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Abstract: Using sunlight to convert CO2 into solar fuel is an ideal solution to both global warming
and the energy crisis. The construction of direct Z-scheme heterojunctions is an effective method
to overcome the shortcomings of single-component or conventional heterogeneous photocatalysts
for photocatalytic CO2 (carbon dioxide) reduction. In this work, a composite photocatalyst of
narrow-gap SnS2 and stable oxide Bi2WO6 were prepared by a simple hydrothermal method. The
combination of Bi2WO6 and SnS2 narrows the bandgap, thereby broadening the absorption edge and
increasing the absorption intensity of visible light. Photoluminescence, transient photocurrent, and
electrochemical impedance showed that the coupling of SnS2 and Bi2WO6 enhanced the efficiency
of photogenerated charge separation. The experimental results show that the electron transfer in
the Z-scheme heterojunction of SnS2/Bi2WO6 enables the CO2 reduction reactions to take place.
The photocatalytic reduction of CO2 is carried out in pure water phase without electron donor,
and the products are only methanol and ethanol. By constructing a Z-scheme heterojunction, the
photocatalytic activity of the SnS2/Bi2WO6 composite was improved to 3.3 times that of pure SnS2.

Keywords: Bi2WO6; SnS2; photocatalytic CO2 reduction; charge separation; liquid phase products

1. Introduction

The fossil fuels dilemma has become a serious issue that must be confronted and
tried to solve, especially for the demand of industrial development in today’s society [1–3].
Inspired by natural photosynthesis, the conversion of CO2 into renewable energy driven
by light is widely claimed to be the most promising and environmentally friendly way to
deal with the global greenhouse effect [4–6]. Although a great deal of effort has been made
to transform CO2 into valuable chemicals, it is rarely reported that the reduction products
are alcohol products with high selectivity [5,7]. More importantly, C2 hydrocarbons are
hard to form because it is difficult for C-C coupling reaction to occur and more electrons
and protons are needed to participate in the reaction. Another important issue is that
semiconductor catalysts suffer from the sluggish charge separation efficiency ascribing to
the fast recombination of photogenerated electrons and holes during the photoreaction
process [8–10].

In order to improve the efficiency of charge separation as well as the durability of
photocatalysts, a great many measures have been taken including adding cocatalysts, man-
ufacturing defects or doping elements in the bulk materials, forming heterojunction, and
so on [11–14]. The construction of heterojunction can not only improve the light absorp-
tion capacity but also enhance the separation efficiency of photogenerated charge. For
example, Guo et al. constructed a Z-scheme NiTiO3/g-C3N4 (NT/GCN) photocatalyst
by a facile calcination method. In the absence of any sacrificial agent and cocatalyst, the
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optimized NT/GCN40 can obtain the highest CH3OH yield (13.74 µmol·g−1·h−1), which
is almost 3.29 times that of g-C3N4 [15]. Wang et al. designed and fabricated 0D/2D direct
Z-scheme heterojunction involving carbonized polymer dots and Bi4O5Br2 nanosheets
(CPDs/Bi4O5Br2), which effectively facilitate migration and separation efficiency of pho-
togenerated carriers and retain more negative electron reduction potential of CPDs and
more positive hole oxidation potential of Bi4O5Br2. The 8 wt% CPDs/Bi4O5Br2 exhibits
the maximal CO production of 132.42 µmol h−1g−1 under Xe lamp irradiation, 5.43-fold
higher than that of Bi4O5Br2 nanosheets [16].

