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Abstract: Silicon is a promising anode material that can increase the theoretical capacity of lithium-ion
batteries (LIBs). However, the volume expansion of silicon remains a challenge. In this study, we
employed a novel combination of conductive additives to effectively suppress the volume expansion
of Si during charging/discharging cycles. Rather than carbon black (CB), which is commonly used
in SiO anodes, we introduced single-walled carbon nanotubes (SWCNTs) as a conductive additive.
Owing to their high aspect ratio, CNTs enable effective connection of SiO particles, leading to stable
electrochemical operation to prevent volume expansion. In addition, we explored a combination of CB
and SWCNTs, with results showing a synergetic effect compared to a single-component of SWCNTs,
as small-sized CB particles can enhance the interface contact between the conductive additive and
SiO particles, whereas SWCNTs have limited contact points. With this hybrid conductive additive,
we achieved a stable operation of full-cell LIBs for more than 200 cycles, with a retention rate of 91.1%,
whereas conventional CB showed a 74.0% specific capacity retention rate.

Keywords: lithium-ion batteries; conductive additive; carbon black; carbon nanotubes

1. Introduction

The energy density of lithium-ion batteries (LIBs) has become an important issue that
needs to be addressed. For high-energy and high-density LIBs, it is important to use a high-
capacity anode and active cathode materials [1,2]. Commercialized LIBs employ Ni-rich
NCM (LiNixCoyMnzO2 (x + y + z = 1), with a theoretical specific capacity of 278 mAh/g)
as cathode material and graphite (theoretical specific capacity of 372 mAh/g) blended with
silicon (Li15Si4, theoretical specific capacity of 3578 mAh/g) as anode materials [3–6]. To
obtain high-capacity anodes, it is necessary to increase the ratio of the Si component relative
to graphite. The addition of more than 10% Si in the anode could potentially achieve an
anode with high specific capacity (>500 mAh/g, graphite 90% + Si 10%), decreasing the its
thickness, in addition to improving output power [7,8]. However, it is still a considerable
challenge to increase the proportion of Si components in anodes to more than 10% due
to volume expansion of Si during lithiation; Si exhibits volume expansion and shrinkage
during charging/discharging of Li-ions, which causes pulverization of Si particles, as
well as isolation of particles [9,10]. In addition, the solid electrolyte interphase (SEI) layer
produced during charging/discharging cycles is continuously fractured and reformed,
leading to a lack of electrolytes and a decrease in anode capacity [11,12].

To solve this problem, various shapes and structures of active Si materials have been
proposed, including nanosized Si [13,14], Si nanotubes [15,16], Si nanowire [17–19], hollow
Si [20], and porous Si [21,22]. In particular, a specific size of Si particles (<150 nm) could ef-
fectively suppress pulverization and crack formation in response to volume expansion [23].
Nevertheless, Si nanoparticles have a high surface-area-to-volume ratio, making it difficult
to achieve homogeneous dispersion in slurry and resulting in a thick SEI layer during
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the first cycle of charging and discharging, which causes high irreversible capacity loss.
Recently, binders with novel functionality, such as strong adhesion force and self-healing,
have also been reported for Si anodes [24–29]. However, studies on the effect of conductive
additives in Si anodes have not been conducted to date.

Here, we propose that well-combined conductive additives can dramatically improve
the performance and cyclability of Si anodes. We hypothesize that carbon black (CB), a
conventional conductive additive, cannot connect Si particles after pulverization (Figure 1).
Instead, we introduce single-walled carbon nanotubes (SWCNTs) as a conductive additive
to effectively connect Si particles, enabling not only suppression of volume expansion
of Si particles but also an electrical network of fractured Si particles, owing to the high
aspect ratio of SWCNTs. We further report that the mixture of CB and SWCNTs has a
synergetic effect: CB improves the interface resistivity between the conductive additive
and Si particles, and SWCNT crosslinks the Si particles. Consequently, hybrid conductive
additives in Si anodes (7 mg/cm2 by 97% active material) exhibit an excellent cyclability of
more than 200 cycles, with a retention rate of 91.1% and a superior retention rate of 92.6% in
a fast charge/discharge test at a current rate of 4 C. Furthermore, we find that, with hybrid
conductive additives, a 50% reduction in the amount of conductive additives achieves
similar electrochemical performance in full-cell LIBs, suggesting that even a small amount
of additional SWCNTs (0.05 wt%) could dramatically improve the overall electrochemical
stability of Si anodes.
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Figure 1. Schematic illustration of an electrode using (a) CB, (b) SWCNTs, and (c) hybrid additive.

