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Abstract: Single-board computers (SBCs) are emerging as an efficient and economical solution for
fog and edge computing, providing localized big data processing with lower energy consumption.
Newer and faster SBCs deliver improved performance while still maintaining a compact form factor
and cost-effectiveness. In recent times, researchers have addressed scheduling issues in Hadoop-
based SBC clusters. Despite their potential, traditional Hadoop configurations struggle to optimize
performance in heterogeneous SBC clusters due to disparities in computing resources. Consequently,
we propose modifications to the scheduling mechanism to address these challenges. In this paper, we
leverage the use of node labels introduced in Hadoop 3+ and define a Frugality Index that categorizes
and labels SBC nodes based on their physical capabilities, such as CPU, memory, disk space, etc.
Next, an adaptive configuration policy modifies the native fair scheduling policy by dynamically
adjusting resource allocation in response to workload and cluster conditions. Furthermore, the
proposed frugal configuration policy considers prioritizing the reduced tasks based on the Frugality
Index to maximize parallelism. To evaluate our proposal, we construct a 13-node SBC cluster and
conduct empirical evaluation using the Hadoop CPU and IO intensive microbenchmarks. The results
demonstrate significant performance improvements compared to native Hadoop FIFO and capacity
schedulers, with execution times 56% and 22% faster than the best_cap and best_fifo scenarios. Our
findings underscore the effectiveness of our approach in managing the heterogeneous nature of SBC
clusters and optimizing performance across various hardware configurations.

Keywords: single-board computers; frugal edge computing; Hadoop; YARN; heterogeneous

1. Introduction

Low-cost single-board computers (SBCs) are emerging as a smart choice for fog and
edge computing, bringing innovation and sustainability to the forefront. These small
devices offer benefits that go beyond traditional computing, such as reducing energy
use and enabling localized data processing [1]. Unlike traditional computing setups that
often require substantial power consumption, SBCs are designed to operate efficiently
with minimal energy usage. This inherent characteristic makes them ideal candidates for
powering edge devices, which are frequently deployed in remote or off-grid locations
where energy resources may be limited. By consuming less energy, SBC-based edge
devices contribute to energy conservation and help lower carbon emissions, easing the
burden on the environment [2]. From reducing energy consumption to enabling localized
processing, the integration of SBCs in edge devices holds significant promise for mitigating
environmental impact while fostering sustainable technological advancements.

Over the past decade, Apache Hadoop has become a leading framework for big data
processing [3]. The Hadoop framework has established itself as a key player, allowing
distributed computing across a wide range of nodes. In their work [4], the researchers
built a Hadoop cluster using Raspberry Pi to process images, working with datasets of
various sizes. They then measured how long it takes this SBC-based cluster to complete
tasks compared to a traditional PC. The findings suggest that for smaller datasets, the
Raspberry Pi cluster finishes the tasks in less time than the PC. In their study [5], Neto
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and colleagues detail the creation, testing, and monitoring of a budget-friendly big data
cluster built with Raspberry Pi 4B devices running Apache Hadoop. The results indicate
that this combination of Raspberry Pi and Apache Hadoop provides a reliable and cost-
efficient solution for low-cost big data clusters. The authors in [6] explore the application
of Apache Hadoop on a cluster of Raspberry Pi 4B single-board computers (SBCs) to
evaluate their viability as low-cost, energy-efficient platforms for big data processing. By
conducting various Hadoop benchmarks such as WordCount, Terasort, DFSIO, etc., and
experimenting with different storage configurations, the study shows that Raspberry Pi
clusters can successfully manage large workloads, providing a practical alternative to
traditional server setups. In their work [7], Lambropoulos et al. investigate the use of
single-board computers (SBCs) such as Raspberry Pi 4B for edge computing, showcasing a
successful shift from conventional x86-based infrastructure to SBC-based clusters. Although
this setup experiences increased CPU usage and storage latency, it brings significant energy
savings, using just one-ninth of the power compared to traditional systems. The authors
address hardware compatibility issues and storage performance challenges, proposing
future research into dedicated storage solutions and enhanced hardware customization to
mitigate the limitations in edge computing environments.

However, its traditional scheduling mechanisms, designed for homogeneous environ-
ments, often fall short when deployed in clusters with heterogeneous resources, such as
single-board computers (SBCs) [8,9]. Hadoop does not inherently account for the varying
capacities of nodes and heterogeneity in a cluster, leading to issues like overloading frugal
SBCs with intensive tasks or allocating insufficient memory, resulting in task failures [2,6,10].
This is particularly challenging in resource-frugal clusters where individual nodes, like
Raspberry Pi or Odroid devices, have limited CPU processing power and memory capacity.
Such constraints can cause performance bottlenecks, impacting the efficiency and scalability
of Hadoop clusters.

To address these limitations, this study proposes a novel scheduling mechanism that
introduces a Frugality Index (Findex) and an adaptive configuration (adaptiveConfig) policy
to enhance resource allocation and system efficiency. The Findex categorizes SBC nodes
based on their processing capabilities and memory size, allowing for smarter task distribu-
tion. Additionally, the adaptive configuration policy adapts resource allocation in real-time,
based on workload and cluster status. This dynamic approach contrasts with traditional
scheduling policies in Hadoop, which often lack flexibility and lead to inefficiencies in
heterogeneous clusters. By customizing container placement and resource allocation, this
new scheduling mechanism aims to improve the performance of frugal SBC-based clusters,
offering faster execution times while consuming less power. The proposed mechanism
leverages Hadoop’s node-labeling feature [11], allowing administrators to categorize nodes
with specific labels, such as “Hi”, “Med”, or “Low”, based on their capabilities. This
approach, coupled with the adaptive configuration, ensures tasks are assigned to nodes
with appropriate resources, minimizing job completion times and maximizing parallelism.

We construct a cluster composed of 13 SBC devices and conduct various experiments
to test the proposed scheduling mechanism. The evaluation includes four fundamental
scenarios that delineate task distribution patterns for various work loads of different
sizes, namely best_capacity, worst_capactiy, best_fifo, and worst_fifo. By focusing on
both CPU-intensive and I/O-intensive workloads, such as WordCount and Terasort, we
extensively test the proposed for various workloads with two Hadoop InputSplit size
settings. The experiments measure task completion times, CPU utilization, memory usage,
and network traffic to compare the performance of native Hadoop configurations with the
proposed adaptive scheduling mechanism. Results from these experiments demonstrate
that the proposed scheduling mechanism, incorporating the Findex and adaptiveConfig
policy, significantly outperforms traditional Hadoop configurations. This improvement is
evident in the task completion times and resource utilization metrics, indicating that the
new approach effectively addresses the challenges of task assignment in heterogeneous
SBC-based clusters. By optimizing resource allocation and enhancing system flexibility, the
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proposed scheduling mechanism offers a promising solution for improving the performance
and sustainability of frugal SBC-based Hadoop clusters.