SnS2, as a narrow bandgap semiconductor, is nontoxic and has a bandgap value of
2.2–2.4 eV, which can absorb visible light efficiently. It has a CdI2-type layered structure,
and the force between the layers is the weak van der Waals force. SnS2 has good chemical
thermal stability and oxidation resistance in acidic and neutral solutions, so it has been
favored by researchers as a new type of visible light response photocatalyst in recent
years [17]. Wu et al. successfully fabricated the SnS-SnS2 Z-scheme heterostructure with
nanosheet framework by post-annealing in a specified atmosphere to partially convert the
SnS2 matrix into SnS. The converted SnS possesses CO2 adsorption sites with significantly
reduced activation energy, which can be used to drive the rate-determining step for efficient
CO2 conversion. The final Z-scheme SnS-SnS2 heterostructure enhances the photocatalytic
activity of CO2 conversion to C2 and C3 hydrocarbons [18]. Wu et al. constructed a
novel direct Z-scheme g-C3N4/SnS2 heterojunction by in situ deposition of SnS2 quantum
dots onto the g-C3N4 surface by a simple one-step hydrothermal method. The transfer
of electrons from g-C3N4 to SnS2 results in the formation of an intra-interface electric
field (IEF) between the two semiconductors. Compared with g-C3N4 and SnS2 alone, the
g-C3N4/SnS2 hybrid showed better performance of photocatalytic CO2 reduction [19].
Bi2WO6 is a semiconductor multi-element oxide with the bandgap of 2.75 eV, which has
a certain response under visible light. Bi2WO6 is a direct bandgap semiconductor, the
photogenerated electrons and holes generated by illumination have a high probability of
direct recombination. So, the photon quantum efficiency is low. In addition, the Bi2WO6
material also has a small specific surface area, and the photogenerated charges are easily
recombined in the bulk phase, which limits its practical application. According to the
energy band matching theory, the energy band positions of SnS2 and Bi2WO6 match each
other, and the combination of SnS2 and Bi2WO6 can effectively reduce the recombination
of photogenerated electron-hole pairs, thereby achieving the purpose of improving the
photocatalytic efficiency. Here, we constructed stable Bi2WO6 oxide semiconductors and
SnS2 narrow-bandgap semiconductors as Z-scheme heterojunctions to improve the separa-
tion efficiency of photogenerated electrons and holes, thereby enhancing the photocatalytic
activity. We also expanded the application of SnS2/Bi2WO6 in photocatalytic reduction of
CO2 and obtained 100% alcohol.

2. Materials and Methods
2.1. Sample Preparation
2.1.1. Preparation of Flower-like SnS2

SnCl4·5H2O (0.525 g) was dissolved into ethylene glycol (80 mL), and then CH4N2S
(thiourea, 0.609 g) was added. The above solution was stirred until dissolved, and dispersed
uniformly by ultrasonic wave. Then the mixture was transferred into 100 mL of autoclave
and the temperature was kept at 180 ◦C for 18 h. Finally, the product was washed with
ethanol and distilled water.

2.1.2. Preparation of SnS2/Bi2WO6

Bi(NO3)3·5H2O (0.485 g) and Na2WO4·2H2O (0.165 g) were dissolved in 10 mL of
ethylene glycol solution, respectively. After dissolving, the two solutions were mixed and
dispersed by ultrasonic treatment. SnS2 was dissolved in ethylene glycol (60 mL) solution
and sonicated for 30 min, then slowly added dropwise to the above solution. The obtained
yellow mixture was transferred into a 100 mL of autoclave, and the temperature was kept
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at 160 ◦C for 24 h. The product was washed three times with ethanol and distilled water,
respectively. The mass ratio of SnS2: Bi2WO6 was 0.025:1, 0.05:1, 0.1:1, and 0.15:1, thus
the composites were named as SnS2/Bi2WO6-2.5, SnS2/Bi2WO6-5, SnS2/Bi2WO6-10, and
SnS2/Bi2WO6-15, respectively.