2. Materials and Methods
2.1. Materials and Electrode Preparation

CB powder (Super C65) and SWCNT dispersion were purchased from Imerys Co., Ltd.
(Paris, France.), and Advanced Nano products Co., Ltd. (Sejong, Korea), respectively.
Graphite (BTR Co., Ltd., Shenzhen, China) and SiO (Osaka Titanium Co., Ltd., Osaka,
Japan.) were used as received without further processing. Styrene butadiene rubber (SBR)
solution was purchased from JSR Co., Ltd. (Tokyo, Japan), and Carboxymethyl cellulose
(CMC) powder was purchased from Daicel Co., Ltd. (Himeji-shi, Japan). The CMC powder
was dissolved (1.5 wt%) in deionized water.

The anode slurry consisted of natural graphite and SiO (95:5, weight ratio) as active
material, with SBR (1.7 wt%) and CMC (0.8 wt%) as a binder. CB and SWCNTs were added
as conductive materials. The contents of each sample are listed in Table 1.
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Table 1. Electrode compositions of four samples.

Sample Name Graphite:SiO CB SWCNT SBR CMC

CB1

95:5

1 wt% -

1.7 wt% 0.8 wt%
Hybrid1 0.95 wt% 0.05 wt%

Hybrid2 0.45 wt% 0.05 wt%

SW0.05 - 0.05 wt%

All the slurries were mixed for 15 min using a planetary centrifugal mixer at 1300 rpm.
The slurries were blade-coated onto 18 µm thick copper foil and dried at 120 ◦C in a vacuum
for 12 h. The mass loading of the electrode was approximately ~7 mg/cm2. The cathode
used as counter electrode was prepared by coating N-methyl-2-pyrrolidone (NMP) (Dae-
jung Chemical & Materials Co., Ltd., Siheung, Korea) base slurry onto 20 µm thick Al foil.
The cathode slurry consisted 97.6 wt% LiNi0.8Co0.1Mn0.1O2 (Hunan Shanshan Toda Ad-
vanced Materials Co., Ltd., Changsha, China) as active material. Then, 0.9 wt% multiwalled
CNT (Advanced Nano products Co., Ltd., Sejong, Korea) and 0.8 wt% polyvinylidene
fluoride (PVDF) (Kureha Co., Ltd., Tokyo, Japan) were added as conductive additives and
binder, respectively.

2.2. Materials Characterization

The swelling ratio was measured with a µ-HITE instrument (TESA). A 2 cm × 2 cm
electrode was immersed in electrolytes for 24 h, and the thickness was measured again.
The average value of 9 points was used for the thickness, and all wetting was conducted in
a glove box under a pure Ar atmosphere.

SEM images were observed using a JSM-6700F instrument (JEOL, Tokyo, Japan) under
an accelerating voltage of 15 kV. The electrodes were observed after treatment with cross-
section polisher using an IB-19520CCP instrument (JEOL) under an accelerating voltage of
4 kV to obtain cross-sectional SEM images.

2.3. Electrochemical Characterization

The resistances of the electrodes were measured using a Hioki electrode resistance
meter (XF-057) with constant current (10 mA). To evaluate the electrochemical performance
of the electrodes, coin cells (2032 coin) consisting of an anode electrode, a polypropylene (PP)
separator (Celgard 2400), electrolytes (1 M LiPF6 in EC:DEC (ethylene carbonate:diethyl
carbonate), 3:7 + 5 wt% fluoroethylene carbonate (FEC)), and an Li counter electrode or
an NCM811 cathode electrode were assembled in a glove box under highly pure Ar. The
punched electrode diameters were as follows: anode: 14 mm for half cell,16 mm for full
cell; cathode: 14 mm for full cell. The full cells were designed with an N/P ratio (areal
capacity ratio of anode-to-cathode) of 1.1.

Galvanostatic charge/discharge tests for the anode half cell were performed in the
voltage range of 0.05–1.5 V at 45 ◦C were at 0.5 C. Galvanostatic charge/discharge tests for
the anode full cells were performed in the voltage range of 2.8–4.25 V at 25 ◦C at various C
rates (C/10, C/5, C/2, 1 C, 2 C, 3 C, and 4 C). Charge–discharge curves were recorded using
a WBCS 3000 battery tester system (WonA Tech). Electrochemical impedance spectroscopic
analysis was performed at frequencies of 0.1 MHz to 0.1 Hz with a voltage amplitude
of 0.01 V using a ZIVE SP1 electrochemical workstation (WonATech, Seoul, Korea). In
addition, Galvanostatic intermittent titration technique (GITT) measurements of cells were
performed at 0.5 C delivered a current pulse for 5 min in the voltage range of 2.8–4.25 V,
and direct current internal resistance (DCIR) measurements were performed using coin
cells in the voltage range of 2.8–4.25 V.
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3. Results and Discussion

We began by preparing anode electrodes using different conductive additives (i.e., CB
and SWCNTs). To observe differences in morphology, we obtained surface SEM images of
the electrodes. When CB was used as a conductive additive, we observed local aggregation
of CB particles, as shown in Figure 2a. In the case of SWCNT additive, the SWCNTs
exhibited interconnection through the active SiO particles (Figure 2b).
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Figure 2. Characterization of electrodes: EDS and SEM images of electrode surfaces using (a) CB1
and (b) SW0.05. (c) Electrode swelling ratio after electrolyte wetting. (d) Change in active material
resistivity after electrolyte wetting. (e) Change in interface resistance after electrolyte wetting.

