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Abstract: Hepatocellular carcinoma (HCC) is still a main health concern around the world, with a
rising incidence and high mortality rate. The tumor-promoting components of the tumor microenvi-
ronment (TME) play a vital role in the development and metastasis of HCC. TME-targeted therapies
have recently drawn increasing interest in the treatment of HCC. However, the short medication
retention time in TME limits the efficiency of TME modulating strategies. The nanoparticles can
be elaborately designed as needed to specifically target the tumor-promoting components in TME.
In this regard, the use of nanomedicine to modulate TME components by delivering drugs with
protection and prolonged circulation time in a spatiotemporal manner has shown promising potential.
In this review, we briefly introduce the obstacles of TME and highlight the updated information
on nanoparticles that modulate these obstacles. Furthermore, the present challenges and future
prospects of TME modulating nanomedicines will be briefly discussed.
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1. Introduction

Hepatocellular carcinoma (HCC) remains the most commonly diagnosed type of
primary liver cancer [1]. According to the global cancer statistics 2020, HCC ranks sixth in
terms of incidence and third in terms of mortality rates [1]. HCC accounts for ~80–90% of
patients diagnosed with cirrhosis [2]. Therefore, the high prevalence of liver dysfunction
in HCC patients limits the application of different treatments [2,3]. For HCC patients
in early-stage and with well-preserved liver function, surgical approaches, including
resection, ablation, and liver transplantation, are the possible curative options. However,
high recurrence rates after resection locally continue to be a major obstacle [4]. Only a
small subgroup (~15%) of patients are eligible for surgery, with a 5-year survival rate of
33–50% [5]. For the majority of patients found in the advanced stage, loco-regional and
systemic therapies are the treatments of choice [6]. Sorafenib and Lenvatinib are the first
Food and Drug Administration (FDA)-approved first-line therapies for advanced and
unresectable HCC [7]. Unfortunately, because of overexpression of the multidrug resistance
genes, HCC is inherently a chemotherapy-resistant tumor [8,9].

The management of cancer has changed dramatically since the rapid development of
systemic treatments with immune therapies [10]. Immunotherapy, which employs immune
cells to boost natural defenses to assault cancer cells, has achieved significant advances
over the decades [11]. Nivolumab, the anti-PD-1 monoclonal antibody, has been approved
by FDA for HCC immunotherapy [12]. In the CheckMate 040 study, nivolumab treat-
ment showed durable responses and hopeful long-term survival in sorafenib-experienced
patients with advanced HCC [13]. Though several major types of immunotherapies, in-
cluding immune checkpoint inhibitors, cancer vaccines, adoptive cell transfer, etc., show
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durable anti-tumor effects, the limited response rate is one of the major obstacles in appli-
cation [14,15], which may attribute to “immunological ignorance” and immune escape in
the tumor microenvironment (TME) [16]. The overall objective response rate of nivolumab
was approximately 15–20% [17]. Therefore, for better stimulating anti-tumor immunity, it
is vital to comprehend and modify the microenvironment of HCC.

Until recently, pharmacological efforts to find new medications have primarily focused
on oncogenic signaling networks, but the TME, where cancers originate, has just recently
emerged as a prominent target for anti-cancer therapies. When cancer cells invade and
alter homeostasis, the TME is formed. The cells of the immune system (e.g., T lympho-
cytes, dendritic cells (DCs), macrophages and neutrophils, and non-immune components
(e.g., extracellular matrix (ECM), fibroblasts, and endothelial cells of vessels) form the
TME, which immediately surrounds cancer cells. The TME not only provides a protective
“ecological niche” for tumor cells to thrive, progress, and metastasize but also affects the
responses to therapy [18,19]. Previous studies have demonstrated that immunosuppres-
sive TME facilitates cancer evasion from immunosurveillance [20–22]. With the improved
understanding of TME, modulation of TME from an immunosuppressive one toward an
immune-promoting one provides a new direction in cancer immunotherapy. Reprogram-
ming or re-educating tumor-promoting and suppressive TME may increase anti-tumor
immunity by recognizing antigens by the reawakened immune system.

The TME plays an important role in the efficiency of HCC immunotherapy, which
attracts increasing attention and drives TME-based research. Due to the impact of renal
clearance and biological barriers, the majority of drugs cannot successfully reach the tumor
site [23]. Therefore, nanoparticles are utilized as potential vehicles for medicine delivery
for their function of prolonging retention time and targeting agents [24]. On the one hand,
the enhanced permeability and retention (EPR) effect facilitates tumor accumulation of
nanomedicines [25]. Besides passive medication delivery via nanoparticles, nanoparticles
can also be modified to further increase their compatibility and efficacy. For instance,
mannose-modified nanoparticles can actively target the mannose receptors on tumor-
associated macrophages (TAM) which “re-educated” the TME, thus improving therapeutic
efficacy [26]. Various innovative nanoparticle-based drugs targeting components of TME of
HCC have emerged, with significant advances in both lab and clinic experiments [27–30].
This review mainly focuses on applications of different nanoparticles to modulate and
reprogram components in TME that are major obstacles to HCC therapy. We first introduce
the tumor-promoting components of TME and then discuss the recent achievements of TME
modulating nanomedicines, which offer a critical perspective on the future development of
TME modulating nanomedicines in HCC.

2. Major Constituents of the Tumor Microenvironment

The TME of HCC is a dynamic system, which consists of various types of cells (includ-
ing cancer cells, immune cells, stromal cells, etc.), ECM, vasculature, and other secreted
molecules [31,32]. Below, we describe the major components that are major obstacles to
HCC therapy.

2.1. Abnormal Vasculature of TME

Like other solid tumors, the growth and progression of HCC will induce tumor an-
giogenesis in order to supply oxygen and nutrients during this period. Unlike normal
vessels, tumor vessels are aberrant in structure and function, which impair blood perfusion
in tumors, spatially and temporally [33]. The resulting hypoxia not only promotes tumor
progression and metastasis by changing the gene expression of tumor cells but confers
resistance to therapy [34,35], thereby creating a vicious cycle. The enhanced interstitial
fluid pressure and inadequate perfusion caused by these leaky blood vessels increase
the number of immunosuppressive cell types and decrease the delivery of therapeutic
medications to the tumor [36]. HCC treatment can involve angiogenesis as a target. Major
pro-angiogenic factors include but are not limited to vascular endothelial growth factor
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(VEGF)-A, basic fibroblast growth factor (bFGF), and interleukin-8 (IL-8) [37]. Accumulat-
ing evidence indicates that increased VEGF levels in HCC are related to tumor angiogenesis
and progression [38].