2.2. Characterization

X-ray diffraction (XRD) patterns of prepared samples were determined on a D/max-
3 X-ray diffractometer (Bruker, Germany) using Cu Kα radiation (λ = 0.154056 Å). The
detailed surface morphology of catalysts was characterized by employing a Nova Nano
SEM450 (FEI, Hillsboro, OR, USA) field-emission scanning electron microscope (SEM)
and transmission electron microscopy (TEM) images were obtained with JEOL JEM-2100F
(Hitachi, Japan) operated at 200 kV. X-ray photoelectron spectroscopy (XPS) analysis was
carried out by a Kratos Axis Ultra DLD spectrometer (VERTEX 70, Bruker, Germany)
with a monochromatic Al Kα X-ray source. The property about light absorption of cata-
lysts were determined with a UV-vis spectrophotometer (Hitachi U-3900H, Tokyo, Japan).
Photoluminescence (PL) spectra were obtained using a fluorescence spectrophotometer
(Hitachi F-7000, Tokyo, Japan). Transient spectra of the testing samples were recorded with
time-resolved fluorescence spectroscopy (Edinburgh, Scotland, FS5).

2.3. Photoelectrochemical Measurements

The transient photocurrent response, EIS and Mott–Schottky curves were carried out
on the electrochemical workstation (CHI660E, Shanghai) in a standard three-electrode
system with the Pt mesh as the counter electrode, the Ag/AgCl (saturated KCl) as the
reference electrode, and the sample loaded photoelectrode as the working electrode in
0.1 M Na2SO4 aqueous solution (electrolyte solution) at room temperature. The distance
between the counter electrode and the working electrode is 2 cm. Indium tin oxide (ITO)
with a 1 cm× 1 cm area photocatalyst was used as the working electrode. The photocurrent
measurement of the photocatalyst is measured by several switching cycles of light irradiated
by a 300 W xenon lamp (using a 420 nm cut-off filter).

The photoelectrode in this system is prepared as follows: 10 mg of powder sample
was dispersed in 0.2 mL of a mixed solution of ethanol and H2O (H2O:ethanol = 1:1 v/v),
then 5 µL of Nafion solution was added, and the mixture was sonicated for several minutes.
Finally, the obtained slurry was coated on an ITO glass substrate in an area of 1 × 1 cm.

2.4. Photocatalytic CO2 Reduction

Light-driven reduction of CO2 was performed in a closed 200 mL quartz glass reactor
containing 50 mL of ultrapure water and 0.05 g of photocatalyst at atmospheric pressure. A
300 W Xe arc lamp (PLS-SXE300, Beijing, China) with a 420 nm cut-off filter was positioned
5 cm above the reactor as a visible light source. Before irradiation, high purity CO2 gas
(99.995%) was bubbled into above suspension for 30 min to expel air and dissolved oxygen.
During the whole catalytic process, CO2 gas was bubbled into the solution at a rate of
50 mL per minute. Since the efficiency in photocatalytic reduction of CO2 is dependent
on both the solubility in water and reaction temperature, 4 ◦C is optimal for this reaction
by considering the trade-off between solubility and temperature. The yields of obtained
alcohols were determined by sampling the suspension (1 mL) every hour and filtering
it with a specific membrane to remove the solid catalysts. The aimed products such as
methanol and ethanol were quantitatively monitored with Agilent Technologies 7890A gas
chromatography (Shanghai China, FID detector, DB-WAX column). The detailed diagram
of the catalytic reaction device is shown in Figure S1.