To understand the interconnection of SWCNTs in the electrode, we measured volume
expansion and resistivity changes of the electrodes after wetting with electrolytes. We
prepared four electrodes with the following conductive additives: 1 wt% CB (CB1); mixture
of 0.95 wt% CB and 0.05 wt% SWCNTs (Hybrid1); mixture of 0.45 wt% CB and 0.05 wt%
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SWCNT (Hybrid2); and 0.05 wt% SWCNT (SW0.05). Figure 2c shows the swelling ratio
of each electrode after 24 h of wetting with electrolytes. CB1 showed the highest swelling
ratio of ~110%, whereas the electrode containing SWCNTs had a much lower swelling
ratio, implying that the addition of SWCNTs to the electrode hinders volume expansion of
electrode through its network structure.

We further measured the resistivity of electrodes after swelling with electrolytes
to determine an effect of volume expansion in terms of electrical properties. Table 2
summarizes the resistivity and resistance of each electrode. The CB1 showed a twofold
increase in resistivity after wetting, and the electrode containing SWCNTs showed similar
resistivity after wetting (Figure 2d), which could be explained by the fact that SWCNTs
produce a network between SiO particles, causing no change in resistivity with increased
physical distance between SiO particles. In contrast, the small particle size of CB could
did not induce contact between SiO particles with increased physical distance. As a result,
CB1 presented with the highest resistivity after wetting. Interface resistance refers to
the resistance between the current collector and the active material layer. When contact
is poor, interface resistance increases, accounting for a large part of the total electrode
impedance [30]. CB1 showed much lower values than SW0.05, suggesting that CB enables
better interface contact compared to SWCNTs (Figure 2e). When CB and SWCNTs were
added in combination, the interface contact was considerably improved, as confirmed by
the fact that Hybrid1 and Hybrid2 showed similarly low interface resistances compared to
that of CB1.

Table 2. Resistivity and resistance of electrodes.

CB1 Hybrid1 Hybrid2 SW0.05

Active
Layer

[Ω·cm]

Before
Wetting 0.037 0.040 0.038 0.053

After
Wetting 0.071 0.035 0.039 0.050

Interface
[Ω·cm2]

Before
Wetting 0.0013 0.0012 0.0016 0.0090

After
Wetting 0.0014 0.0008 0.0009 0.0039

We determined the electrochemical properties of anode electrodes by half-cell measure-
ments. Electrochemical impedance spectroscopy (EIS) of half cells, as shown in Figure 3a
and Table S1, indicated that the mixture of CB and SWCNTs (Hybrid1 and Hybrid2) ex-
hibited lower resistivity against charge transport compared with the single-component
conductive additive (CB1, SW0.05). The SW0.05 showed a lower Rct value than CB1,
indicating improved carrier conductivity of SWCNTs relative to that of CB [31–33].

Figure 3b,c describes the electrochemical performance and cyclability of anode half-
cells at a current rate of 0.5 C in the 0.05–1.5 V window. The Hybrid1 electrode presented
with excellent cyclability retaining 93.9% of the initial specific discharge capacity after
100 cycles. The other electrodes, including Hybrid2, SW0.05, and CB1 showed retention
rates of 91.8%, 89.3%, and 85.7%, respectively, after 100 cycles. In the profiles of Hybrid
1, 2 and SW0.05, a plateau can be observed in the 0.4–0.45 V region, occurring during the
delithiation of Li15Si4 [34]. The reason why such a plateau was not observed during 1st
to 10th cycles is that SiO formed an oxide matrix (Li-Si-O). Li-Si-O inhibits the volume
expansion of Si particles but still generates volume expansion of 200%, which causes strong
compression stress [35]. This induced stress inhibits the formation of Li15Si4, so a plateau
was not observed [36]. In contrast, no plateau was observed in any sections of CB1. In
Figure 3c, the 10th cycle specific capacity of CB1 is 374.31 mAh/g. Given that the theoretical
specific capacity of graphite is 372 mAh/g, Si particles did not play a role in the electrodes,
suggesting that CB cannot suppressed particle pulverization and isolation. This can also
be confirmed in terms of Coulombic efficiency (Figure S1). The coulombic efficiency of
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Hybrids 1 and 2, as well as that of SW0.05, gradually stabilized, whereas the CB1 battery
showed unstable coulombic efficiency up to the 20th cycle as a result of continuous particle
cracking.
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Figure 3. Characterization of electrochemical properties of half cells: (a) impedance measurement
(EIS); (b) charge/Discharge curves in the 1st, 2nd, 3rd, 10th, 50th, and 100th cycles; and (c) cycle
performance during 100 cycles.