2.2. Cancer-Associated Fibroblasts and ECM

Cancer-associated fibroblasts (CAFs) constitute a dominant cellular component of
the TME, which act as key players in the development of tumors and cancer cell evasion
of therapies [39]. CAFs release a variety of ECM proteins (such as type I-V collagen and
fibronectin), paracrine factors, cytokines, and vasculogenic mimicry, all of which aid in the
start of HCC with a malignant character [40]. CAFs secrete angiogenic factors, including
VEGF, bFGF, angiopoietin-1(ANG-1), and ANG-2, which induce neovascularization [41].
ECM is mainly produced by CAFs, which act as a scaffold in the tumor [42]. ECM under-
goes extensive remodeling during cancer progression with characteristics of stiffness and
degradation [43]. ECM stiffness is a physical barrier to the efficient absorption or transport
of drugs to deeper regions of the tumor [44].

2.3. Immunosuppressive Immune Cells in TME

Tumor-associated immune cells can both assist and impede therapeutic efficacy, and
their activation status and location within the TME can vary. Representative immunosup-
pressive immune cells are the focus of this essay.

2.3.1. Myeloid-Derived Suppressor Cells

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells with het-
erogeneity and immunosuppressive properties that are important components of the
suppressive TME. MDSCs can be divided into two subsets: monocytic (M-MDSC) and
polymorphonuclear (PMN-MDSC). M-MDSCs are more prevalent in tumors and have
greater suppressive activity than PMN-MDSCs [45]. MDSCs induce immunosuppressive
cells, regulatory T cells (Tregs), and M2-polarized TAM (M2-TAMs) or inhibited immune
effector cells (CD8+ T cells, DCs, NK cells, etc.) by a variety of methods [46]. Infection with
the hepatitis B virus (HBV) is the most common risk factor for HCC, accounting for around
50–80% of all cases [47]. Importantly, MDSCs play a crucial role in maintaining immunotol-
erance to high levels of HBV replication [48]. Considerable evidence that has implicated the
abundance of MDSCs could be employed as an independent prognostic and predictor in
human HCC [49]. Infiltrated MDSCs in HCC overexpressed two enzymes: ARG1 and iNOS,
which deplete the essential amino acid L-arginin for T cells [50,51]. Therefore, MDSCs
could be a promising target for reversing the immunotolerant state in HCC.

2.3.2. Regulatory T Cells

A subgroup of CD4+ T cells called Tregs is crucial for preserving immunological
immune homeostasis and preventing excessive autoimmunity deleterious to the host [52].
In healthy conditions there is an equilibrium between Tregs and T helper 17 cells to keep
peripheral tolerance [53]. However, this balance is disturbed in TME. The number of Tregs
increases in TME of HCC patients, which links to compromised immune responses [54]. To
mediate their suppressive functions, Tregs secrete inhibitory cytokines (such as transform-
ing growth factor-β (TGF-β), IL-10, etc.), promote cytolysis, and “metabolic disruption” of
the effector T cells, and inhibit the maturation of DCs [55].

2.3.3. M2-Polarized Macrophages

TAMs are another important component of immune cells in TME, which are broadly
classified into M1-TAMs (tumor-suppressing subtype) and M2-TAMs (tumor-promoting
subtype) [56]. As opposed to M1-TAMs, M2-TAMs, alternatively activated by TH2 cy-
tokines IL-4/IL-13 [57], facilitate HCC progression by producing mediators that support
tumor cell proliferation and immune escape [58,59]. According to several studies, HCC-
derived exosomes can activate macrophages and exhibit the M2 phenotype, thereby promot-
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ing HCC development [60–62]. In theory, reprograming TAMs from M2 to M1 phenotype
or eliminating present TAMs may be a considerable therapeutic approach to arouse their
anti-tumor efficacy.

2.4. Crosstalk in the Dynamic TME

The TME of HCC is a dynamic network and complex connections affect the growth
of HCC and hinder the immune system’s ability to fight it by promoting the activation
of immune cells with immunosuppressive qualities (Figure 1). For example, the hypoxia
induced by abnormal vasculature drives tumor and stromal secretion of pro-angiogenic
factors (hypoxia-inducible factor (HIF), VEGF, insulin-like growth factor-2 (IFG-2), etc.) [63].
Most immune cell types have their functions directly or indirectly modulated by hypoxia,
which promotes the growth of tumors. IL-10 and interferon-γ (IFN-γ) produced by MDSDs
affect Treg induction, while Tregs can, in turn, control the proliferation and function
of MDSCs [64]. The CAFs can induce M2-TAMs via secretion of IL-6 and granulocyte-
macrophage colony-stimulating factor (GM-CSF) [65]. Therefore, improvements in our
knowledge of the local microenvironment of a growing tumor may present greater options
for precise drug delivery.
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HCC induce tumor abnormal vasculature and hypoxia, which negatively impacts the infiltration
of immune cells and impairs host immunity. Immune suppressive cell types in the TME (MDSC,
regulatory Tregs, and M2-TAM) secrete factors that establish immune tolerance to block cancer
cell destruction. HCC: hepatocellular carcinoma; TME: tumor microenvironment; CAFs: cancer-
associated fibroblasts; ECM: extracellular matrix; TAM: tumor-associated macrophages; MDSC:
myeloid-derived suppressor cells; Tregs: regulatory T cells; GM-CSF: granulocyte-macrophage colony-
stimulating factor; IL-6: interleukin-6; TGF-β: transforming growth factor-β; IFN-γ: Interferon-γ;
HIF: hypoxia-inducible factor; VEGF: vascular endothelial growth factor; IFG-2: insulin-like growth
factor-2; ANG-1: angiopoietin-1.