3. Results
3.1. Characterization of Materials

Figure 1 shows the XRD patterns of pure SnS2, Bi2WO6 and the composite materials
with different mass ratios. The pattern of unmodified Bi2WO6 suggests all the diffraction
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peaks are indexed to the orthorhombic phase (JCPDS No. 39-0256). The main diffraction
peaks at 28.3◦, 32.8◦, 47.0◦, and 55.9◦ correspond to the crystal planes of (131), (200), (260),
and (133), respectively. Bi2WO6 has a larger half-width value, and it can be inferred that
Bi2WO6 has a small grain size, which can provide more reactive sites. The pure phase
of SnS2 mainly has six diffraction peaks, which are consistent with the (001), (100), (101),
(102), (110), and (111) planes of the standard card (No. 23-0677). With the increase of the
molar ratio of SnS2, the diffraction peaks of (101) and (111) crystal planes of SnS2 gradually
appeared. Since the diffraction peak of SnS2 in the composite material is not obvious, the
amount of SnS2 was increased to 50%, and the obtained XRD patterns are shown in Figure
S2. The diffraction peaks of the material with 50% content of SnS2 become relatively obvious,
especially the diffraction peaks around 15◦ and 50◦. This is due to the different degree
of crystallization of materials SnS2 and Bi2WO6, which leads to the obvious difference in
the intensity of their diffraction peaks. When the two are combined, the diffraction peaks
belonging to SnS2 will be easily masked by Bi2WO6, especially the peaks near the strong
diffraction peaks at 28.3◦ and 32.6◦. Therefore, this leads to masking of the two strongest
diffraction peaks near these positions in SnS2. The half-peak width of (131) composite is
slightly larger than that of pure Bi2WO6 (Figure 1). This phenomenon shows that during
the hydrothermal process, due to the interaction between the two materials, the single
material will be less likely to aggregate, resulting in a slight decrease in the crystallinity
of the material [20]. The BET test in Figure S3 shows that the specific surface areas of
Bi2WO6 and SnS2/Bi2WO6-10 are 25.70 and 37.13 m2/g, respectively, which indicates that
the specific surface area of the composite is significantly increased, while the pore size is
slightly reduced.
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Figure 1. XRD patterns of prepared materials.

The flower-like SnS2 spheres were prepared by hydrothermal method, as shown in
Figure 2a, the diameter distribution ranges from 2 µm to 5 µm. According to Figure 2b, it
can be seen more clearly that the spherical SnS2 is formed by self-assembly with regular
two-dimensional nanosheets. Moreover, the reaction process may be due to the adsorption
of ethylene glycol on the precursors of SnS2, then the intermolecular force as well as
crystal growth orientation make the nanosheets self-assemble into the flower-like spheres.
The thickness of nanosheets is about 50 nm, besides there are large pores between the
nanosheets, which is conducive to the adsorption of CO2. This unique porous structure can
provide a large number of catalytic active sites and charge transport channels, therefore,
the flower-like SnS2 has higher photocatalytic activity than that of SnS2 synthesized by
traditional method. Figure 2c,d shows the SEM images of the composite SnS2/Bi2WO6-10
obtained by the hydrothermal reaction, while the morphology of nanospheres has no
obvious change because of the high dispersion of Bi2WO6. As can be seen from the TEM
image (Figure 2e), the SnS2 spheres consist of staggered nanosheets. Two different lattice
distances of 0.278 and 0.315 nm can be observed in the high-resolution TEM (HRTEM)
image (Figure 2f), corresponding to the (101) plane of SnS2 and the (131) plane of Bi2WO6,
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respectively. Figure S4 also shows the HRTEM patterns of SnS2/Bi2WO6-10. In addition,
it can be seen from the EDS spectrum of SnS2/Bi2WO6-10 (Figure S5) that there are Bi, W,
O, Sn, and S elements in the sample, which indicates that the synthesis method does not
introduce other impurity elements, and the ratio of SnS2 to Bi2WO6 is approximately close
to the theoretical value (0.1:1).
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As shown in Figure 3a, an obvious redshift occurs from SnS2 to SnS2/Bi2WO6-10,
which is beneficial to absorb visible light. The combination of SnS2 and Bi2WO6 makes
the bandgap narrow, thus broadening the absorption edges and improving the absorption
intensity of visible light. The bandgaps are determined using the Tauc/Davis–Mott model
described by the equation: (αhν)1/n = A(hν − Eg) [21]. The exponent n denotes the natural
properties of the material, and the value of n is 0.5 for the direct bandgap. The fitting results
(Figure 3b) suggest that the bandgaps of SnS2, Bi2WO6, and SnS2/Bi2WO6-10 are 2.14, 2.75,
and 2.26 eV, respectively.

