate Vf was varied from 2 × 10−3 m/min to 8 × 10−3 m/min, and the drawing speed
Vd was varied from 0.6 m/min to 1.2 m/min at furnace temperatures Tp in the range of
1900 ◦C, 1950 ◦C and 2000 ◦C. Both the outer and inner diameters were measured during
the experiment.

Numerical studies were carried out in the Comsol Multiphysics software, and the
results for the inner radius are shown in Figure 3. As can be seen from the figure, the
numerical results obtained in this work coincide quite well with the experimental data. A
similar pattern was observed for the outer radius.

Thus, the modified model (6) used in this work describes the process of silica tube
drawing with sufficiently high accuracy, taking into account the main acting forces and all
types of heat transfer occurring inside the furnace. It should be noted that the above model
was used by the authors to study the stability of the capillary drawing process [37].
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2.2. Mathematical Model of Stabilizing Optimal Control of Silica Capillary Drawing

Let us assume that the physical process of capillary drawing, whose mathematical
model is represented by the system (6), is controllable. The typical control action u(t, x)
in this process is the drawing speed of the silica capillaries V(t, L). The control objective
is to keep the inner and outer diameter of the silica tube in the scope of a given state. Let
the selected control u∗(t, x) correspond to the functions R1(t, x), R2(t, x), V(t, x), T(t, x),
which are solutions of the system of Equation (6). Let us call the combination of these five
functions the program process of capillary drawing.

In real conditions, the actual distributions of the values R1(t, x), R2(t, x), V(t, x),
T(t, x) will differ from the program distributions of R1

∗(t, x), R2
∗(t, x), V∗(t, x), T∗(t, x) by

some deviations (perturbations), which are known to be rather small values compared to
the program values. The property of perturbation smallness serves as a basis for the neglect
of the products of the perturbations of the sought functions in the process of research. In
other words, the analysis of a system linearized at the area of its stationary state can replace
the analysis of the original nonlinear system [33,34,37,38,41,47]. There are different means
of linearization; here, we use the method described in [38].

Thus, in the first stage, linearization was performed, in which the parameters that
determined the state of the system were divided into the main F(x) and perturbance
parameters F̃(t, x), such that

F(t, x) = F(x)·(1 + F̃(t, x)),
F(t, x) ∈ {V(t, x) , R1(t, x) , R2(t, x) , T(t, x) },
F(x) ∈

{
V(x) , R1(x) , R2(x) , T(x)

}
,

F̃(t, x) ∈
{

Ṽ(t, x) , R̃1(t, x) , R̃2(t, x) , T̃(t, x)
}

.

The stationary solutions of the system (6) act as the main parameters. The result
is a system describing the evolution of perturbations. To simplify the notation, we use
F̃(t, x) = F̃, F(x) = F.

Considering this remark, the linearized system of Equations (6) takes the form
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∂R̃1
∂t + α1(x) ∂R̃1

∂x + α2(x)R̃1 + α3(x)R̃2 + β1(x) ∂Ṽ
∂x + β2(x)Ṽ + φ1(x)T̃ = 0,

∂R̃2
∂t + α4(x) ∂R̃2

∂x + α5(x)R̃2 + α6(x)R̃1 + β3(x) ∂Ṽ
∂x + β4(x)Ṽ + φ2(x)T̃ = 0,

∂Ṽ
∂t = 3ν ∂2Ṽ

∂x2 + β5(x) ∂Ṽ
∂x + β6(x)Ṽ + α7(x) ∂R̃1

∂x + α8(x)R̃1 + α9(x) ∂R̃2
∂x + α10(x)R̃2 + φ3(x) ∂T̃

∂x + φ4(x)T̃,

(8)

∂T̃
∂t

=
λ

ρcp

∂2T̃
∂x2 + φ5(x)

∂T̃
∂x

+ φ6(x)T̃ + α11(x)
∂R̃1
∂x

+ α12(x)R̃1 + α13(x)
∂R̃2
∂x

+ α14(x)R̃2 + β7(x)Ṽ

The coefficients in (8) have the form

α1(x) = α4(x) = V,

α2(x) = (R2
1V)′

R2
1

− (2P0R1R2
2−γR2(2R1+R2))(R2

2−R2
1)+2R1(P0R2

1R2
2−γR1R2(R1+R2))

2µR1(R2
2−R2

1)
2 ,

α3(x) = − R2
R1
· (2P0R2

1R2−γR1(2R2+R1))(R2
2−R2

1)−2R2(P0R1
2R2

2−γR1R2(R1+R2))

2µR1(R2
2−R2

1)
2 ,

α5(x) = (R2
2V)′

R2
2

− (2P0R2
1R2−γR1(2R2+R1))(R2

2−R2
1)−2R2(P0R2

1R2
2−γR1R2(R1+R2))

2µR2(R2
2−R2

1)
2 ,

α6(x) = − R1
R2
· (2P0R1R2

2−γR2(2R1+R2))(R2
2−R2

1)+2R1(P0R2
1R2

2−γR1R2(R1+R2))