3. Nanomedicine-Based Strategies for TME Modulation

Nanotechnology offers a novel opportunity to deliver medicine to the site of the tu-
mor via passive or active targeting ways. In passive targeting, the therapeutic substance
is incorporated into a nanoparticle that passively travels to the target organ without a
ligand. To increase the preferential accumulation of the drug at the targeted site, active
targeting through the conjugation of receptor-specific ligands is a promising approach [66].
Compared with normal cells, some molecules and proteins are upregulated on the surface
of HCC cells, such as asialoglycoprotein receptor, gycyrrhizin/glycyrrhetinic acid recep-
tor [67], transferrin receptor [68], folate receptors [69], CD44 [70], and so on. Thus, their
ligands can be used to decorate nanoparticles for active targeting. For example, folic acid
(FA) can bind to folate receptors on cancer cells with high specificity. In vitro and in vivo
data showed that the functional nanodroplets with FA enhance selective accumulation
when targeting Hepa1–6 cells more than non-targeting nanodroplets [71]. Another study
designed a type of FA-modified Fe3O4 nanoparticles to specifically co-deliver anti-tumor
drugs to HCC [72].

A variety of nanomaterials, including polymeric nanoparticles, liposomes, and metal
nanoparticles [73], have gained a lot of attention in potentiating cancer therapies, especially
in cancer immunotherapy [74–76]. It is noteworthy that parameters such as shape, surface
functionalization, and surface charge would have remarkable effects on drug delivery ki-
netics and biodistribution [77]. Pegylated liposomal formulation Doxil® showed promising
activity and low cardiotoxicity compared with doxorubicin (DOX) in metastatic breast
cancer [74]. Compared with free DOX, DOX-loaded liposomes significantly increased the
uptake of DOX by HCC cells. DOX-loaded liposomes robustly enhanced mild ablation
therapy in HCC and represented a viable nanoparticle-based therapeutic approach for
HCC treatment [78]. Cubosomes, a type of lyotropic liquid crystalline lipid nanoparticles,
are an emerging class of lipid-based nanoparticles. Recently, Pramanik, A. et al. developed
Affimer-tagged cubosomes loaded with the anti-cancer drug copper acetylacetonate as a
colorectal cancer therapeutic [75], which showed a higher survival rate than the control
groups. A recent study revealed that compared with negatively charged PEG-stabilized
polymeric nanoparticles, positive ones were better suited for HCC [76]. Furthermore,
another study revealed the ability of metal-based ZnS@BSA nanoclusters to facilitate anti-
tumor immunotherapy for HCC [79].

Cancer immunotherapy has undergone a revolution over the past decades. The ap-
plication of nanomedicine has made significant progress in overcoming the constraints
of immunological tolerance created by clinic-approved immunotherapies. With the ad-
vancement of nanotechnology, an increasing number of intelligent nanomaterials have
been designed to re-mode the TME to improve the efficacy of anti-tumor therapies [80].
Since the first nano-drug was approved by the FDA in 1995 (Doxil®) [81], more researchers
have an increasing interest in exploring novel nanomedicines targeting non-tumoral cells
of TME [82], which held great promise in treating primary and metastatic tumors. Hence,
in this section, we will review the nanomedicine-based strategies for TME modulation in
HCC (Table 1).
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3.1. Anti-Angiogenesis Nanotherapy

In response to the low level of oxygen, cancer cells promote the angiogenesis of tumors
by an imbalance between pro-and anti-angiogenic factors [33]. Through neovascularization,
more delivery of oxygen and nutrients promote tumor proliferation [63]. However, the
rapid and uncontrolled growth of tumors causes more severe hypoxia thus creating a
vicious cycle. Additionally, because of anatomical and functional vascular abnormalities,
therapeutic drug delivery are strongly impaired [83]. So, modulating tumor vessels might
be a viable approach to increase the effectiveness of tumor treatment.

Anti-angiogenic therapy is widely accepted and used in treating HCC [84]. In fact,
most currently approved first- and second-line therapies for advanced HCC target an-
giogenic pathways, in which the VEGF/VEGF receptor (VEGFR) signaling pathway has
been validated as a therapeutic target in HCC [85]. Though sorafenib and Lenvatinib exert
anti-angiogenic and antiproliferative effects are the first-line treatment options, the drugs
are rarely delivered at high concentrations to reach the cancerous tissues. Nanoparticles, as
an effective platform for drug delivery, can overcome the adverse side effects of systemic
chemotherapeutic administration by improving their pharmacokinetics and accumulation
in tumor sites [86,87].

Nanomedicines can be delivered to tumor sites by active and/or passive targeting. In
passive targeting, nanovectors are deposed within the TME due to the leaky vasculature
and impaired lymphatic drainage [88]. Recently, a nanoassemblie based on biodegrad-
able dendritic polymers poly(amidoamine)-poly(γ-benzyl-L-Glutamate)-b-D-α-tocopheryl
polyethylene glycol 1000 succinate (PAM-PBLG-b-TPGS) to carry sorafenib have been
developed. Under physiological conditions, the nanoassemblie releases a small portion
of sorafenib, which indicates its characteristic stability [89]. Compared with the free so-
rafenib, the nanoassemblie induces higher therapy efficiency of HCC in both vitro and vivo,
which may be attributed to the high accumulation of nanoparticles in HCC. In addition
to anti-angiogenic drug delivery, down-regulating the production of VEGF is another
nano-therapeutic strategy against angiogenesis in the HCC. Despite the great therapeutic
potential of siRNA, the rapid degradation by nucleases and poor internalization by cancer
cells restrict their application [90]. Thus, Han, L. et al. developed oral polymeric nanopar-
ticles based on trimethyl chitosan-cysteine (GTC) conjugate to effectively deliver VEGF
small interfering RNA (siVEGF) and survivin short hairpin RNA-expression pDNA (iSur-
pDNA) [91]. According to the ELISA assay, GTC nanoparticles can effectively silence VEGF
with a reduction of 70.2%. Zheng, et al. have developed an ASGPR-targeting nanovector
that delivers sorafenib and siVEGF simultaneously to enhance the targeting ability of the
nanodrug delivery system and significantly induce cytotoxicity of three different HCC
cell lines [92], which showed the high anti-tumor efficiency as a potential nanovector for
targeted delivery to HCC (Figure 2).