The rest of the paper is organized as follows. Section 2 presents relevant work and
background. Section 3 details the proposed adaptive frugal configuration policy. Section 4
presents extensive performance evaluation of the SBC cluster followed by discussion and
future directions in Section 5. Section 6 concludes this work.

2. Background and Related Works

In this section, we present SBC properties; Apache Hadoop YARN components
and architecture; and the motivation to design scheduling policies in YARN for frugal
SBC-based clusters. We also discuss recent works on improving YARN performance on
heterogeneous clusters.

2.1. Single-Board Computers

SBCs are compact computing devices built on a single circuit board, encompassing
all essential components such as CPU, memory, storage, and input/output interfaces.
These boards offer a range of advantages, particularly in terms of a small form factor
while being power and energy-efficient. Their compact design makes them suitable for
applications where space is limited, and their integrated components contribute to lower
power consumption compared to traditional desktop computers. Additionally, many
SBCs are designed to operate efficiently on minimal power, making them ideal for battery-
powered devices and scenarios where energy efficiency is paramount. SBCs also come
with certain limitations. While they offer sufficient processing power for many tasks, their
performance may be limited compared to desktop computers, particularly for demanding
computational tasks such as big data applications. Despite these limitations, SBCs remain
popular and versatile computing platforms used in various applications. Examples of
well-known SBCs include the Raspberry Pi (RPi), Arduino, NVIDIA Jetson Nano, Odroid
XU4, and BeagleBone Black. Each of these devices offers unique features and specifications,
catering to a diverse range of use cases while embodying the principles of compactness,
efficiency, and affordability that define the SBC ecosystem.

Table 1 provides a summary of SBCs used in this study. Raspberry Pi computers
are by far the most popular SBC and are widely used in industrial, healthcare, robotics,
and IoT applications. First released in 2012, they are cost-effective, energy efficient, and
widely accessible and have been used in various studies. A major drawback with ear-
lier generation RPis was the computational capacity, as highlighted in our earlier work
in [12]. With newer models 3B+, 4B, and the fifth generation, the use of improved on-
board processors has significantly improved the performance of individual SBCs. Ad-
ditionally, the increased upgraded RAM module using LPDDR4X RAM available on
RPI 4B and 5 is a useful upgrade. Gigabit Ethernet and HDMI come standard with these
SBCs for faster connectivity and A/V displays. We also use Odriod XU-4 (Odroid Xu-4
https://www.odroid.co.uk/hardkernel-odroid-xu4/odroid-xu4, accessed on 8 May 2024)
SBCs that use Samsung Exynos Octa core ARM processors with a 2 GHz quad-core
Cortex-A15 and 1.3 GHz quad-core Cortex-A7 processor. The Xu-4 has 2 GB DDR3
RAM, Gigabit Ethernet, and a standard HDMI port. The Pine64 RockportPro64 (Pine 64
RockPro64 https://pine64.com/product/rockpro64-4gb-single-board-computer/, accessed on
8 May 2024) is another SBC used in this work. It is powered by a Rockchip RK3399 Hexa-
Core (dual ARM Cortex A72 and quad ARM Cortex A53) 64-Bit Processor with MALI T-860
Quad-Core GPU. The ROCKPro64 is equipped with 4 GB LPDDR4 system memory and
128 Mb SPI boot Flash. All of these SBCs support microSD cards for storage with varying
sizes, including 64 GB. Odroid Xu4 and Rockpro64 also support the faster eMMC modules.

https://www.odroid.co.uk/hardkernel-odroid-xu4/odroid-xu4
https://pine64.com/product/rockpro64-4gb-single-board-computer/
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Table 1. Specifications of various SBCs used in this work.

Raspberry Pi 5 Pine64 Rockpro64 Raspberry Pi 3B+ Odriod XU-4

Processor 2.4 GHz quad-core
64-bit ARM Cortex A76

1.8 GHz Hexa Rockchip
RK3399 ARM Cortex A72

and 1.4 GHz Quad
Cortex-A53

1.4 GHz 64-bit quad-core
ARM Cortex-A53

Exynos5 Octa ARM
Cortex-A15 Quad 2 Ghz and

Cortex-A7 Quad 1.3 GHz

Memory 8 GB
LPDDR4X-SDRAM

4 GB
LPDDR4-SDRAM

1 GB
LPDDR3-SDRAM

2 GB
DDR3

Ethernet Gigabit Ethernet Gigabit Ethernet 300 Mbit/s Gigabit Ethernet

GPU VideoCore VII
800 MHz

Mali-T860 GPU
700 MHz

VideoCore IV
400 MHz

Mali-T628 MP6
600 MHz

A/V HDMI HDMI HDMI 1.3 HDMI

Price (USD) 80 79.99 35 53

Release 2023 2018 2018 2016

Power 1.3 W idle;
8.6 W max

3.1 W idle;
10.9 W max

1.9 W idle;
5.1 W max

2.1 W idle;
6.4 W max

2.2. Apache Hadoop YARN

The Hadoop ecosystem encompasses a suite of open-source projects and tools revolv-
ing around the core Hadoop framework. Hadoop, a distributed computing framework,
facilitates the storage and processing of vast datasets across clusters of commodity hard-
ware. Central to this ecosystem is the Hadoop MapReduce, providing a programming
model for distributed data processing, while YARN manages resource allocation. Hadoop
YARN scheduling is a critical component of the Hadoop ecosystem, tasked with efficiently
managing resources across the cluster. In Hadoop, the NameNode serves as the central
component of the Hadoop Distributed File System (HDFS), managing metadata about the
file system namespace and block locations. It directs client read and write requests and
oversees the storage of data across the cluster’s worker nodes, called DataNodes. The
Resource Manager (RM), running on the master node, manages resource allocation and
job scheduling and monitors their execution. Together, the NameNode and RM facilitate
efficient distributed storage and processing. A DataNode is a worker node responsible for
storing data blocks and ensuring data replication and availability. It communicates with the
NameNode to report block information and handles read and write requests. Conversely,
the Node Manager (NM) is a per-node agent managing resources and executing tasks on
worker nodes. It reports available resources to the RM, launches and monitors containers,
and ensures the proper execution of tasks. The Application Master (AM) manages the
execution of individual applications within the cluster, negotiating resources from the RM,
coordinating task execution, and monitoring progress.