XPS studies were carried out to investigate the surface elemental compositions and
chemical states. As depicted in Figure S6, the XPS survey spectrum of SnS2/Bi2WO6-10
indicates that elements of Bi, W, O, Sn, and S exist in the sample. The Bi 4f spectrum
of SnS2/Bi2WO6-10 can be deconvoluted into two peaks with spin orbits of Bi 4f7/2 and
Bi 4f5/2, and the binding energies locate at 158.74 and 164.07 eV assigning to the Bi3+

species in Bi2WO6 lattice [22]. The peaks located at 34.95 and 37.12 eV are assigned to
W 4f7/2 and W 4f5/2 (Figure 4b), respectively, indicating the oxidation state of W6+ in
SnS2/Bi2WO6-10 composite [23]. Figure 4c displays the high-resolution spectra of Sn 3d,
and two characteristic peaks at 486.77 and 495.19 eV ascribe to the inner electrons of Sn 3d5/2
and Sn 3d3/2 in SnS2, demonstrating the feature of Sn4+ species in SnS2/Bi2WO6-10 [24].
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The peaks located at 161.67 and 162.53 eV are assigned to S 2p3/2 and S 2p1/2 (Figure 4d),
respectively, indicating the oxidation state of S2− in SnS2/Bi2WO6-10 composite. According
to the high-resolution XPS spectra, the binding energies of Bi 4f and W 4f move to the
direction of lower binding energy in SnS2/Bi2WO6-10, while the peaks of Sn 3d shift to the
direction of larger binding energy. The result suggests that the electron density of Bi and W
increases, while the electron density of Sn is reduced, which indicates that there is a strong
interaction between Bi2WO6 and SnS2, giving rise to the formation of heterojunction.
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3.2. Improvement of Photogenerated Charge Separation

Photoluminescence (PL) is an effective as well as simple method to evaluate the proba-
bility of photogenerated electron-hole recombination. Figure 5a shows the fluorescence
spectra of SnS2, Bi2WO6, and SnS2/Bi2WO6-10 composite catalysts with different mass
ratios, SnS2 and SnS2/Bi2WO6 with different ratios having similar main peak positions
under 300 nm laser excitation. Compared with SnS2 and Bi2WO6 material, the PL intensity
of composite materials is significantly reduced due to suppressing the recombination of
electron-hole pairs. Therefore, more photoexcited electrons can participate in the reac-
tion of CO2 reduction. In addition, the time-resolved PL decay spectra of Bi2WO6 and
SnS2/Bi2WO6-10 are shown in Figure 5b, and the average lifetimes are 1.75 and 0.78 ns,
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respectively. This indicates that the addition of SnS2 will endow the material with effec-
tive charge separation, proving the formation of Z-scheme heterojunction between SnS2
and Bi2WO6.
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The photocurrent response spectra were tested using a three-electrode system in the
electrolyte of 0.5 M Na2SO4. As can be seen in Figure 5c, in the continuous on-off conversion
of visible light, the samples show a relatively stable photocurrent curve, indicating the
photogenerated electrons are effectively captured by the photoelectrochemical system. The
catalyst with the largest photocurrent is SnS2/Bi2WO6-10, which is about four times that of
pure phase SnS2. The composite material of SnS2/Bi2WO6 can effectively accelerate the
migration of electrons and prolong the lifetime of photogenerated electrons, thus benefitting
for improving the efficiency of photocatalytic reduction of CO2. Electrochemical impedance
spectroscopy (EIS) is presented in Figure 5d, the smaller the radius, the faster the charge
transfer on the surface of electrode [25]. From the photocurrent response and EIS spectra,
we can see that the Z-scheme heterojunction interface formed by an appropriate amount of
SnS2 and Bi2WO6 will facilitate the separation and transport of photogenerated charges.
However, when the content of SnS2 is further increased, the sheet-like morphology of SnS2
will cover Bi2WO6 nanoparticles, resulting in poor light absorption. In addition, SnS2 is
prone to recombination of photogenerated electrons and holes due to its narrow bandgap.
Therefore, the photocurrent of SnS2/Bi2WO6-15 is lower than that of SnS2/Bi2WO6-10.
While the impedance of SnS2/Bi2WO6-15 is higher than that of SnS2/Bi2WO6-10. It can
be seen that the radius of SnS2/Bi2WO6-10 in all materials is the smallest, which confirms
that SnS2/Bi2WO6-10 possesses an interface that can accelerate the charge transfer, in
accordance with the results of PL and photocurrent. At the same time, the Z-scheme
heterojunction interface formed with an appropriate amount of SnS2 and Bi2WO6 will
facilitate the separation and transport of photogenerated charges. However, when the
content of SnS2 is further increased, the sheet-like morphology of SnS2 will cover Bi2WO6
nanoparticles, resulting in poor light absorption. In addition, SnS2 is prone to recombination
of photogenerated electrons and holes due to its narrow bandgap.
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3.3. Photochemical Reduction of CO2