Aside from VEGF inhibitors, vascular disruption agents (VDAs) are another type of
medicine that can electively disrupt established tumor blood vessels causing necrosis in
the center of HCC due to a lack of blood supply. As a representative VDA, combretastatin
A4-phosphate (CA4P) has entered phase III clinical trials [93]. Wang, Y. et al. designed
a pH-sensitive nanoparticle based on N-urocanyl pullulan (URPA) loaded with the anti-
angiogenic drug combretastatin A4 (CA4) and cytotoxic drugs methotrexate (MTX) [94].
The experiments demonstrated that CA4/MTX-URPA exhibited significant inhibitory ef-
fects on tumor angiogenesis and growth. However, the use of CA4P frequently upregulates
VEGF expression, which limits its application [95]. This disadvantage might be addressed
when VDAs were combined with VEGF/VEGFR2 inhibitors which can inhibit the activity
of VEGF in response to CA4P, momentarily normalizing the tumor vasculature. Bao, X.
et al. designed poly (L-glutamic acid)-graft-methoxy poly (ethylene glycol) containing CA4
(CA4-NPs), and investigated the effectiveness of CA4-NPs together with VEGF/VEGFR2
inhibitor DC101 in improving anti-PD-1 therapy in an H22 tumor model [96]. Immunofluo-
rescent images of the tumors showed that CA4-NP + DC101 co-treatment could normalize
tumor vasculature, enhance tumor pericyte coverage, enhance tumor blood vessel perfu-
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sion, and overcome tumor hypoxia. Meanwhile, combining CA4-NP with DC101 raised
the proportion of intra-tumoral CD8+ T cells, which significantly improved the treatment
efficacy of anti-PD-1 in HCC.
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Moreover, nanoparticles can simultaneously deliver anti-angiogenic agents and other
drugs to achieve their spatiotemporal cooperation in tumors, improving the efficacy of
cancer treatment. Chang et al. developed a tumor-targeted multifunctional nanoparticle
MnO2 and a shell composed of lipids and poly(lactic-co-glycolic) acid (PLGA) loaded with
sorafenib. These multifunctional nanoplatforms co-deliver sorafenib and MnO2 for oxygen
production to overcome hypoxia-induced drug resistance [97]. Since the favorable drug
delivery system is expected to selectively deliver drug payloads in tumor sites and be time-
release controlled, different stimulus-responsive nanoparticles, releasing drugs triggered
by various external or internal stimuli, are tailored [98]. Zhang et al. designed a pH-
sensitive nanoparticle for co-delivering the pro-apoptotic drug DOX and anti-angiogenic
drug curcumin [99]. This nanoplatform promoted a spike in drug release in the acid TME.
Curcumin inhibits the expression of VEGFR-1, VEGFR-2, VEGFR-3, and epidermal growth
factor receptors [100]. Meanwhile, curcumin suppresses the main caspase pathway and
activates the main caspase-independent pathway to reduce the adverse effects associated
with doxorubicin [101]. Compared with chemotherapy alone, combining treatment with
anti-angiogenic medications can enhance the therapeutic efficiency synergistically.

Anti-angiogenic therapy, on the other hand, must address a number of concerns.
Firstly, new targets for anti-angiogenic therapy are needed. To date, the majority of anti-
angiogenic drugs have targeted VEGF/VEGFR signaling pathways in tumor endothelial
cells. However, tumor endothelial cells are heterogeneous [102]. Therefore, more in-
vestigation is necessary to explore new targets for anti-angiogenic therapy that increase
angiogenesis capability. Moreover, achieving efficient and accurate delivery of nanocar-
rier to tumor sites remains a stumbling block in nanomedicine. For the application of
nanomedicine in HCC, circulation, stability, degradability, and the balance between side
effects and curative efficacy must all be carefully studied.

3.2. Nanomedicines Designed to Overcome Tumor Physiological Barrier

Current studies aim to regulate the ECM in two ways: degradation and stiffness.
The disruption of the balance between degradation and stiffening is contributed to tu-
mor growth and progression [103]. ECM stiffness can be targeted by reprogramming
CAFs and blocking the TGF-β signal pathway [43]. Matrix metalloproteinase (MMP) in-
hibitors can be used to suppress ECM degradation [104]. For example, Liang, S. et al.
constructed a stroma modulation nanosystem based on PEG–PLGA nanospheres [105]. The
immunohistochemistry images showed that ECM formation collagen fibers were signifi-
cantly reduced, via inhibiting TGF-β signaling. The regulation of the tumor ECM greatly
enhanced the penetration of nanospheres and facilitated further tumor therapy. HCC is
frequently accompanied by marked fibrosis [106]. Mycophenolic acid, the active metabolite
of mycophenolate mofetil, exhibits a powerful antifibrotic activity [107]. Yang, Z. et al.
designed nanoparticles loaded with mycophenolate mofetil based on 1, 2-distearoyl-sn-
glycero-3-phosphoethanolamine-N-poly (ethylene glycol) (MMF-LA@DSPE-PEG) target
CAFs [108] (Figure 3). It was shown that the number of CAFs accumulated in tumors
was remarkably reduced, as the expression levels of proteins associated with CAF, such
as α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP), and collagen IV,
were significantly decreased. In mouse models bearing HCC xenograft, mycophenolate
mofetil-loaded nanoparticles significantly suppressed fibrotic as well as tumor progression.