A container represents a unit of resource allocation. When a client submits a MapRe-
duce job to the Hadoop cluster, the RM receives the request and designates a worker node
to host the AM in a container for the job. The NM on the worker node is notified of the
job, which coordinates with the AM to request the required number of containers. The
NM allocates resources to containers and launches the required number of containers
on the worker node. These containers host the actual MapReduce tasks or application
code. In case containers fail, YARN provides fault tolerance by swiftly detecting node
failures through NM, which reports to the RM through periodic heatbeat messages. Tasks
affected by node failures are rescheduled on available nodes, and the containers’ states are
recovered to ensure uninterrupted progress. Figure 1 shows the various components of the
YARN architecture and the service flow. The RM employs its scheduler to allocate resources
based on availability and predefined policies. YARN supports various scheduling policies
such as FIFO, Capacity, and Fair schedulers, each with distinct resource allocation and job
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prioritization methods. It dynamically manages the allocation of containers based on the
available resources and the requirements of applications running on the cluster.
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Node labels [11] were introduced in Hadoop version 3. They allow administrators to
categorize nodes based on specific attributes, such as hardware capabilities, geographical
location, or other intended uses. This labeling system helps to achieve fine-grained control
over where specific applications or workloads run. By directing specific applications to par-
ticular nodes, organizations can maintain better control over job distribution and system per-
formance, contributing to overall efficiency and scalability in YARN-based environments.

2.3. Relevant Research Works

In this section, we present relevant research works focusing on Hadoop YARN perfor-
mance in the context of heterogeneous clusters with limited onboard resources.

Jeyaraj et al., in [8], observe that Hadoop’s default data locality mechanism does not
take into account the heterogeneity of cluster nodes, including variations in processing
power, memory capacity, and disk I/O capabilities. As a result, tasks may be assigned
to nodes that are ill-suited for processing them efficiently, leading to resource contention
and reduced performance. Bae, in [9], observed that in heterogeneous environments,
Hadoop’s subpar performance was mainly due to the equal block allocation across nodes
in the cluster. The authors proposed a new data-placement scheme focusing on improving
Hadoop’s data locality by minimizing replicated data. This was achieved by modifying
the scheduling policy to accommodate the selection and replication of the blocks with the
highest likelihood of remote access.

V. Thesma et al., in [13], developed a low-cost distributed computing pipeline for
cotton plant phenotyping using Raspberry Pi, Hadoop, and deep learning. They compare
the performance of the Raspberry Pi-based Hadoop cluster in various configurations
for high-throughput cotton phenotyping in field-based agriculture. Veerachamy, in [14],
presents an agricultural irrigation recommendation and alert system using optimization
and machine learning in Hadoop for sustainable agriculture. They use machine learning
algorithms to forecast alerts based on various parameters such as air pressure, water level,
humidity, etc.

Setiyawan, in [15], developed an Internet of Things (IoT)-based wireless engine di-
agnostic tool prototype using a Raspberry Pi. This plug-and-play tool is used for engine
diagnostics in vehicle repair shops. In [6], researchers developed an intelligent personal
assistant system based on IoT for people with disabilities. The proposed system utilizes
Raspberry Pi as a control device for processing natural language input. Netinant et al.,
in [16], developed an IoT-driven smart home security and automation framework with
voice commands. The proposed framework ensures the incorporation of components,
including Raspberry Pi, relays, motion sensors, etc. The authors in [17] analyze the im-
pact of lightweight mutual authentication for the healthcare IoT. The proposed technique
significantly improves the disadvantages of IoT devices that lack computing power.



Computation 2024, 12, 96 6 of 20

Recently, the researchers in [18] have directed their attention towards achieving energy-
efficient remote data processing through the utilization of clusters comprised of single-
board computers (SBCs), like Raspberry Pi, coupled with the Hadoop framework for
handling large-scale data processing tasks in various contexts, including agriculture, smart
cities, smart homes, healthcare, etc. Qureshi et al. in [10] developed a heterogenous cluster
of 20 SBCs, including Raspberry Pis and Ordoid Xu-4s, for data analytics using Hadoop.
They conducted various experiments to analyze the performance and energy efficiency of
the cluster for workloads of various sizes. They observed that the performance of Raspberry
Pi-based clusters was inferior to Ordoid Xu-4 machines due to the frugal nature of the
devices. Lee, in [6], presents an in-depth investigation into Hadoop performance, focusing
specifically on the latest generation Raspberry Pi cluster, built with RPi model 4B. They
conduct a thorough examination of Apache Hadoop benchmarks and note that the cluster
composed of the five latest models of SBCs can successfully process workloads of a few
tera-bytes. Sooyoung L. et al., in [19], proposed modification to YARN to accommodate the
heterogeneity due to the scalability in SBC-based clusters. They developed a master-driven
and slave-driven policy that dynamically determines the onboard capacities of the nodes
in the cluster. To evaluate their work, they construct a small cluster of Raspberry Pi com-
puters and evaluate the performance of the proposed policies using Hadoop benchmarks.
Neto et al., in [5], analyze the performance of Raspberry Pi-based clusters using various
benchmarks, including Terasort and DFSIO. They note that clusters formed by Raspberry Pi
have proved to be a viable and economical solution for carrying out tasks involving the
use of big data. Nugroho et al. in [20] also design a parallel computing framework using
Raspberry Pi clusters for IoT services and applications.

In this work, we leverage the use of YARN node labels to categorize the nodes in the
SBC cluster based on their onboard properties. We also re-configure the default scheduling
policies in YARN, such as the FIFO and Capacity schedulers, to improve task scheduling
in the SBC cluster. We conduct extensive experimentation on a 13-node SBC cluster using
Hadoop benchmarks to compare the performance of the proposed configuration policies.
The next section details the proposed scheduling mechanism.

3. Proposed Scheduling Mechanism
3.1. Motivation and Limitations

In the Hadoop framework version 3+, node labels were introduced. Node labels are
a powerful feature that enhances resource management and job scheduling flexibility in
a YARN cluster. Node labels are essentially key-value pairs that allow administrators
to categorize nodes based on their characteristics or intended use. This categorization is
useful for creating logical partitions within the cluster, allowing workloads to be directed
to specific sets of nodes based on their labels. It is pertinent that these characteristics of
nodes within clusters on the edge made with resource-frugal devices would play a pivotal
role in determining the performance of executing concurrent MapReduce tasks.