2µR2(R2
2−R2

1)
2 ,

α7(x) = γR1−6µR2
1V ′

ρV(R2
2−R2

1)
,

α8(x) = γR′
1−(6µR2

1V ′
)′+2ρV R2

1V ′−2ρgR2
1

ρV(R2
2−R2

1)
,

α9(x) = γR2+6µR2
2V ′

ρV(R2
2−R2

1)
,

α10(x) = γR′
2+(6µR2

2V ′
)′−2ρV R2

2V ′
+2ρgR2

2

ρV(R2
2−R2

1)
,

α11(x) = − 2λR2
1T′

ρ(R2
2−R2

1)cpT
− 2R2

1R2
2h1(T−TH)√

1+R′2
1ρ(R2

2−R2
1)cpT

,

α12(x) = −
2
(

λR2
2T′)′

ρ(R2
2−R2

1)cpT
− 2R1(1+2R′2

1)h1(T−TH)√
1+R′2

1ρ(R2
2−R2

1)cpT
+ 2R2

1VT′

(R2
2−R2

1)T
,

α13(x) = − 2λR2
2T′

ρ(R2
2−R2

1)cpT
−

−2R2
2R2

′
[ω0εnc

2σ0

(
T4−T4

a

)
+h2(T−TH)]√

1+R′2
2ρ(R2

2−R2
1)cpT

+

+
4knc

2R2
2Rp(Rp−R2)

ρ(R2
2−R2

1)cpT
·

L∫
0

(βεpT4
p−εT4

)(x−η)

[(η−x)2+(Rp−R2)
2
]
2 dη,

α14(x) = 2λR2
2T′

ρ(R2
2−R2

1)cpT
−

2R2(1+2R2
2)[ω0εnc

2σ0

(
T4−T4

H

)
+h2(T−TH)]

(1+R′2
2)ρ(R2

2−R2
1)cpT

− 2R2
2V T′

(R2
2−R2

1)T
+

+
4knc

2σ0R2Rp(Rp−R2)R′
2

ρ(R2
2−R2

1)cpT
·

L∫
0

(βεpT4
p−εT4)(x−η)

[(η−x)2+(Rp−R2)
2
]
2 dη−

− 4nc
2σ0R2

2Rp(Rp−R2)

ρ(R2
2−R2

1)cpT
·

L∫
0

(βεpT4
p−εT4

)[−((η−x)2+(Rp−R2
2))+4(Rp−R2)(Rp−R2+kR′

2(x−η)]

[(η−x)2+(Rp−R2
2)]

3 dη+

+
4nc

2σ0R2Rp(Rp−R2)

ρ(R2
2−R2

1)cpT
·

L∫
0

(βεpT4
p−εT4

)(Rp−R2+kR′
2(x−η))

[(η−x)2+(Rp−R2)
2
]
2 dη,

β1(x) = β3(x) = V
2 , β2(x) = (R2

1V)′

2R2
1

, β4(x) = (R2
2V)′

2R2
2

,

β5(x) = (3µ(R2
2−R2

1)V)′+3µ(R2
2−R2

1)V
′

ρV(R2
2−R2

1)
− V, β6(x) = (3µ(R2

2−R2
1)V

′
)′

ρV(R2
2−R2

1)
− 2V′,

β7(x) = −V T′

T
,

φ1(x) = − f (R1,R2,T)
2R2

1

·b,

φ2(x) = − f (R1,R2,T)
2R2

2

·b, φ3(x) = − 3µbV ′

ρV
, φ4(x) = − (3µb(R2

2−R2
1)V

′
)′

ρV(R2
2−R2

1)
,

φ5(x) = (λ(R2
2−R2

1)T)′

ρ(R2
2−R2

1)cpT
+ λT′

ρcpT
− V +

((λc)′T T+16σ0nc
2T3

/βK)T
′

ρcpT
,

φ6(x) = (λ(R2
2−R2

1)T
′
)′+((λc)′T T+16σ0nc

2T3
/βK)(R2

2−R2
1)T

′
)′

ρ(R2
2−R2

1)cpT
− V T′

(cp+(cp)′T T)
cpT

−

− 2R2

√
1+R′2

2(4ω0εnc
2σ0T4

+h2T)

ρ(R2
2−R2

1)cpT
− 2R1

√
1+R′2

1+h1T

ρ(R2
2−R2

1)cpT
−

− 16nc
2σ0R2Rp(Rp−R2)εT4

ρ(R2
2−R2

1)cp
·

L∫
0

(Rp−R2+kR′
2(x−η)

[(η−x)2+(Rp−R2)
2
]
2 dη.
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where f
(

R1, R2, T
)

is the right part of the continuity equations in (6), calculated for the
stationary state drawing mode; µ = µ

(
T
)

is the viscosity in the stationary state drawing

mode, ν = µ
ρ is the kinematic viscosity and b = a1TE

(a1T+a2)
2 .