In addition to regulating ECM stiffness, some researchers have focused on MMPs as
a chemotherapy target in the HCC. MMPs are zinc-dependent endopeptidases that are
responsible for degrading basement membrane and various proteins in EMC. According
to unambiguous evidence, the release and activation of MMPs facilitate the migration
and infiltration of the HCC cells through the damaged basement membrane [109,110].
Moreover, co-workers reported “two-in-one” nanofiber systems containing an anti-tumor
drug (DOX) and an MMP inhibitor hexapeptide (KGFRWR) (DOX-KGFRWR) [111]. After
administration, the initial liquid DOX-KGFRWR transitioned into nanofibers in the tumor
sites, contributing to the inhibition of MPP and antiproliferative effect on HCC. As the
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results showed, DOX-KGFRWR enhanced the local concentration in the HCC and exerted
a synergistic inhibiting effect on HCC cells (SMMC7721) migration. DOX-KGFRWR not
only suppressed tumor growth in situ but decreased the number of metastatic nodules.
On the other hand, Yeow et al. verified that specific ECM depletion is a viable strategy for
boosting the accumulation and uptake of nanoparticles in poorly perfused malignancies
such as HCC [112]. According to their results, the lectin-staining in HCC treated with ECM
depletion was significantly higher than with PBS, which improved blood vessel function
and perfusion in HCC. Notably, nanocarrier itself benefits from ECM depletion therapy.
Decreasing the amount of ECM in advance induced significantly higher nanoparticle
accumulation in HCC. So, the combination of nanoparticles and ECM depletion might be
an ideal option. Based on the above hypothesis, Luo, J. et al. developed a chondroitin
sulfate (CSN) modified lipid nanoparticles co-delivery, an ECM depletion drug (retinoic
acid, RA), and a chemotherapy drug (DOX) (DOX + RA-CSNs) [113]. The nanoparticle
delivery system DOX + RA-CSNs for the Golgi apparatus-specific delivery inhibited the
production of type I collagen, which complements the anti-tumor effects of DOX loaded
within the nanoparticles. Importantly, the collapse of the ECM barrier greatly boosted the
accumulation of DOX + RA-CSNs in HCC and improved the uptake of DOX and RA in
HCC cells.
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3.3. Nanomedicine for Immunosuppressive Cells Inhibition
3.3.1. MDSCs Regulating Nanomedicine

The recruited MDSCs in TME act as a major obstacle for immunotherapy, which
plays an important role in immune escape. The following steps have been proposed for
therapeutic targeting of MDSCs: (1) interfering with their production by regulation of
myelopoiesis, (2) promoting MDSCs differentiation into mature fully mature myeloid cells,
(3) eliminating MDSCs, and (4) suppressing their immunosuppressive function.

The chemotherapeutic drug gemcitabine was able to selectively reduce the majority of
s MDSCs in tumor-bearing animals while having no effect on macrophages, CD4+/CD8+ T
cells, B cells, or NK cells [114]. To encapsulate Gem derivatives, Suzuki, E. et al. designed a
lipid-coated calcium phosphate (LCP) nanocarrier which could effectively deplete MDSCs
in the B16F10 mouse melanoma model. Plebanek, M.P. et al. designed high-density
lipoprotein-like nanocarriers, with a strong affinity to scavenger receptor type B expressed
by MDSCs, to suppress the function of MDSCs [115]. For instance, Lai, C. et al. designed
folate (FA) modified chitosan nanoparticles loaded with mouse interferon-γ-inducible
protein-10 (mIP-10) plasmid (FA-chitosan/mIP-10) which could efficiently attract and
activate T cells, B cells and NK cells with an increase in the number of MDSCs [116]
on HCC tumor models. Therefore, Hu, Z. et al. combined FA-chitosan/mIP-10 with
DC/tumor fusion vaccine to improve the immunosuppressive TME and enhance anti-
cancer efficiency [117]. The results showed that compared with the administration of
FA-chitosan/mIP-10 alone, the growth of implanted HCC tumors was effectively inhibited
upon the treatment with both FA-chitosan/mIP-10 and DC/tumor fusion vaccine. The
results suggested that DC/tumor fusion vaccine, together with FA-chitosan/mIP-10, greatly
increased anti-tumor immune responses which inhibited the recruitment of MDSCs. In
comparison to other malignancies, however, a few researchers have looked at the regulatory
influence of nanoparticles on MDSCs in HCC. At present, MDSCs were generally regulated
by combining other immune cell therapy. Further studies targeting MDSCs specifically are
necessary due to the importance of MDSCs in HCC progression.

3.3.2. T Cell-Modulating Nanoparticles

T cells are crucial components of the adaptive immune system that help to defend
against pathogens like viruses, bacteria, and cancers. T cells are classified into three
categories based on their functions: helper T lymphocytes (HTLs), Tregs, and cytotoxic
T lymphocytes (CTLs). The presence of a large number of Treg cells in the TME, as well
as a low CD8+ T cells to Treg cells ratio, is linked to poor prognosis, suggesting that Treg
cells block tumor antigen-specific T cell immune responses [118]. Treg cell elimination or
modulation of its activities may provide potential immunotherapies. In view of the vital
key of T cells in cancer immunotherapy, we look at nanoparticles that control T cell viability
in the following section.

IL-2, which is recognized as a T cell growth factor to enhance memory T cell responses
and regulate T cell maintenance, is the first FDA-approved immunotherapy for human
cancer [119]. Treg cells that express the transcription factor Foxp3 play an important role in
immune tolerance and autoimmunity prevention and a low dose of IL-2 has been proven
to boost Tregs and improve their suppressive abilities [120]. Tregs consume IL-2 primarily
through high-affinity IL-2 receptors (CD25), which limit the amount of IL-2 available for
effector T cell proliferation and activation. Therefore, injection of a sufficient dose of IL-2
can neutralize Tregs suppressive abilities. In order to obtain sufficient exposure at tumor
sites and induce tumor suppression with decreasing side effects, several investigations have
focused on nanocarrier-based IL-2 application. Wu, J. et al. developed an N, N, N-trimethyl
chitosan (TMC) based nanocarrier to realize co-delivery DOX and recombinant human
IL-2 (FTCD/rhIL-2) which increased the anti-cancer therapeutic benefits with toxicity
reduced [121]. These nanoparticles could suppress tumor progression through apopto-
sis induced by DOX and enhance anti-cancer immunity by rhIL-2. The nanocomplexes
FTCD/rhIL-2 could promote humoral and cellular immunity by activating the vitality
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of T, B lymphocytes, and NK cells. The in vivo investigations in an HCC model have
revealed that FTCD/rhIL-2 exhibited stronger anti-tumor efficacy than DOX or rhIL-2,
respectively. In addition to administrating IL-2 protein directly, delivery of immunostimu-
latory IL-2–encoding plasmid DNA (Pdna) can also remodel the immunosuppressive TME
of HCC. Huang, K.-W. et al. developed tumor-targeted lipid-dendrimer-calcium-phosphate
nanoparticles (TT-LDCP) loaded with siRNA silencing immune checkpoint ligand PD-L1
gene and Pdna upregulating expression of the immunostimulating cytokine IL-2 [122]
(Figure 4). Confocal microscopy detection of fluorescence intensity showed that TT-LDCP
nanoparticles could efficiently deliver siRNA and Pdna into two HCC cell lines (murine
HCA-1 and human Hep3B) with effective gene transfection. Experiments showed that
TT-LDCP nanoparticles that co-delivered PD-L1 siRNA and IL-2 Pdna could reverse the
immunosuppressive TME of HCC by increasing tumoral infiltration CD8+ T cells and
promote the maturation of tumor-infiltrating DCs.
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Figure 4. Schematic representation of the mechanism of immunogene therapy by TT-LDCP NPs
containing siRNA against the immune checkpoint PD-L1 and Pdna encoding the immunostimulating
cytokine IL-2. Active tumor targeting was achieved through the addition of the HCC-targeted SP94
peptide to the surface of the NPs.