In [10], the authors observed that the performance of a Raspberry Pi 3B-based Hadoop
cluster was inferior to Ordoid Xu-4 machines primarily due to the frugal nature of the
onboard components on the devices. The RPi-based cluster in particular was more prone to
failure due to lack of memory error frequently hindering the progress of MapReduce tasks.
MapReduce tasks being dropped due to memory limits indicate issues such as inefficient
memory usage within the application or insufficient memory resources allocated to the
cluster. Upon further examination, it became apparent that a native Hadoop setup does not
support concurrent execution of two or more map tasks on a node with only 1 GB of RAM.
On the other hand, the Odriod Xu-4 SBC did not present similar performance bottlenecks
due to memory restrictions. It was able to handle up to two containers per node/device. In
earlier works [5,12,19], the researchers note that the native YARN settings do discern the
limited capabilities of these devices. When the number of containers exceeds two on an SBC
node, it can overwhelm the task queue within the scheduler. This overburdening of tasks
can cause the system to become unresponsive, as it struggles to manage the concurrent
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execution of tasks efficiently. Consequently, the system may reach a point where it becomes
unresponsive to further requests or tasks, leading to a potential halt in job execution. In such
scenarios, users may need to intervene by manually terminating the jobs to alleviate the
strain on the system and restore its functionality. A Raspberry Pi Hadoop node equipped
with 1 GB of RAM is unable to effectively carry out significant data processing tasks that
necessitate simultaneous execution of multiple map tasks.

To this end, we modified the mapreduce.map.memory.mb property in the mapred-site.xml
configuration file to maximize the memory limit to 852 MB. Table 2 shows the Hadoop and
YARN configuration files. This limits the execution on the frugal RPi devices in the cluster
to only one container, ensuring that the application does not crash. A similar observation
is also made by the authors in [3], where the authors run into similar issues with regards
to memory management. To alleviate this restriction, one approach is to increase the
size of the swap partition on the host operating system to maximize the utilization of the
virtual memory; however, this resulted in slower performance due to the significantly slow
read/write speeds on the local storage media (SD cards). Regardless of these improvements,
it is imperative that the physical memory constraint restricts parallelization within the
cluster, effectively throttling the performance due to the frugal nature of the SBC devices.

Table 2. Hadoop YARN configuration properties used for resource-frugal SBC-based clusters.

Mapred-site.xml Value

yarn.app.mapreduce.am.resource.mb 852
mapreduce.map.cpu.vcores 1

mapreduce.reduce.cpu.vcores 1
mapreduce.map.memory.mb 852

mapreduce.reduce.memory.mb 852

YARN-site.xml Value

yarn.nodemanager.resource.memory-mb 1024
yarn.nodemanager.resource.cpu-vcores 1
yarn.scheduler.maximum-allocation-mb 852

yarn.scheduler.maximum-allocation-vcores 8
yarn.nodemanager.vmem-pmem-ratio 2.1

yarn.node-labels.enabled true
yarn.node-labels.fs-store.root-dir hdfs://dir-path

In this section, we define node labels that categorize the onboard capacities of SBC
nodes using a Findex. Using Hadoop node labels, the Findex is passed as a parameter to
the RM, NM, and Application Manager to assign relevant containers to the frugal SBC
node(s). We redefine YARN scheduling policies to adapt to the Findex and proposed
an adaptiveConfig policy for scheduling jobs/tasks. The assignment of containers is
prioritized and placed on frugal nodes within the cluster based on these parameters. This
approach ensures efficient resource utilization and improves the system’s overall efficiency
by adaptively assigning MapReduce tasks according to the heterogeneous capacities of
nodes within the SBC-based cluster.

3.2. Frugality Index and Node Labels

As mentioned earlier in the motivation, the node labeling in Hadoop allows adminis-
trators to categorize and assign nodes with specific labels based on their physical properties,
such as CPU capacity, memory size, or disk space. This technique can help Hadoop’s YARN
framework to allocate tasks more intelligently, ensuring that each task is assigned to a node
that has the appropriate resources to handle it effectively. This strategy is particularly useful
in heterogeneous clusters [21], where nodes may vary significantly in terms of performance
and capability.
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To enable the node labels in YARN, we modify the yarn.node-labels.enabled=true prop-
erty in yarn-site.xml. Furthermore, we define the values of the node labels using a custom
script. These values are “Hi”, “Med”, and “Low”, categorizing the nodes based on their
onboard available resources. Further details can be seen in Table 3. The NM on each node in
the cluster determines the Findex based on the local device/node’s physical characteristics.
The Findex value implicitly is derived from the size of the on-board memory available
on the device. The Findex value is communicated from the NM to the RM along with
the heartbeat messages. This is to reduce the overall communication overhead. The RM
considers the updates along with the scheduling policies to place containers on the various
worker nodes.

Table 3. Frugality Index guideline.

Findex Device CPU pCores Memory Node-Label

4 Raspberry Pi 5 2.4 GHz 4 8 GB Hi
3 Raspberry Pi 4 1.5 GHz 4 4 GB Hi
2 Pine64 Rockpro64 1.8 GHz 6 4 GB Med
2 Odroid Xu4 2.0 GHz 8 2 GB Med
1 Raspberry Pi 3B 1.4 GHz 4 1 GB Low
1 Raspberry Pi 2 900 MHz 4 1 GB Low

3.3. Re-Configuring YARN Heartbeat Messages

The RM in Hadoop YARN determines the resources required for a job based on
the application’s resource requests, the cluster’s available resources, and any configured
scheduling policies. When a user submits a job to the RM, the application specifies its
resource requirements, including CPU cores, memory, and other resources through the
Application Manager. When the AM initiates, it posts a request to the scheduler. Based on
the provided parameters, the scheduler requests ResourceTracker to launch the AM. It finds
a suitable datanode that supports the AM container and assigns it to the application. The
Application Manager launches the AM on the worker node. A datanode executes the NM.
The NM periodically updates the RM to inform about their available resources through a
process called the heartbeat mechanism. The NM periodically sends heartbeat messages to
the RM to indicate their availability and resource status. These heartbeat messages contain
information such as the node’s total memory, CPU cores, available memory, available CPU
cores, and other resource metrics. The frequency of the heartbeat message can be provided in
the YARN configuration using the property yarn.nodemanager.node-labels.resync-interval-ms. We
have set its value to 1 min.