3. Optimal Control of the Capillary Drawing Process
3.1. Isothermal Case

Let us first address the problem of controlling the capillary drawing process under
isothermal conditions. The general mathematical model described in Section 2 has the
following form in the isothermal case:

∂R2
1

∂t + ∂
∂x (R2

1V) =
p0R2

1R2
2−γ R1 R2(R1+R2)

µ(R2
2−R2

1)
∂R2

2
∂t + ∂

∂x (R2
2V) =

p0R2
1R2

2−γ R1 R2(R1+R2)

µ(R2
2−R2

1),

ρ(R2
2 − R2

1)(
∂V
∂t + V ∂V

∂x − g) = ∂
∂x (3µ(R2

2 − R2
1)

∂V
∂x + γ(R1 + R2)).

(9)

The model (9) is supplemented with initial and boundary conditions of the form

V(0, x) = Vf (0, x), R1(0, x) = R0
1(0, x), R2(0, x) = R0

2(0, x),
V(t, 0) = Vf (t, 0), R1(t, 0) = R0

1(t, 0), R2(t, 0) = R0
2(t, 0),

V(t, L) = Vd(t, L)
(10)

The model (9), (10) is a one-dimensional nonstationary isothermal model in the form
of an initial boundary value problem with a differential operator of the parabolic type. It
is important to note that the actual capillary production process for PCF is of very high
precision. This is due to the fact that the geometric dimensions of the silica undergo multiple
changes during the drawing process. The same colossal differences can be observed in the
changes in the velocity and viscosity regimes. This requires the highly precise adjustment
of the drawing tower, precise program support and the skill of the process control engineer.
The slightest adjustments to the program values of the control parameters can lead to the
complete destabilization of the process. However, such corrections are necessary and it
is important to quickly and correctly calculate the measure of the control actions on the
system. This need may arise, for example, in the case of a geometric defect in the preform.
This may be a top material lack due to the presence of an air bubble in the silica at the
preform manufacturing stage, or the global violation of the cylindricity of the preform,
manifested in its taper or the presence of bonds (Figure 4).
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Figure 4. Examples of typical surface defects in preforms (highlighted in red): (a) air bubbles,
(b) streaks, (c) inclusions and contaminations, (d) top material lack.
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Since isothermal drawing is a special case of the process described in Section 2, the
linearization of the isothermal model is a trivial task. As before, the stationary state is
chosen as the initial (program) state of the system. The model describing the evolution of
small perturbations F̃i, i = 1, 2, 3 is written in the form

∂R̃1
∂t + α1(x) ∂R̃1

∂x + α2(x)R̃1 + α3(x)R̃2 + β1(x) ∂Ṽ
∂x + β2(x)Ṽ = 0,

∂R̃2
∂t + α4(x) ∂R̃2

∂x + α5(x)R̃2 + α6(x)R̃1 + β3(x) ∂Ṽ
∂x + β4(x)Ṽ = 0,

∂Ṽ
∂t = 3ν ∂2Ṽ

∂x2 + β5(x) ∂Ṽ
∂x + β6(x)Ṽ + α7(x) ∂R̃1

∂x + α8(x)R̃1 + α9(x) ∂R̃2
∂x + α10(x)R̃2.

(11)

The initial and boundary conditions take the form

Ṽ(0, x) =
Vf (0,x)

V(x)
− 1, R̃1(0, x) =

R10 (x)
R1(x)

− 1, R̃2(0, x) =
R20 (x)
R2(x)

− 1,

Ṽ(t, 0) =
Vf (t,0)
V(0)

− 1, R̃1(t, 0) =
R10 (t,0)

R1(0)
− 1, R̃2(t, 0) =

R20 (t,0)
R2(0)

− 1,

Ṽ(t, L) = Vd(t,L)
V(L)

− 1.

(12)

Here, the functions in the numerators of the fractions are the actual values of the
radii and velocities. The denominators contain the program stationary values. Therefore,
if the actual values exactly match the program values, we have a differential problem
with homogeneous initial and boundary conditions, which have a single zero solution.
In practice, this would mean the complete absence of deviations in the silica capillary
geometries and particle transport velocity from the reference values. However, this is often
not the case in real manufacturing conditions. We further assume that one of the initial or
boundary conditions in (12) is not zero, while the other conditions are zero. For example,
suppose that a defect has the outer radius of the preform and that this defect is described
by the condition

R̃2(t, 0) = Rde f (t) (13)

In order to eliminate the defect, we select the drawing speed as the control function:

Ṽ(t, L) = ũ(t). (14)

The objective of the control in this case is to stabilize the geometric shape of the drawn
tube, i.e., to eliminate the defect on the finished capillary. It is standard procedure in the
silica tube manufacturing process to control the geometric shape of the finished product.
The drawing tower usually includes a laser scanner to perform such control, which is
usually installed near the outlet area of the finished product. Let us describe the objective
of the optimal control problem with an integral type functional.