Photoreduction of CO2 was performed in a closed 200 mL quartz glass reactor con-
taining 50 mL of ultrapure water saturated with CO2 and 50 mg of prepared photocatalysts
under the irradiation of visible light. After 4 h of photoreaction, only methanol and ethanol
were detected as the final products. As presented in Figure 6, with the increase of SnS2
in the composites, the yields of methanol and ethanol first increase and then decrease.
When the amount of SnS2 reaches 10%, the composite photocatalyst shows the highest
catalytic activity. The production rate of methanol and ethanol is 50.2 µmol g−1 and 19.7
µmol g−1 in 4 h respectively, which is nearly 3.3 times that of pure SnS2, according to the
number of transferred electrons. The yields of methanol and ethanol are shown in Table 1.
Moreover, the photocatalytic performance of SnS2/Bi2WO6-10 is superior to that of similar
photocatalysts reported in other literature (Table S1). The photocatalytic performance starts
to decline with further increase in the amount of SnS2, this conclusion is in line with the
results of PL, photocurrent, and EIS. When the amount of SnS2 reaches a certain level, the
catalytic ability drops suddenly, which implies that the excessive SnS2 is not conducive to
the timely transfer of photogenerated electrons to Bi2WO6 through Z-scheme heterojunc-
tion. In addition, it is worth mentioning that the conduction band (CB) reduction potential
of Bi2WO6 is theoretically insufficient to directly reduce CO2 to alcohols. However, after
CO2 is dissolved into water to form CO3

2− and other species, the reduction potential is
sufficient to reduce carbonate species to alcohols [26].
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Table 1. 4 h yield of methanol and ethanol.

Sample Yield of Methanol
(µmol g−1)

Yield of Ethanol
(µmol g−1)

Bi2WO6 14.11 9.00
SnS2 10.55 8.18

SnS2/Bi2WO6-2.5 24.97 14.76
SnS2/Bi2WO6-5 32.18 13.94

SnS2/Bi2WO6-10 50.20 19.70
SnS2/Bi2WO6-15 37.58 16.82

The control experiments showed that the products of methanol and ethanol were not
detected in the dark or without catalyst, indicating that the light source and catalyst are
essential factors for photochemical reduction of CO2. No carbon-containing product was
detected when CO2 was replaced by N2, suggesting CO2 is also a necessary condition for
CO2 photosplitting. In other words, the element of C in the products is derived from the re-
actant CO2. In order to investigate the stability of SnS2/Bi2WO6-10, the cycling experiment
was carried out. At the end of each cycle, the reaction suspension was centrifuged, after
washing with distilled water for several times, it was dried in vacuum at 60 ◦C for next
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run. As shown in Figure S7, the catalytic performance of SnS2/Bi2WO6-10 shows a slight
decrease after four consecutive cycles. Figure S8 is the XRD pattern of SnS2/Bi2WO6-10
after four cycles, which is consistent with fresh one, further proving its good stability.