The RM receives these heartbeat messages from all active NMs in the cluster. Based
on its resource allocation decision, the RM communicates with specific NMs to allocate
containers for executing tasks. Each container is launched with the specified resource
allocation, and tasks within the containers begin execution. Throughout the job’s execution,
NMs continue to send periodic heartbeat messages to the RM, providing updates on
container status and resource usage. Figure 2 illustrates the information flow between
various components of the RM and NMs. The Findex values are used by the scheduling
mechanism to determine appropriate resources for containers and assign tasks to frugal
nodes for computation in the cluster.
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3.4. Adaptive Fair Scheduling Scheme

Native YARN offers three distinct scheduling policies: FIFO, Capacity, and Fair. The
FIFO scheduling policy, being the simplest, executes applications in the order of their arrival,
without permitting concurrent execution. Consequently, long-running applications have the
potential to block the execution of shorter jobs that may only require a fraction of the avail-
able resources. The Capacity scheduling policy enables the definition of multiple queues
each assigned with a percentage of cluster resources. Each queue is assured a minimum
resource allocation, facilitating concurrent execution of applications submitted to different
queues. In addition, applications within the same queue may also run concurrently, subject
to the queue policy. The Fair scheduling policy, similar to the Capacity policy, features
queues with minimum resource guarantees. However, instead of statically partitioning
resources, they are dynamically balanced among submitted jobs. These scheduling policies
are set in the Hadoop and YARN configuration properties yarn.scheduler.capacity.maximum-
allocation-mb and yarn.scheduler.capacity.maximum-allocation-vcores. Configuring Hadoop for
launching containers necessitates the user’s insight and expertise.

Inspired by work in [22], we implement an adaptiveConfig policy that interacts with
YARN to obtain workload and cluster status. The configuration parameters are initiated
at the onset of the cluster; YARN reads the job history server to obtain each job’s status
information, such as submission timestamps, resources required, etc. Next, it reads the
yarn-site.xml file to obtain the status of the cluster resources such as maximum available
vcores and memory on the node, Findex values, and the node label. Finally, it accesses the
fair-scheduler.xml file to re-configure the scheduler’s parameters. We modify these files to
implement our adaptiveConfig policy. The Findex is used by the RM to dynamically set
and assign the number of containers while considering the onboard processing power and
memory availability on the node.

As an NM registers with the RM through the heartbeat message, the RM computes
the number of available containers for each worker node based on the container-related
properties defined in the configuration parameters. For an NM executing on a frugal node
with an Findex larger than 1, it will assign only one container to execute on the node.
Alternatively, for an Findex value of 2, up to a maximum of two containers would be
assigned. For larger values of the Findex, the YARN default values set in, allowing more
than two containers to be assigned to the NM.
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The proposed adaptiveConfig scheduling policy enhances the Fair scheduling pol-
icy by facilitating adaptive resource allocation, dynamically adjusting to utilize the re-
sources available on the physical nodes effectively. This approach ensures optimal resource
utilization and enhances the overall efficiency of the system by intelligently allocating
map tasks based on the varying capacities of individual nodes within the heterogeneous
SBC-based cluster.

3.5. Task Locality and Prioritization

The scheduling policy aims to optimize resource utilization, minimize job completion
time, and ensure fairness among users and applications sharing the cluster resources [23].
The inconsistent performance observed in Hadoop applications stems primarily from the
performance gap among heterogeneous SBC nodes, which the native Hadoop framework
fails to address adequately.

Unlike map tasks, there are no specific guidelines for assigning reduce tasks to cluster
nodes [23–28]. Consequently, reduce tasks can be distributed across any node in the cluster,
leading to significant performance discrepancies based on node capabilities. In essence,
assigning reduce tasks to SBC nodes with limited computational power results in prolonged
execution times for Hadoop MapReduce jobs, as map tasks on these nodes cannot fully
leverage data locality.

Hadoop defines three priorities for data locality, namely NODE_LOCAL, RACK_LOCAL,
and OFF_SWITCH [29]. NODE_LOCAL refers to the highest priority level for task schedul-
ing. It means that the Hadoop scheduler tries to assign tasks to nodes where the data
needed for computation is present, resulting in minimal data transfer across the network.
RACK_LOCAL comes next in priority, where tasks are scheduled to nodes in the same
rack as the required data, thus minimizing network traffic compared to off-rack assign-
ments. Finally, OFF_SWITCH refers to the lowest priority level, where tasks are assigned
to any available node regardless of its proximity to the data, resulting in potentially higher
network overhead as data need to be transferred over longer distances. These priorities
aim to optimize data locality and minimize network traffic for improved performance in
Hadoop clusters [22].

In our proposal, the RM and AM are prioritized processes that need to execute on
powerful SBCs with a higher priority. As these processes initiate at the onset of the
cluster establishment, there is a higher probability that these processes would be as-
signed by the adaptiveConfig policy to powerful SBCs. However, the same cannot be
said about application containers that are created to complete a MapReduce task [30]. As
the number of tasks increases, there is no guarantee that the native Hadoop scheduler
will assign fewer containers to a frugal node. It is quite possible that multiple map and
reduce tasks would be assigned to a node hosting and possibly executing multiple con-
tainers on the same node, while other nodes in the cluster may have been assigned fewer
containers or none at all. This uneven distribution of resources is quite common with
native Hadoop.

Taking inspiration from the work presented in [31], the priority for any reduce task
is set to RACK_LOCAL. This approach leverages the distributed nature of MapReduce
processing, enabling efficient utilization of cluster resources and faster job completion times.
This enhances placement or tasks in the clusters improving its overall parallelism. Figure 3
summarizes the proposed changes to the YARN information flow in a heterogeneous frugal
SBC-based cluster.



Computation 2024, 12, 96 11 of 20
Computation 2024, 12, x FOR PEER REVIEW 11 of 20 
 

 

  
Figure 3. Information flow between various components of RM and NM. 

4. Performance Evaluation and Results 
This section presents the experimental evaluation and presents the empirical results. 

4.1. Experimental Setup 
We prepare our heterogenous frugal SBC cluster using 13 SBCs composed of 1 master 

node and 12 worker nodes. The master node is hosted on the best SBC at our disposal, i.e., 
the Raspberry Pi 5 assigned Findex = 4, Node-label-Hi. The worker nodes execute on 3  
Raspberry Pi5 Findex = 4, Node-label-Hi), 3 Raspberry 3B Findex = 1, Node-label-Low), 3  
Odriod Xu4 (Findex = 2, Node-label-Med), and3 Rockpro64 (Findex = 2, Node-label-Med) 
SBCs. Details for these SBCs can be found in Table 1. Each SBC is fitted with a 64 GB SD 
card and is connected to a Gigabit Ethernet. A picture of the Hadoop cluster can be seen 
in Figure 4. 