The thymine-capped PAMAM dendrimer/CaP complexes achieved highly efficient
gene transfection efficacy by enhancing the nuclear delivery of the Pdna. Furthermore,
thymine-capped PAMAM dendrimers stimulate the STING pathway and serve as an
adjuvant to promote the maturation of intra-tumoral DCs. Efficient tumor-targeted co-
delivery of PD-L1 siRNA and IL-2 Pdna achieves tumor-specific expression of IL-2 and
down-regulation of PD-L1, increases infiltration and activation of CD8+ T cells in HCC, and
induces a strong tumor-suppressive effect in HCC in synergy with a vaccine. CaP, calcium
phosphate; TIDC, tumor-infiltrating dendritic cell; TT-LDCP NPs, tumor-targeted lipid-
dendrimer-calcium-phosphate NPs; IFN-γ, interferon-γ. (Copyright © 2020 The Authors,
some rights reserved; exclusive licensee American Association for the Advancement of
Science. http://dx.doi.org/10.1126/sciadv.aax5032).

IL-12 is another potent cytokine in provoking anti-tumor immune responses [123].
Li, J. et al. newly created CD8 and Glypican-3 antibodies modified PLGA nanoparticles
loaded with IL-12 [123]. Cell counting revealed that compared with other groups, the
proliferation of CD8+ T cells was more effective in the group treated with the targeted
immune nanoparticles (TINPs). TINPs are attached precisely to the two target cells (CD8+

T cells and HepG-2 cells) to form T cell-HepG-2 cell clusters to induce robust immune
responses. Moreover, compared to soluble IL-12, the expression of CD107a, which was a

http://dx.doi.org/10.1126/sciadv.aax5032
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degranulation marker and a predictor of T lymphocytes’ ability to lyse tumor cells, was
5-fold higher when treated with TINPs.

The metabolism in tumors differs from the normal tissues from which they develop,
indicating that metabolic pathways may make effective targets for cancer therapy [124].
Accelerated glycolysis of a tumor, known as the “Warburg effect”, leads to increased
lactate production [125]. Lactate, which drives cancer cells, has been demonstrated to
strongly inhibited the activation of T cells [126,127]. 2-Deoxy-D-glucose (2DG), a hexokinase
inhibitor, can interrupt glycolysis [128]. Sasaki, K. et al. designed 2DG-encapsulated PLGA
nanoparticles (2DG-PLGA-NPs) to improve the delivery efficiency of 2DG to HCC [129]. It
was found that 2DG-PLGA-NPs may boost T-cell trafficking in the TME by reducing the
generation of lactate by tumor cells and increase the production of IFN-γ and the uptake of
glucose by CD8+ T cells.

3.3.3. TAM Modulating Nanoparticles

In view of the key role of macrophages in cancer immunity, current therapies tar-
geting TAMs utilize four strategies: (1) restricting macrophage recruitment, (2) depleting
TAMs, (3) re-educating TAMs, and (4) blocking the CD47-signal regulatory protein alpha
(SIRPα) pathway.

Several studies have proven that hypoxia induced by sorafenib could upregulate the
expression of stromal-derived factor 1α (SDF-1α) and its receptor, C-X-C receptor type
4 (CXCR4) in HCC [130,131]. AMD3100, a CXCR4 inhibitor, could suppress cancer cell
proliferation and M2-TAM polarization by blocking SDF1α/CXCR4 pathway [130]. Gao,
D. et al. contrasted AMD3100 modified lipid-coated PLGA nanoparticles with sorafenib-
containing (ADOPSor-NPs) [132]. These ADOPSor-NPs delivered sorafenib and AMD3100
into HCC, triggered tumor apoptosis, prevented the infiltration of TAMs, and overcame
the acquired sorafenib resistance. In the orthotopic HCC mice model, ADOPSor-NPs
effectively suppressed primary HCC development and metastasis and thus improved
overall survival. Li, G. et al. prepared a nanoliposome loaded a sphingolipid metabolite
C6-ceramide (LipC6). In liver tumor-bearing mice, LipC6 administration decreased the
quantity of TAMs and their capacity to inhibit the anti-tumor immune response [133].

Apart from decreasing TAMs infiltration, another strategy is to re-educate TAMs. In
response to changes in the TME during tumor progression, the TAMs go through a shift
of polarized phenotypes from M1 to M2. The macrophage, on the other hand, retains the
ability for plasticity, including the capacity to transition between M1/M2 status in response
to microenvironmental signals. A number of studies have looked into the applications of
nanoparticles to modulate TAM polarization from an immune-suppressive phenotype to an
immune-promoting one [134]. Wang, T. et al. created twin-like core-shell nanoparticles: SF
loaded cationic lipid-based nanoparticles (CLN) coated with O-Carboxymethyl-chitosan
(CMCS) (CMCS/SF-CLN) and mannose-modified IMD-0354 (a TAM re-polarization agents)
loaded CLN coated with CMCS (M-IMD-CLN) [135]. To improve tumor-localized chemoim-
munotherapy, CMCS/SF-CLN and CMCS/M-IMD-CLN could simultaneously target can-
cer cells and TAM separately via SF and mannose on the surface of CLN. Flow cytometry
assay showed that the M1/M2 ratio of CMCS/M-IMD-CLN was ~2.5-fold higher than the
PBS group, which indicated enhanced polarization. Immunogenic cytokines IFN-γ and
IL-12 secreted by M1-TAM were higher than those in CMCS/SF-CLN. Moreover, the ad-
ministration of CMCS/M-IMD-CLN normalized abnormal tumor blood vessels induced by
CMCS/SF-CLN. These findings revealed that CMCS/M-IMD-CLN considerably improved
the immunosuppression caused by CMCS/SF-CLN via M2-TAM polarization. In order
to deliver siRNA to M2-TAM selectively, Kaps, L. et al. prepared α-mannosyl modified
cationic nanohydrogel particles (ManNP) loaded with siRNA [136]. ManNP specifically tar-
geted M2-TAMs with no organ or cellular toxicity, indicting them as promising nanocarriers
for macrophage repolarization in HCC.