F(u) =
τ∫

0

R̃2(t, L)2dt + α∥ũ(t)∥2 → min, α > 0, (15)

Thus, the optimal stabilization control problem (11)–(15) is formulated. This includes
a boundary trade-off control problem and a boundary monitoring problem [48]. We will
not investigate the existence of a solution to the minimization problem (11)–(15) in this
paper. Note that the study of the existence of a solution to the minimization problem is
reduced to the proof of semi-continuity from below and the coercivity and convexity of
the objective functional and has been carried out by the authors in earlier papers [41]. It
is also known that since the real capillary wall dimensions are counted in fractions of a
millimeter, a defect in the outer radius will certainly have a negative effect on the formation
of the inner radius profile. In a real manufacturing process, the scanner cannot monitor
the geometry of the hidden inner radius. Therefore, it may be appropriate to monitor the
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values of both the outer and inner radii using a constructed mathematical model, trying to
minimize all possible defects at the same time:

F(u) =
τ∫

0

(R̃2
1 + R̃2

2)dt + α∥ũ(t)∥2 → min, α > 0. (16)

If the problem of controlling the constancy of the geometric properties of the inner
wall of the capillary is not necessary, we can limit ourselves, as suggested earlier, to the
objective function of the form (15). Here, τ is the control time, and α is the regularization
parameter, known in the literature as the “control cost” [48]. Thus, the differential problem
(11), (12), supplemented with conditions (13), (14) describing the defect of the preform
geometry and the type of control action on the system, as well as one of the objective
functionals (15) or (16), form a general formulation of the problem of the optimal control
of capillary drawing for PCF production.

Let us obtain the necessary optimality conditions for the formulated minimization
problem. The necessary optimality conditions are obtained in the form of an initial bound-
ary value problem for the components of the state vector F (consisting of three components)
and their dual states (functions p(t, x), q(t, x), s(t, x)). By imposing several constraints on
the region of admissible control, it becomes possible to pass from the variational inequality
to the variational equality ⟨F′(u0), δũ0⟩ = 0 [26], where ũ0 is the minimizer, “·′” is the
Gato differentiation operator and δũ0 is the element variation of ũ0. Thus, the optimality
conditions follow in the form of the so-called optimization system. Furthermore, it be-
comes possible to obtain the analytical dependence of the optimal control function on the
dual radii and the velocity. By omitting several technical transformations similar to those
performed in [41,42,47] for the case of a solid (incomplete) preform, we obtain the general
form of the optimality system. Thus, for the objective functional (15), the optimality system
has the form

∂R̃1
∂t

+ α1(x)
∂R̃1
∂x

+ α2(x)R̃1 + α3(x)R̃2 + β1(x)
∂Ṽ
∂x

+ β2(x)Ṽ = 0,

∂R̃2
∂t

+ α4(x)
∂R̃2
∂x

+ α5(x)R̃2 + α6(x)R̃1 + β3(x)
∂Ṽ
∂x

+ β4(x)Ṽ = 0,

∂Ṽ
∂t

= 3ν
∂2Ṽ
∂x2 + β5(x)

∂Ṽ
∂x

+ β6(x)Ṽ + α7(x)
∂R̃1
∂x

+ α8(x)R̃1 + α9(x)
∂R̃2
∂x

+ α10(x)R̃2 (17)

∂p
∂t

+ α1(x)
∂(α1(x)p)

∂x
+ α2(x)p − α6(x)q − ∂(α7(x)s)

∂x
+ α8(x)s = 0,

∂q
∂t

+
∂(α4(x)q)

∂x
− α5(x)q − α3(x)p − ∂(α9(x)s)

∂x
+ α10(x)s = 0,

∂s
∂t

+ 3ν
∂2s
∂x2 − ∂(β5(x)s)

∂x
+ β6(x)s +

∂(β1(x)p)
∂x

+
∂(β3(x)q)

∂x
− β2(x)p − β4(x)q = 0,

R̃1(0, x) = R̃2(0, x) = Ṽ(0, x) = p(τ, x) = q(τ, x) = s(τ, x) = 0,

R̃2(t, 0) = Rde f (t), α4(x)q(t, L) = R̃2(t, L), Ṽ(t, L) =
1
α

(
β3q(t, L) + 3ν

∂s
∂x

(t, L)
)

,

R̃1(t, 0) = V(t, 0) = S(t, 0) = S(t, L) = p(t, L) = 0.

The optimal control function satisfies the relation

u(t) = Ṽ(t, L) =
1
α

(
β3q(t, L) + 3ν

∂s
∂x

(t, L)
)

(18)

The optimization system is a boundary value problem consisting of six partial dif-
ferential equations, some of which are given conditions at the initial time t = 0 (initial
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conditions), and the rest are given conditions at the final time t = τ. Such inconsistency in
the system equations in time is a distinctive feature of the optimization systems for prob-
lems in such formulations. Optimality conditions (17) in the form of a differential problem
are convenient to use because, in this case, the optimal control function is determined from
its solution by the explicit law (18).