 
Figure 4. Heterogeneous Hadoop cluster built with frugal SBC devices, including RPi5, RPi3, 
Odroid Xu4, and RockPro64. One of the RPi5 serves as the master while the rest of the SBCs run the 
worker nodes. All the SBCs are connected to a Gigabit Ethernet switch. 

Figure 3. Information flow between various components of RM and NM.

4. Performance Evaluation and Results

This section presents the experimental evaluation and presents the empirical results.

4.1. Experimental Setup

We prepare our heterogenous frugal SBC cluster using 13 SBCs composed of 1 master
node and 12 worker nodes. The master node is hosted on the best SBC at our disposal,
i.e., the Raspberry Pi 5 assigned Findex = 4, Node-label-Hi. The worker nodes execute on
3 × Raspberry Pi5 Findex = 4, Node-label-Hi), 3 × Raspberry 3B Findex = 1, Node-label-Low),
3 × Odriod Xu4 (Findex = 2, Node-label-Med), and 3 × Rockpro64 (Findex = 2, Node-label-Med)
SBCs. Details for these SBCs can be found in Table 1. Each SBC is fitted with a 64 GB
SD card and is connected to a Gigabit Ethernet. A picture of the Hadoop cluster can be
seen in Figure 4.
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On each device, we install a compatible version of Linux Debian, with armbian
23.1 Jammy Gnome on RockPro, Debian Bullseye 11 on Odroid XU4, and RaspberryPi OS
Lite 11 on all Raspberry Pi devices. Each device has Java ARM64 version 8 and Hadoop
version 3.3.6. A 4 GB swap space was reserved on all SBCs during installation. To initialize
the Hadoop cluster, we used the vcores and memory limits provided in Table 2. The default
Hadoop values for these properties always cause memory-related issues in the SBC clusters.
The 4 GB swap space is useful for resource-frugal devices with limited onboard memory
when running containers concurrently.

In this experimental study, we focus on task completion times for various map and
reduce tasks. We also measure the CPU utilization, memory utilization, and network traffic.
To ensure a comprehensive assessment, our evaluation will concentrate on workloads that
are both CPU intensive and I/O intensive. Specifically, we will utilize two standard Hadoop
micro-benchmarks, the WordCount and Terasort programs. WordCount is a CPU-intensive
benchmark that involves counting the occurrences of words in a given dataset. It primarily
stresses the computational capabilities of the system, making it suitable for evaluating
CPU performance. On the other hand, Terasort is an I/O-intensive benchmark that focuses
on sorting large volumes of data. This benchmark heavily exercises the input/output
subsystem of the system, making it ideal for assessing I/O performance.

Through the evaluation of these benchmarks, we aim to evaluate the efficacy of the
proposed changes to the YARN scheduling mechanism compared to the native YARN set-
tings. This assessment involves analyzing how well the system manages tasks demanding
substantial CPU processing and those reliant on intensive input/output operations. By
focusing on these two distinct types of workloads, we can obtain a deeper understanding
of the system’s performance with regard to the placement of containers in the heterogenous
SBC cluster.

Moreover, our evaluation extends to examining the influence of the Findex value/Node-
labels on container placement within the cluster, taking into account the frugality levels
of individual SBC nodes. Additionally, we delve into the consequences of the scheduling
policy outlined in the preceding section, contrasting its effectiveness against the native
Hadoop scheduling policies. This comprehensive experimental investigation aids in unrav-
eling insights into the proposed system’s adaptability to varying computational demands
on frugal SBC-based clusters, thereby facilitating a more comprehensive assessment of its
overall efficiency and efficacy.

4.2. Task Distribution in Native YARN vs. the Proposed Approach

The inherent behavior of the native Hadoop framework lacks discrimination in task
assignment to worker nodes, disregarding their individual computational and memory
capabilities. This indiscriminate allocation approach may inadvertently result in CPU-
intensive tasks, such as RM and AM, being assigned to SBCs with lower performance
capabilities within the cluster.

To comprehensively assess the ramifications of such task distribution, we conduct
a detailed analysis focusing on the impact of heterogeneous node assignment on cluster
performance. Leveraging the Terasort benchmark application, we closely monitor and
evaluate how task distribution patterns influence overall cluster efficiency and resource
utilization. Through this investigation, we aim to gain deeper insights into the dynamics
of task allocation and its implications for workload management within heterogeneous
SBC-based Hadoop clusters.

We establish four fundamental scenarios to delineate native Hadoop’s task distribution,
namely best_cap, worst_cap, best_fifo, and worst_fifo.

• Best Capacity Scenario (best_cap): In this setup, we allocate critical Hadoop
components—the RM, AM, and reduce tasks—to high-performance SBCs. This as-
signment is managed using the default Capacity scheduler, ensuring that these critical
tasks are handled by the most robust machines in the cluster.
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• Worst Capacity Scenario (worst_cap): This scenario represents the opposite approach:
RM, AM, and reduce tasks are allocated to lower-performance SBCs, the least capable
work nodes. We continue using the Capacity scheduler, but this time with a focus
on frugal SBCs. Like the best_cap scenario, the map tasks can be distributed to any
available SBC, following the standard Capacity scheduling policy.

• Best FIFO Scenario (best_fifo): This setup is similar to the best_cap scenario in that
RM, AM, and reduce tasks are assigned to high-performance SBCs. However, the key
difference is that instead of using the Capacity scheduler, the FIFO (First-In-First-Out)
scheduler is used for task allocation. This method assigns tasks in the order they
are submitted.

• Worst FIFO Scenario (worst_fifo): Here, the RM, AM, and reduce tasks are directed to
lower-performance SBCs, akin to the worst_cap scenario, but with a change in schedul-
ing mechanism. The FIFO scheduler replaces the Capacity scheduler, organizing tasks
based on their submission order, even if they are executed on less capable hardware.
As with the best_cap and worst_cap scenarios, map tasks are distributed according to
the default native YARN settings, which allows assignment to any available SBC.

These contrasting configurations in comparison to the proposed mechanism provide
a clear framework for evaluating the impact of task assignment strategies on overall
cluster performance.

Next, we run the Terasort benchmark application with various input data sizes and
vary the number of reduce tasks to observe the time taken to complete the tasks. This
allows us to compare the native Hadoop best_cap, worst_cap, best_fifo, worst_fifo, and the
proposed frugal_conf and compare the execution runtimes.