Hypoxia is frequent in HCC, which leads to an inhibitory TME, such as macrophage
recruitment and polarization. In other words, improving hypoxia contributes to a reduc-
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tion in the amounts of TAMs as well as in transit pro-tumor M2-TAM into anti-tumor
M1-TAM [137]. Dai, X. et al. synthesized oxygen microcapsules based on polydopamine
nanoparticles to improve the hypoxia microenvironment in HCC [138]. The ratio of TAMs
to total lymphocytes in the TME of radiation + oxygen microcapsules group showed a
significant drop of 55.8% when compared with the PBS group, indicating the suppressed
TAMs recruitment. Meanwhile, radiotherapy combined with oxygen microcapsules repro-
gramed M2-TAMs towards an M1-type phenotype. In detail, the ratio of M1/M2 in the
radiotherapy + oxygen microcapsules group was 33-fold higher than in the PBS group.

The binding of the SPIRα on macrophages to CD47, a “don’t eat me” signal on cancer
cells, protects cancer cells from being phagocytosed. Thus, blocking the CD47-SIRPα
pathway can enhance the phagocytosis of macrophages. Comparetti, E.J. et al. reported
that plasma membrane-derived nanostructures (MNPs), co-delivery siRNA (inactivation of
the proto-oncogene c-MYC), and the immune adjuvant monophosphoryl lipid A (MPLA)
(MNPs-MPLA-siRNA) [139]. The prepared MNPs-MPLA-siRNA downregulated CD47
and PD-L1 expression on Hep-G2 cells and upregulated expression of classical activation
markers on macrophages, such as CD64, CD80, CD83, and CD86 (Table 1).

Table 1. Nanomedicine-based strategies for TME modulation in HCC.

Target NP Size (nm) Mechanism Animal Model Cell Lines Ref

Anti-
angiogenesis

encapsulating
sorafenib with

PAM-PBLG-b-TPGS
118.3 ± 5.1

release sorafenib
target angiogenic

pathways

Balb/C nude
mice

HepG2 and
LO2 [89]

galactose modified
GTC co-delivery
iSur-Pdna and

siVEGF

130−160 VEGF was depleted
with siVEGF

female Balb/c
nude mice and

female
Kunming mice

BEL-7402 [91]

co-delivery of
sorafenib and

siVEGF based on
mesoporous silica

nanoparticles

148.5 ± 3.5
sustained release of

sorafenib and
siVEGF

NA HepG2, Huh,
HeLa and A549 [92]

MTX and CA4
loaded N-urocanyl

pullulan
187.1 ± 15.2

Release anti-tumor
drug MTX and

vascular disruption
agents CA4

Balb/c and
nude mice

HepG2,
PLC/PRF/5

and A549
[94]

ECM/CAF

loaded MMF based
on 1, 2-distearoyl-sn-

glycero-3-
phosphoethanolamine-

N-poly

156.23 ± 60.38

MMF inhibited
fibroblasts

proliferation and
tubulin expression;

reduced CAF density

C57BL/6 mice,
nude mice

Huh7, SUN 449,
LM3, LX2,

Hep1-6,
NIH-3T3

[108]

DOX-KGFRWR

long
nanofibers

with average
widths of
10.51 nm

MMP inhibition and
antiproliferative

effects

male Sprague–
Dawley rats;

male Institute
of Cancer

Research mice

SMMC7721 [111]

RA- and DOX-loaded
lipid nanoparticles

modified with
chondroitin sulfate

smaller than
100

RA disrupted the
ECM barrier by

destroying the Golgi
structure of

hepatoma cells and
HSCs, while

DOX-induced cell
death.

Male Kunming
mice

SMMC-7721
and H22 [113]

MDSC FA-chitosan/mIP-10
nanoparticles 315.5

sustained local IP-10
expression reduced

the number of
MDSCs, and

attracted
CXCR3+CD8+ T cells

to the tumor

Female
C57BL/6 mice Hepa1-6 [117]
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Table 1. Cont.

Target NP Size (nm) Mechanism Animal Model Cell Lines Ref

T cell
FA modified TMC

co-delivery DOX and
IL-2

198.1 ± 1.4

improve the amounts
of infiltrated
cytotoxic T

lymphocytes cells.

Female
Kunming mice

SMMC-7721
and A549 [121]

poly(d,l-lactide-co-
glycolide)

nanoparticle, by
loading IL-12 and

modifying with CD8
and Glypican-3

antibodies o

145−172

target T cells and
deliver IL-12 to T
cells for effective

activation and
proliferation.

NA HepG-2 [123]

2DG-encapsulated
PLGA nanoparticles 120

activated CD8+ T-cell
chemotaxis in the

tumor
microenvironment
via the decreased

production of lactate
in tumors, the

increased IFN-γ
production and

glucose uptake in
CD8+ T cells, and

production of
CXCL9/CXCL10/CXCL11

in both the tumors
and CD8+ T cells

nude mice with
xenograft

tumors

The Huh7,
HepG2, B16F10,

BxPC3,
OS-RC-2, and

HT29 cells

[129]

TAM

AMD3100 modified
lipid-coated PLGA
nanoparticles with

sorafenib-containing

150−200 suppressed the
infiltration of TAMs

Male
C3H/HeNCrNarl

mice
HCA-1 and

JHH-7 [132]

a nanoliposome-
loaded

C6-ceramide
NA

reduces not only
TAM frequency but
also its suppressive

function and
increased the activity

of CD8+ T cells

Male C57BL/6
mice

TAg-
transformed

B6/WT-19 cells
[133]

mannose-modified
IMD-0354 loaded

cationic lipid-based
nanoparticles coated

with polymer
O-carboxymethyl-

chitosan

129.4 ± 6.8 TAM re-polarization C57BL/6 mice Hepa1-6 [135]

MNPs-MPLA-siRNA 40−400

inhibiting the activity
of c-MYC oncogene

to reduce the
pro-tumoral response

from M2
macrophages.