The optimality system for the problem with the objective functional (16) has the form

∂R̃1
∂t

+ α1(x)
∂R̃1
∂x

+ α2(x)R̃1 + α3(x)R̃2 + β1(x)
∂Ṽ
∂x

+ β2(x)Ṽ = 0

∂R̃2
∂t

+ α4(x)
∂R̃2
∂x

+ α5(x)R̃2 + α6(x)R̃1 + β3(x)
∂Ṽ
∂x

+ β4(x)Ṽ = 0

∂Ṽ
∂t

= 3ν
∂2Ṽ
∂x2 + β5(x)

∂Ṽ
∂x

+ β6(x)Ṽ + α7(x)
∂R̃1
∂x

+ α8(x)R̃1 + α9(x)
∂R̃2
∂x

+ α10(x)R̃2

∂p
∂t

+ α1(x)
∂(α1(x)p)

∂x
+ α2(x)p − α6(x)q − ∂(α7(x)s)

∂x
+ α8(x)s = 0

∂q
∂t

+
∂(α4(x)q)

∂x
− α5(x)q − α3(x)p − ∂(α9(x)s)

∂x
+ α10(x)s = 0 (19)

∂s
∂t

+ 3ν
∂2s
∂x2 − ∂(β5(x)s)

∂x
+ β6(x)s +

∂(β1(x)p)
∂x

+
∂(β3(x)q)

∂x
− β2(x)p − β4(x)q = 0

R̃1(0, x) = R̃2(0, x) = Ṽ(0, x) = p(τ, x) = q(τ, x) = s(τ, x) = 0,

R̃2(t, 0) = Rde f (t), α1(x)p(t, L) = R̃1(t, L), α4(x)q(t, L) = R̃2(t, L), Ṽ(t, L) =
1
α

(
β1(L)p(t, L) + β3q(t, L) + 3ν

∂s
∂x

(t, L)
)

R̃1(t, 0) = V(t, 0) = S(t, 0) = S(t, L) = 0

The optimal control function in this case satisfies the relation

ũ(t) = Ṽ(t, L) =
1
α

(
β3(L)q(t, L) + 3ν

∂s
∂x

(t, L)
)

(20)

3.2. Non-Isothermal Case

To describe the flow of a silica melt in the non-isothermal case, let us return to the
modified quasi-one-dimensional mathematical model of silica capillary drawing (6), (7),
which takes into account all types of heat exchange: heat conduction, convective heat
exchange with the environment and radiation. The full justification of the model is given in
Section 2 of this paper.

The problem of the optimal control of the drawing process is formulated (as in the
isothermal case) in the language of small perturbations. The model (6), (7) is linearized in
the area of its stationary state. Of interest for the observation is the development of small
possible perturbations in the linearized model in the form of inhomogeneities in the initial
and/or boundary conditions. To control the stabilization process, it is proposed to vary
the small deviations in the drawing speed. The control objective is to balance the effects of
small perturbations in the observable region of the problem solution.

A linearized model and formulation of the optimal stabilization control problem with
boundary control (drawing speed) and boundary observation (of the shape of the outer
surface of the finished fiber) is presented:

∂R̃1

∂t
+ α1

∂R̃1

∂x
+ α2R̃1 + α3R̃2 + β1

∂Ṽ
∂x

+ β2Ṽ + φ1T̃ = 0,

∂R̃2

∂t
+ α4

∂R̃2

∂x
+ α5R̃2 + α6R̃1 + β3

∂Ṽ
∂x

+ β4Ṽ + φ2T̃ = 0,



Computation 2024, 12, 86 13 of 21

∂Ṽ
∂t = 3ν ∂2Ṽ

∂x2 + β5
∂Ṽ
∂x + β6 Ṽ + α7

∂R̃1
∂x + α8R̃1 + α9

∂R̃2
∂x + α10R̃2 + φ3

∂T̃
∂x + φ4T̃,

∂T̃
∂t = λ

ρcp
∂2 T̃
∂x2 + ψ5

∂T̃
∂x + ψ6T̃ + α11

∂R̃1
∂x + α12R̃1 + α13

∂R̃2
∂x + α14R̃2 + β7Ṽ,

Ṽ(0, x) = R̃1(0, x) = R̃2(0, x) = T̃(0, x) = Ṽ(t, 0) = R̃1(t, 0) = T̃(t, 0) = R̃1(t, L) = R̃2(t, L) = T̃(t, L) = 0, R̃2(t, 0) = Rde f (t), Ṽ(t, L) = ũ(t)

(21)

The objective function has the form:

F(u) =
τ∫

0

(
R̃2R2

)∣∣∣
x=L

2

dt + α

τ∫
0

(ũ(t))2dt → min. (22)

The relation (22) determines the smallness of the deviations in the outer radius of the
capillary in the draw control zone at x = L. The problem is posed as a trade-off control
problem, and α > 0 is the control cost. Here, Rde f (t) is the function defining the geometry
of the preform surface defect, and ũ(t) is the control function (capillary drawing speed).