Figure 7a shows the Mott–Schottky plots of flower-like SnS2 and Bi2WO6 at voltages
from −1.0 to 1.0 V. Classified according to the conductive properties of semiconductors,
flower-shaped spherical SnS2 and Bi2WO6 nanoparticle materials belong to n-type semi-
conductors. The flat band potential (Vfb) of SnS2 is −0.44 V vs. SCE (saturated calomel
electrode), which is equivalent to −0.20 V vs. NHE (normal hydrogen electrode), so the
CB potential (VCB) of flower-shaped spherical SnS2 can be calculated to be −0.40 V. The
Vfb of Bi2WO6 is −0.32 V vs. SCE, which is equivalent to −0.080 V vs. NHE, so the VCB
of Bi2WO6 can be calculated to be -0.280 V. According to the photocatalytic theory [27],
the potentials for photocatalytic reduction of CO2 to methanol and ethanol are −0.38 V
and −0.33 V (vs. NHE, pH = 7.00), respectively. Therefore, the Z-scheme heterojunction
composed of SnS2 and Bi2WO6 has sufficient reduction ability to reduce CO2 to methanol
and ethanol. In addition, the surface photovoltage test (Figure 7b) further shows that
the SnS2/Bi2WO6-10 has higher surface photovoltage after photoexcitation, thus more
photogenerated electrons will transfer to the surface active sites, and the photoreduction
efficiency of CO2 is significantly improved compared to pure phase of SnS2 and Bi2WO6.
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Based on the above experimental results and discussion, the possible reaction mech-
anism is as follows: electrons (e−) in the valence bands (VBs) of SnS2 and Bi2WO6 are
excited and transfer to the CBs under sunlight irradiation, thus leaving the same number
of holes (h+) in the VBs of SnS2 and Bi2WO6. Then, the photogenerated electrons on the
CB of Bi2WO6 are transferred to the VB of SnS2, subsequently the electrons are excited to
the CB of SnS2. Therefore, the photogenerated electrons and holes of the SnS2/Bi2WO6
photocatalyst are effectively separated by constructing Z-scheme heterojunction. Based on
Equations (1)–(3) [28], the electrons on the CB of SnS2 have enough reduction ability to re-
duce the CO2 to methanol and ethanol. This is further demonstrated by Pt photodeposition
experiment on SnS2/Bi2WO6-10 (Figure S9). In addition, the Bi2WO6 sphere is composed
of intricate nanosheets, so some intermediates (·CH3, ·OCH3) may not be converted into
methanol immediately, and the dimerization reaction takes place, and finally ethanol can
be formed (Figure 8).

CO2 + 6H+ + 6e− → CH3OH + H2O − 0.38 V (1)

2CO2 + 12H+ + 12e− → C2H5OH + H2O − 0.33 V (2)

H2O + 4h+ → O2 + 4H+ 0.82 V (3)
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4. Conclusions

Here, flower-like SnS2 microspheres were successfully prepared by hydrothermal
method, and SnS2/Bi2WO6 composites with different mass ratios were synthesized. Among
them, SnS2/Bi2WO6-10 exhibited the highest catalytic activity in the photochemical re-
duction of CO2 without sacrificial agent, and only methanol and ethanol were detected as
reduction products. The improvement of catalytic activity is attributed to the formation of
Z-scheme heterojunction between SnS2 and Bi2WO6. Under sunlight irradiation, the photo-
generated electrons in the CB of Bi2WO6 will be transferred to the VB of SnS2. Therefore,
the photogenerated electrons and holes of the SnS2/Bi2WO6 photocatalyst are effectively
separated, which effectively inhibits the recombination of photogenerated electron-hole
pairs and expands the light absorption range. Finally, the yield of CO2 photoreduction to
alcohol products was 3.3 times higher than that of SnS2 in pure water.
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distribution profiles of Bi2WO6 and SnS2/Bi2WO6-10. Figure S4: HRTEM spectra of SnS2/Bi2WO6-
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