Figure 5 shows the comparison of Terasort run times for best_cap, worst_cap, best_fifo,
worst_fifo, and the frugal_conf settings. We show the comparison in terms of execution times
for various settings running Terasort on the cluster with chunk sizes of 64 MB and 128 MB.
The impact of the increasing number of reduce tasks can be observed in the Figure 5. For
a single reduce task, the time taken for any size of dataset is the largest for worst_cap. It
must be noted that as the number of reduce tasks increases, the execution time decreases
proportionally; however, for worst_cap, the time increases due to the unavailability of
powerful SBC nodes for reduce tasks. We observe a similar pattern with the worst_fifo policy.
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and 8 GB, and number of reduce tasks = 1, 2, 4, and 8. (a) Chunk size C = 64 MB. (b) Chunk size
C = 128 MB.

On the other hand, all the reduce tasks execute on powerful SBCs for the best_cap and
best_fifo scenarios. As the number of reduce tasks exceeds the number of powerful available
SBCs, i.e., eight reduce tasks, the execution time also increases. We note that this is because
of native capacity scheduling multiple reduce tasks on the same node, causing delay in the
overall execution time. In comparison, the proposed frugal_conf provides faster runtimes
for all dataset sizes and numbers of reduce tasks. The proposed frugal_conf leverages the
availability of the powerful SBCs to execute reduce tasks. Furthermore, as only one reduce
task is allowed to execute on a powerful SBC, this results in a better uniform distribution of
tasks across the cluster.

Figure 6a shows the comparison in terms of ratio of execution times, comparing
frugal_conf with best_cap, worst_cap, best_fifo, and worst_fifo. The proposed frugal_conf
executes on average, 270% and 62% faster than worst_cap and best_cap, respectively, for
chunk size = 64 MB. frugal_conf executes, on average, 192% and 22% faster than worst_fifo
and best_fifo, respectively, for chunk size = 64 MB.
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Figure 6. Comparison of Terasort execution time ratios of frugal_conf vs. best_cap, worst_cap, best_fifo,
and worst_fifo. The data sizes are 1 GB, 2 GB, 4 GB, and 8 GB with number of reduce tasks = 1, 2, 4,
and 8. (a) Chunk size C = 64 MB. (b) Chunk size C = 128 MB.

Figure 6b shows the comparison in terms of ratio of execution time comparing fru-
gal_conf with best_cap, worst_cap, best_fifo, and worst_fifo for chunk size = 128 MB. The
frugal_conf executes, on average, 267% and 53% faster than worst_cap and best_cap, re-
spectively. frugal_conf executes, on average, 136% and 17% faster than worst_fifo and
best_fifo, respectively.

4.3. Effect of adaptiveConfig Scheduling Policy on Task Distribution

To understand the effect of task distribution in the cluster using the Findex and node
labels, we first analyze how the tasks are distributed on a single powerful SBC node. If the
Findex value for an SBC node is 1, it implies that it is allowed to execute only one reduce
task per node. Alternatively, an Findex value of 2 and 4 indicates that the system will assign
up to two or four reduce tasks per SBC node, respectively. In the following experiment,
we create three scenarios where (i) we assign Findex 1 to all nodes in the cluster; this will
ensure that a max of one reduce task would execute on a node. (ii) We assign Findex 2 to all
SBC nodes except for the weaker RPI 3B+ SBCs. This will allow a maximum of two reduce
tasks to be co-located on a single SBC node. Finally, (iii) we assign Findex as presented in
Table 3; this ensures that multiple reduce tasks are co-located on an SBC node.

Next, we execute Terasort and WordCount benchmarks on the cluster for various
datasets of different sizes, 1 GB, 2 GB, 4 GB, and 8 GB. We also provide the number
of reduce tasks to execute the Hadoop job. Figure 7 shows the execution runtimes of
Terasort jobs for the various settings. For each data size, we see a decrease in execution
time as the number of reducers increases from one to eight. This is the expected result of
increased parallelism as more reducers allow for parallel processing of data, resulting in
faster execution times. It is worth noting that the execution time for Scenario 3 is far less
than Scenarios 1 and 2 for various chunk sizes and dataset sizes. This indicates that the
proposed priority, along with Findex, ensures placement of the correct number of reduce
tasks on each SBC node. As the data size increases, we generally observe an increase in
execution time across all configurations. This is expected, as larger datasets require more
processing time.
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For the smaller 1 GB dataset with eight reduce tasks, the Scenario 3 configuration
outperforms the Scenario 2 configuration by 96%. As the dataset size increases, with eight
reduce tasks, the Scenario 3 configuration outperforms the Scenario 2 configuration by
27%. With 4 GB and 8 GB dataset sizes and eight reduce tasks, Scenario 3 is comparatively
18% and 13% better. On average, the Scenario 3 Terasort task executions show the lowest
execution times, indicating that it is the most optimized configuration.

Figure 8 shows the execution runtimes of WordCount jobs for the various settings. As
WordCount is a CPU-intensive application, it stress tests the CPU on the frugal SBC-based
cluster. For larger datasets, e.g., with 8 GB Scenario 1 and Scenario 2, the configurations
were not able to complete the task. Executing these tasks took in excess of 3 h of time, and
hence these were terminated. For Scenario 1, with eight reduce jobs, it was not possible to
complete the task as the policy restricts the cluster to execute multiple reduce tasks on each
node. In some cases, the execution failed, which is attributed to the out-of-memory problem
previously discussed. The Scenario 3 configuration was able to execute WordCount for all
the experimental variations.
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2 GB, 4 GB, and 8 GB with number of reduce tasks = 1, 2, 4, and 8. Chunk size C = 128 MB.

For the 8 GB dataset with four reduce tasks, the Scenario 3 configuration outperforms
the Scenario 2 configuration by 21%. For the 4 GB dataset with one, two, and four reduce
tasks, Scenario 3 performs 32%, 27%, and 22% better, respectively, than Scenario 2. For the
smaller dataset of 2 GB, with one, two, four, and eight reduce tasks, Scenario 3 performs
51%, 38%, 29%, and 22% better, respectively, than Scenario 2. Finally, for the smallest
dataset with 1 GB, with one, two, four, and eight reduce tasks, Scenario 3 performs 59%,
42%, 31%, and 26% better, respectively, than Scenario 2.
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5. Discussion and Future Directions

The concept of SBC-based clusters introduces a frugal approach to resource utilization
in distributed computing environments. These clusters, often composed of devices like
Raspberry Pi and Odroid Xu-4 possess limited processing power and memory compared to
traditional server nodes. The frugality arises from the inherent constraints of these devices,
which can impact their ability to efficiently execute concurrent MapReduce tasks. The study
highlights that the performance of such clusters is notably affected by memory limitations,
with devices like the Raspberry Pi 3B struggling due to their modest 1 GB RAM. This limi-
tation necessitates adjustments in the Hadoop framework to accommodate the constraints
of the SBCs, leading to the proposed changes in the YARN scheduling mechanism. The
proposed changes aim to address the limitations posed by frugal SBC-based clusters. By
introducing an Findex and adaptiveConfig policy, the redesign seeks to optimize resource
allocation and enhance system efficiency. The Findex classifies SBC nodes based on their
processing capacities and memory sizes, providing crucial information for container place-
ment and task scheduling. Additionally, the adaptiveConfig policy dynamically adjusts
resource allocation based on workload and cluster status, ensuring optimal utilization of
available resources. These changes aim to mitigate performance bottlenecks caused by
memory constraints and improve the overall efficiency of SBC-based clusters.