For the linear control problem, similarly to Section 3.1, we obtain the necessary opti-
mality conditions in the form of a boundary differential problem for the deviation functions
R̃1(t, x), R̃2(t, x), Ṽ(t, x), T̃(t, x) of the actual values from the program values, and states
conjugated to these deviations p(t, x), q(t, x), s(t, x), w(t, x) are obtained. The optimization
system of the control problem (21), (22) has the form

∂R̃1

∂t
+ α1

∂R̃1

∂x
+ α2R̃1 + α3R̃2 + β1

∂Ṽ
∂x

+ β2Ṽ + φ1T̃ = 0,

∂R̃2

∂t
+ α4

∂R̃2

∂x
+ α5R̃2 + α6R̃1 + β3

∂Ṽ
∂x

+ β4Ṽ + φ2T̃ = 0,

∂Ṽ
∂t

= 3ν
∂2Ṽ
∂x2 + β5

∂Ṽ
∂x

− β6Ṽ + α7
∂R̃1

∂x
+ α8R̃1 + α9

∂R̃2

∂x
+ α10R̃2 + φ3

∂T̃
∂x

+ φ4T̃,

∂T̃
∂t

=
λ

ρCp

∂2T̃
∂x2 + φ5

∂T̃
∂x

+ φ6T̃ + α11
∂R̃1

∂x
+ α12R̃1 + α13

∂R̃2

∂x
+ α14R̃2 + β7Ṽ,

−∂p
∂t

− ∂(α1 p)
∂x

+ α2 p + α6q +
∂(α11w)

∂x
+

∂(α7s)
∂x

− α8s − α12w = 0,

−∂q
∂t

− ∂(α4q)
∂x

+ α5q + α3 p +
∂(α13w)

∂x
+

∂(α9s)
∂x

− α10s − α14w = 0, (23)

∂s
∂t

+
∂2(3νs)

∂x2 − ∂(β5s)
∂x

+ β6s − β2 p +
∂(β1 p)

∂x
− β4q +

∂(β3q)
∂x

= 0,

∂(w)

∂t
+

∂2
(

λ
ρcp

w
)

∂x2 − ∂(φ5w)

∂x
+ φ6w − φ1 p − φ2q − ∂(φ3s)

∂x
+ φ4s = 0,

Ṽ(0, x) = R̃1(0, x) = R̃2(0, x) = T̃(0, x) = Ṽ(t, 0) = R̃1(t, 0) = T̃(t, 0) = T̃(t, L) = 0,

R̃2(t, 0) = Rde f (t), Ṽ(t, L) = β1(p+q)+ ∂(3νs)
∂x

α

∣∣∣∣
x=L

p(τ, x) = q(τ, x) = s(τ, x) = w(τ, x) = p(t, L) = s(t, L) = w(t, L) = s(t, 0) = w(t, 0) == 0, q(t, L) =
R̃2R2

α
.

As in the isothermal case, the equations of the system (23) have several peculiarities.
One of them is a different course of the variable “time”, which causes certain difficulties
in the realization of its solution. However, the weak coupling of the blocks of equations
(only through the boundary conditions for the functions Ṽ(t, x) and q(t, x) at the point
x = L) allows us to use special iterative methods to find solutions quickly. An undoubted
advantage of this approach is the existence of an explicit expression of the values of the
optimal control function. Thus, if the solution (23) is known, in particular, if the functions



Computation 2024, 12, 86 14 of 21

of the conjugate states are found, it is possible to adjust the drawing speed according to the
following law:

Ṽ(t, L) =
β1(p + q) + ∂(3νs)

∂x
α

∣∣∣∣∣
x=L

.

4. Results and Discussion

Let us present the results of the numerical calculations of optimization systems for the
isothermal case. The numerical implementation was carried out using the finite element
method. The program was implemented in Comsol Multiphysics. Special attention was
paid to the fact that some of the equations of the optimization system have a direct solution
in the “time” coordinate, and some of the equations are solved with a backward solution in
this coordinate. The time inconsistency of the system equations caused certain difficulties
in the joint solution of the equations. To overcome them, additional iterative methods
were used.

Thus, it is evident that in (17), (19) and (23), the equations for perturbations of the
radii, speed and temperature are supplemented with initial conditions—that is, conditions
at time t = 0. However, for the functions of conjugate states, conditions are specified at the
final moment of time t = τ. The scenario for the solution of the optimality system in Comsol
Multiphysics implied the creation of six (eight) independent physical PDE blocks. The
first three (four) of them were solved together forward in time, with the resulting values
transferred to the remaining equations. A negative step was assigned to the “time” variable,
and the calculation was carried out from t = τ to t = 0. The resulting values of the conjugate
states were again transferred to the first blocks of equations, solved forward in time and so
on until the solution process converged.

The results of the numerical simulation for the objective functional (15) are shown in
Figure 5.