NA Hep-G2 [139]

PAM-PBLG-b-TPGS: poly(amidoamine)-poly(γ-benzyl-L-Glutamate)-b-D-α-tocopheryl polyethylene glycol
1000 succinate; GTC: trimethyl chitosan-cysteine; VEGF: vascular endothelial growth factor; NA: not avail-
able; MTX: methotrexate; CA4: combretastatin A4; ECM: extracellular matrix; CAF: cancer-associated fi-
broblasts; MMF: mycophenolate mofetil; DOX-KGFRWR: doxorubicin-conjugated hexapeptide; MMP: matrix
metalloproteinases; RA: retinoic acid; HSCs: Hepatic stellate cells; MDSC: Myeloid-derived suppressor cells;
FA: folate; mIP-10: mouse interferon-induced protein-10 gene; TMC: N,N,N-trimethyl chitosan; IL-2: Interleukin-
2; 2DG: 2-deoxy-D-glucose; PLGA: poly(lactic-co-glycolic acid); IFN-γ: Interferon-γ; TAM: tumor-associated
macrophage; MNPs: Plasma membrane-derived nanoparticles co-delivery monophosphoryl lipid A and small
interfering RNA.

4. Conclusions and Future Perspectives

HCC is one of the most prevalent malignancies in the world, with rising incidence and
high mortality rates. Immunotherapy for HCC is both promising and challenging due to
its unique characteristic of immunity and immune tolerance. As a protective “ecological
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niche” for tumor cells, the different components and complex crosstalk in TME promote
HCC progression and impair therapeutic effects. Since the TME of HCC plays a key role
in its initiation and progression, it is worth considering the regulation of TME to enhance
anti-cancer immune responses. Given the rapid development of nanotechnology and
the success of cancer immunotherapy in the clinic, the convergence of the two therapies
will certainly achieve significant progress in cancer treatment. In this study, we review
recent advancements in the treatment of HCC using nano-delivery technologies to regulate
immunosuppressive TME. There is a plethora of studies to reprogram the components of
TME, such as tumor cells, T lymphocytes, tumor endothelial cells, TAMs, and ECM. TME-
modulating nanoparticles can contain various drugs and be modified by targeting ligands
in order to highly and specifically accumulate in tumor sites while reducing side effects.

However, there exist a few obstacles to be faced and overcome when it comes to
regulating the HCC microenvironment. For example, despite the fact that TME-modulating
nanoparticles have demonstrated promising results in preclinical studies, several challenges
remain in their clinical translation. First of all, the potential toxicity and immunogenicity
of nanomaterials restrict their application in clinical experiments. Immune responses
toward the nanomaterials may induce severe complications, such as allergic reactions,
thrombogenesis, and so on [140]. Thus, future clinical translations of nanoparticles should
concentrate on the low antigenicity with a carefully controlled dose. Secondly, considering
the unique immunological landscape of HCC, which contains large amounts of immune
cells and some of these, such as Kupffer cells, cannot be found in any other parts of the
body, the components in the HCC microenvironment should be further investigated. The
TME is a complex network and the impact of one component’s depletion or suppression
on the entire system is unknown. Inhibition of one or more components in HCC may be
compensated by overexpression of other pathways. A better understanding of components
in TME of HCC and the long-term effects of nanoparticles targeting these TME components
is critical in future research. Thirdly, because of the existing individual differences in
reactions to nanomedicines, it will also be important to develop biomarkers that are both
reliable and predictive.

Altogether, modulation of the TME of HCC is seen to be promising as it can effectively
improve anti-cancer immunity. Significant progress in the treatment of HCC is believed to
be made in the near future.
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endothelial growth factor; bFGF: basic fibroblast growth factor; IL-8: interleukin-8; CAFs: cancer-
associated fibroblasts; PMN-MDSC: polymorphonuclear-MDSC; M-MDSC: monocytic MDSC;
HBV: hepatitis B virus; Tregs: regulatory T cells; TGFβ: transforming growth factor-β; VEGFR: VEGF
receptor; PAM-PBLG-b-TPGS: poly(amidoamine)-poly(γ-benzyl-L-Glutamate)-b-D-α-tocopheryl
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polyethylene glycol 1000 succinate; GTC: trimethyl chitosan-cysteine; siVEGF: VEGF small interfer-
ing RNA; iSur-pDNA: survivin hort hairpin RNA-expression pDNA; ASGPR: asialoglycoprotein
receptor; VDAs: vascular disruption agents; CA4P: combretastatin A4-phosphate; URPA: N-urocanyl
pullulan; MTX: methotrexate; PLGA: poly(lactic-co-glycolic) acid; MMP: matrix metalloproteinase;
DOX: doxorubicin; CSN: chondroitin sulfate; LCP: lipid-coated calcium phosphate; mIP-10: mouse
interferon-γ-inducible protein-10; FA: folate; HTLs: helper T lymphocytes; CTLs: cytotoxic T lym-
phocytes; TMC: N, N, N-trimethyl chitosan; rhIL-2: recombinant human IL-2;pDNA: plasmid DNA;
TT-LDCP: tumor-targeted lipid-dendrimer-calcium-phosphate; TINPs: targeted immune nanoparti-
cles; SDF-1α: stromal-derived factor 1α; CXCR4: C-X-C receptor type 4; CLN: cationic lipid-based
nanoparticles; CMCS: O-Carboxymethyl-chitosan; MNPs: plasma membrane-derived nanostructures;
MPLA: monophosphoryl lipid A; MMF-LA: Mycophenolate mofetil-linoleic acid; DSPE-PEG: 1,
2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly (ethylene glycol); α-SMA: alpha-smooth
muscle actin; FAP: fibroblast activation protein.
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