The suggested changes have significant implications for the performance and scal-
ability of SBC-based clusters. By incorporating the Findex and adaptiveConfig policy
into the scheduling mechanism, the clusters can adapt to the heterogeneous capacities of
individual nodes more effectively. This adaptive approach enables better utilization of
resources, mitigating the impact of frugality on cluster performance. Furthermore, the
prioritization of tasks based on data locality and container status enhances parallelism
and reduces job completion times. Overall, the proposed changes facilitate more efficient
and resilient operation of SBC-based clusters, addressing the challenges posed by resource
constraints. The results demonstrate the effectiveness of custom scheduling mechanisms in
optimizing task distribution and improving overall cluster performance in a heterogeneous
frugal SBC environment. By considering individual SBC capabilities through the Findex
and adaptiveConfig policy, the study achieves better resource utilization and reduced task
completion times.

With the emergence of powerful SBCs such as the Raspberry Pi 5, clusters comprised
of these devices can significantly enhance both per-watt and per-dollar efficiency, thereby
bolstering sustainability efforts. These SBCs are renowned for their energy efficiency, con-
suming minimal power while delivering respectable computational capabilities. In the
experimental setup described, each SBC within the cluster is outfitted with a 64 GB SD
card and connected via Gigabit Ethernet, ensuring minimal power consumption compared
to conventional server configurations. The utilization of a frugal SBC cluster architecture
optimizes resource utilization by employing only necessary components, thereby reducing
overall energy consumption. Moreover, the adoption of frugal SBCs aligns with sustain-
ability objectives by fostering more efficient resource utilization. By repurposing these
low-power devices for cluster computing, organizations can prolong their lifespan, curbing
electronic waste and promoting a more sustainable IT ecosystem. The cluster’s focus on
optimizing resource usage, exemplified by tailored configurations such as adjusting the
number of reduce tasks per SBC node based on its Findex underscores the commitment to
efficient resource allocation and sustainability.

The experimental setup’s inclusion of a heterogeneous cluster comprising various SBC
models allows for cost optimization by selecting models based on their price–performance
ratio and specific workload demands. The cost of our cluster setup was USD 966 for the
13 devices, along with networking essentials (cables, Gigabit Switch) and SD card storage
media. We noted that the cluster required approximately 76 W of power during WordCount
execution. The overall power consumption ranged between 69 W and 78 W for the various
experiments. To analyze the cluster performance in terms of performance-per watt and
per dollar, we built a similar setup on a PC with an Intel i7-12700KF @ 12-Core processor
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with 16 GB RAM and a 500 GB SSD. The power consumption for similar Terasort and
WordCount jobs ranged between 112 W and 138 W. We also noted that the task execution
times on PC were 31% and 56% faster for Terasort and WordCount jobs compared to the
SBC-based cluster. The performance of the SBC-based cluster does not match that of a PC
in terms of cost-effectiveness per dollar or per watt, mainly due to the fact that the previous
generation RPi 3B nodes never reached the level of desktop PCs in either metric. Their
overall performance remains notably lower compared to the latest generation RPi 5 nodes.
At the moment, the cost of an RPi5 is approx. USD 80, and it is reasonable to anticipate that
the prices for these devices will become lower in the near future. Heterogeneous SBC-based
clusters comprised of the latest RPi 5 or upcoming generations of RPi nodes may present
promising opportunities for enhancing big data processing performance metrics.

6. Conclusions

This experimental study underscores the efficacy of heterogeneous frugal SBC-based
cluster for sustainable big data processing. The performance of resource-frugal nodes in the
cluster is notably affected by memory limitations. These limitations necessitate adjustments
in the Hadoop framework to accommodate the constraints. By introducing an Findex and
adaptiveConfig policy, the redesign seeks to optimize resource allocation and enhance
system efficiency. The Findex, together with Hadoop/YARN node-labels, serves as a crucial
metric for categorizing SBC nodes based on their capabilities. By considering factors such
as CPU speed and memory size, the Frugality Index leveraging the Hadoop node labels
facilitates optimized resource allocation, ensuring that tasks are assigned to nodes best
suited to handle them. The adaptiveConfig policy enhances the flexibility of the scheduler
by dynamically adjusting resource allocation based on workload and cluster conditions.
By optimizing resource allocation in real time, the policy enables SBC-based clusters to
adapt to changing workloads and maintain high performance levels. Results show that
by achieving faster execution times compared to traditional Hadoop configurations while
consuming minimal power, the cluster maximizes computational output while minimizing
energy expenditure. Further optimizations, such as the proposed scheduling mechanisms
and parameter tuning, contribute to enhanced performance efficiency, enabling the cluster
to achieve superior performance metrics relative to resource consumption. To evaluate
the performance of the proposed work, we generated workloads of various sizes using
two setting of chunk size 64 and 128 MB. Using the Hadoop benchmarks WordCount and
Terasort, we compared the frugal_conf against four settings of Hadoop native FIFO and
capacity schedulers, namely best_cap, worst_cap, best_fifo, and worst_fifo. The frugal_conf
setting demonstrates significant performance improvements, executing 56% and 22% faster
than the best_cap and best_fifo settings with a chunk size of 64 MB. It is also 53% and 17%
faster than the best_cap and best_fifo settings with a chunk size of 128 MB.

The use of frugal SBCs aligns with sustainability goals by utilizing resources more
efficiently. Instead of relying on high-power, energy-hungry servers, the cluster leverages
multiple low-power SBCs, which collectively provide adequate computational capacity. By
repurposing frugal SBCs for cluster computing, organizations can extend the lifespan of
these devices, reducing electronic waste and contributing to a more sustainable IT ecosys-
tem. The focus on optimizing resource usage, demonstrated by tailoring configurations
such as the number of reduce tasks per SBC node based on its Findex ensures efficient
utilization of computational resources, further enhancing sustainability.
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