Calculations were performed for a defect value of 5% in the geometric shape of the
preform (function Rde f (t, 0)). This choice of defect value is justified by the fact that this
value is critical for manufacture and that preforms with defects exceeding this value are
usually rejected. The figure shows the deflection profiles of the outer and inner radii
R̃2(t, L), R̃1(t, L) at the observation point x = L, i.e., at the elongated capillary. It is shown
(Figure 5a) that the deviations from the program value in the uncontrolled drawing mode
are about 7% and 2% (green and purple color, respectively). The propagation of the defect
towards the inside of the capillary and its very noticeable effect on the inner surface of the
capillary are evident. In the controlled mode, the same initial defect can be significantly
transformed if the drawing speed is adjusted according to the law (17). In this case, we
reduce the value of the defect on the outer surface of the capillary from 7% to 1.5% on
average. Of course, the transformation affects the inner surface of the capillary as well. The
model calculation shows that the almost complete suppression of the “bulge” defect on the
outer wall leads to a slight “retraction” effect on the inner wall (blue and red colors). The
law of drawing speed adjustment (black color) is also shown. According to this, during the
first 120 s of the process after defect detection, a smooth transition is required to increase the
program speed mode by 20%, to then decrease it by 10% and finally to lead it to a smooth
transition to a zero value between 100 s and 120 s, which will result in defect suppression.
Figure 5b shows the evolution of the deviation profiles of the outer and inner radii of the
capillary R̃1(t, L) and R̃2(t, L) at a different value of the control cost parameter. It can be
seen that it is possible to almost completely neutralize the defect of the outer radius (blue vs.
green), but, since there is no simultaneous control of the inner radius as well, the retraction
of the inner wall is quite significant (red). The adjustment of the control in this case ranges
from −5.5% to 7%. Thus, the influence of the parameter α is quite significant. Here, we also
present an analysis of the influence of the values of the regularization parameter α on the
general picture of the suppression of the capillary geometry defect (Figure 6).
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The calculation shows that the effective values of the regularization parameter α for
this model are from 5 × 10−9 to 1 × 10−6. It is shown that increasing the values of α to
values exceeding 1 × 10−6 is equivalent to the absence of control. Reducing the values
below the level of 5 × 10−9 is also inefficient since the solutions obtained in this case are
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infinitely close to each other (yellow and purple color). The compromise option in this
calculation is values close to 1 × 10−7. The results calculated exactly for this value of α are
shown in Figure 5. In this case, it is possible to significantly reduce the defect on the outer
wall of the capillary, while obtaining a less significant “retraction” effect on the inner wall.

The results of the numerical modeling of the optimality system (19) for the objective
functional (16) are shown in Figure 7. It shows the evolution of the deviation profiles of
the outer and inner radii of the capillary R̃1(t, L) and R̃2(t, L) in the observation zone x = L
(elongated capillary). For comparison, two cases are calculated: the result without control
(green and purple color) with a 5% defect on the outer surface of the preform and the result
with control (blue and red color) with the same defect present. Note that the objective
functional (16) in this calculation has the effect of controlling both the outer and inner radii
of the capillary. It can be seen that a 7% defect at the outer radius can be suppressed at
least three times (blue color vs. green). However, with this suppression, the inner radius is
particularly sensitive—there is a tendency for the inner capillary wall to retract (red color
vs. purple). Nevertheless, the control result is effective—deviations in the geometry remain
but are within the tolerance of 5%. The black color in the same figure shows the profile of
the optimal control function—the time correction of the programmed fiber drawing speed.
Thus, the results of the numerical studies confirm the possibility of suppressing the existing
defects in the preform, while carrying out calculations for different objective functionals
allows us to understand this problem at a qualitative level.
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Figure 7. Geometry of the drawn fiber and optimal control of the capillary drawing speed (in the
case of the objective functional (16), α = 1 × 10−8).

Additionally, for the problem with the objective functional (16), the values of the
minimizable functional F and its constituent summands depending on the regularization
parameter α were evaluated. Let F1, F2, F3 be the first, second and third components of
the sum in (16). Figure 8 shows the dependence of the values of these components on the
regularization parameter. Calculations show that for values of α such as 5.00 × 10−9–5.00
× 10−8, the values of the objective functional and all of its components are minimal, which
corresponds to capillary drawing in the optimal control mode.

Further, we provide the values of the parameters adopted in the model: the length of
the studied section of the drawing, L, [m]—0.5; the inner radius of the preform, R10, [m]—
0.007; the outer radius of the preform, R20, [m]—0.01; the silica density, ρ, [kg/(m3)]—2200;
the silica preform feed rate, Vf , [m/s]—5 × 10−4; the drawing speed, Vd, [m/s]—0.1; the
free fall acceleration, g, [m/s2]—9.8; the specific heat capacity of the melt, cp, [J/(kg·K)]—
1500; the typical temperature, T0, [K]—2000; the pressure difference acting on the inner and
outer surfaces of the capillary, p0, [Pa]—0; the kinematic viscosity, ν = µ

ρ , [m2/s]—17.871;
and the control time, τ, [s]—200.
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5. Model Verification Proposal

Any analytical model or proposed method requires experimental verification. The
simulation results obtained in this study are no exception. However, such a complex process
as the fabrication of microstructured optical fibers is not available to every university
laboratory. In addition, part of the verification process is the lengthy acquisition of statistical
data, which makes the process of checking the model’s adequacy quite expensive. In this
section of the paper, we give several suggestions for the possible verification of the model
in the conditions of real optical fiber production and optical research laboratories.

The first crucial stage of the verification process is the meticulous implementation of
technological operations, adhering to all recommendations for process control outlined
in this work. It is of paramount importance to ensure that the production area is kept
clean [49], that all safety precautions are in place and that the operating instructions for the
drawing tower and all additional equipment are followed.

The second stage is to assess the variation in the optical–geometric parameters of
the fiber along its length. At the early stages, it is necessary to evaluate the geometric
parameters of the fiber by dividing it into separate fragments and studying all the fiber
tips (cross-sections) under a microscope. After the basic geometric parameters begin to
vary from section to section, i.e., the number and location of capillaries is observed, it is
advisable to resort to non-destructive research, which is widely practiced for other types
of fibers [50–53]. The optimal way to study these types of samples is optical frequency
domain reflectometry (OFDR) [54–57]. This approach is based on the injection of continuous
frequency-scanning high-coherence optical radiation into the fiber under study and the
interference of its backscattered part with the same probing signal. Due to the fact that the
typical optical signal attenuation coefficients in microstructured fibers are quite high [58],
the OFDR method seems to be quite convenient, since continuous radiation allows one to
obtain a clearly visible backscattering pattern. Another important advantage of the method
is the ability to select the frequency scanning range, which makes it possible to adjust to the
operating wavelengths of the fiber under test. The proof of the suitability of the method
for the study of the characteristics of microstructured fibers is the widespread use of these
fibers as the sensor elements of OFDR-based systems [59,60]. When studying short lengths
of optical fibers, it is advisable to exploit the possibility of measurement with an ultra-
high resolution, which is fundamentally limited in the region of several tens of microns;
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when studying long fragments obtained immediately after drawing from the preform, it is
advisable to use settings that provide measurements with a coarser resolution. In the case
of measuring optical fibers with an extremely high optical attenuation coefficient, the use
of two-stage erbium amplification in the OFDR circuit is recommended [61]. Of no small
importance for microstructured fibers are the parameters of the evolution of the radiation
polarization state along their length. Most optical frequency domain reflectometers are
equipped with two detectors that detect two states of polarization [62]. Studying the
backscattered power for each polarization state will provide basic information about the
anisotropy properties of the fiber, as well as its modal birefringence, as occurs with different
anisotropic fibers [63,64].

In the general case, applicable for many types of microstructured fibers, the main crite-
rion for the optimal control of the drawing process will be the constancy of the attenuation
coefficient of the optical signal at the operating wavelength along the length of the fiber.
The signal from an optical frequency domain reflectometer is quite heavily distorted by
noise, so it is necessary to apply special processing methods. Our practice has shown that
the elimination of noise of this kind is optimally implemented using the activation function
dynamic averaging and frequency domain dynamic averaging methods, which give good
results in both the time and frequency domains [65]. These measures will help to increase
the signal-to-noise ratio by 10 dB; thus, the OFDR trace will become a smooth line along
which it will be possible to evaluate the uniformity of the attenuation coefficient and/or
the evolution of the polarization state of the radiation. We hope that this brief methodology
will allow one to verify the data in this work in industrial production conditions.

6. Conclusions

This paper studies the issue of the optimal control of silica capillary drawing processes.
The study is based on a nonlinear mathematical model of the nonstationary process of
silica tube drawing based on the equations of continuity, motion and energy. The proposed
mathematical model is tested for its adequacy. Optimal control problems are formulated for
a linearized system of differential equations in the area of a particular state. The objective
functions in these formulations have the purpose of minimizing geometric defects on the
capillary. Using a generalization of the Lagrange principle, necessary optimality conditions
are obtained in the form of boundary value problems for the melt velocity, outer and
inner radii of the capillary and silica temperature, as well as four functions of conjugate
states. Numerical results are obtained in the isothermal case, and the cases of controlling
the constancy of only the outer radius and the outer and inner radii of the capillary are
studied. The speed of the drawing process is chosen as the control. The influence of the
regularization parameter on the magnitude of the control actions and, as a consequence,
on the possibility of suppressing the existing geometrical surface defect is also studied.
In addition, an approach to the experimental verification of the mathematical model of
the optimal control of the drawing process is proposed. This approach is based on optical
reflectometry of the frequency range of the finished optical fibers. Note that the method
developed by the authors differs significantly from the currently widely used approach
based on PID controllers. The advantage of the proposed method is the ability to control
and promptly eliminate geometric defects in the capillary. This is confirmed by the analysis
of the above numerical calculations, according to which even 15% deviations in the outer
radius of the capillary during the drawing process can be reduced to 4–5% by controlling
only the capillary drawing speed.
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