These anode electrodes were further employed in full-cell lithium-ion batteries (LIBs)
to verify the electrochemical effect of SWCNTs. Figure 4a shows the cyclability of full
cells at a current rate of 1 C in the 2.8–4.25 V window. Similarly to half-cell results,
Hybrid1 showed the most stable cyclability, exhibiting 91.1% retention of specific discharge
capacity after 200 cycles. Hybrid2, SW0.05, and CB1 displayed a retention of 88.7%,
80.7%, and 74.0%, respectively. The power capability at charging and discharging current
rates of 0.2 C, 0.5 C, 1 C, 2 C, 3 C, and 4 C is shown in Figure 4b–d. Under the 0.2 C
condition, there were no obvious differences between the electrodes (Figure 4b). The
difference in charging/discharging profile increased with increased current rate, with
a remarkable distinction at a fast charging/discharging rate of 4 C (Figure 4c) (see all
charging/discharging profiles in Figure S3). Hybrid1, Hybrid2, SW0.05, and CB1 showed
specific capacity retention rates of 92.6%, 90.9%, 83,6%, and 74.4%, respectively, under the
4 C condition. Figure 4d summarizes the specific capacity retention depending on current
rate of the tested electrodes, in agreement with the results of the half-cell test, showing
that a mixture of CB and SWCNTs in the electrode results in more stable electrochemical
performance, whereas using CB resulted in rapid degradation in specific capacity retention.
We suggest that CB cannot connect the active materials in the volume expansion during
the charging and discharging cycle. In contrast, SWCNTs induced a conductive network
between active materials, owing to the high aspect ratio retained by the conductive pathway
with volume expansion. The poor interface contact of SWCNTs was improved by the
addition of CB; thus, Hybrid1 and Hybrid2 resulted in the most stable electrochemical
performance in both half-cell and full-cell measurements.
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To understand difference in electrochemical stability, we carried out GITT analyses on
resistivity within the LIBs (see Figure S4 for full scan of GITT). The diffusion coefficient of
Li-ions was calculated using Equation (1):

D =
4
πτ

(
nmVm

S

)2(∆Es

∆Et

)2
(1)

where τ, S, nm, Vm, ∆Es, and ∆Et are the duration of the current pulse, electrode/electrolyte
contact area, mole number, molar volume of the electrode, steady-state voltage changes
according to current pulse, and voltage change during the constant current pulse, respec-
tively [37]. As shown in Figure 5a and Table S3, the Li-ion diffusion coefficient of Hybrid1
was higher than that of CB1, in agreement with the electrochemical performance results.
CB1 exhibited a higher diffusion coefficient of Li-ion than Hybrid2 and SW0.05. However,
the absolute amount of conductive additive in Hybrid2 and SW0.05 was much lower than
that in CB1. Considering the loading amounts of conductive additive, SWCNTs lead to
more efficient Li-ion diffusion compared with CB.
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Figure 5b describes the resistivity depending on state of charge (SOC) according to
DCIR measurements. A current rate of 3 C was injected for 30 s depending on SOC (base
current rate of 0.5 C) [38]. All electrodes presented with parabola curves, as shown in
Figure S5. At an SOC of 50%, Hybrid1 exhibited the lowest resistance, followed by Hybrid2,
SW0.05, and CB1 (Figure 5b). A similar trend occurred in other SOC values, as summarized
in Table S4. This result confirms that the mixture of SWCNT and CB enables a reduced
resistance in the electrode as a result of efficient Li-ion diffusion.

To investigate structural changes in electrochemical operation, we obtained cross-
sectional SEM images of the electrodes after lithiation (Figure 6a–d). Thickness changes
after lithiation, as shown in Figure 6e, shows that SW0.05 exhibited less volume expansion
compared to CB1, proving a more efficient suppression in volume expansion by SWCNTs
than that induced by CB, with a smaller addition amount. This suggests that SWCNTs could
be used as an efficient conductive additive to increase the energy density of LIB electrodes.
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4. Conclusions

Here, we report a systematic study on the role of conductive additives in Si-based
LIBs. CB additive resulted a low interface resistivity of the anode, owing the small particle
size; however, it did not result in isolation of Si particles, leading to a decrease in capacity.
On the other hand, SWCNTs, another conductive additive, suppressed the isolation of Si
particles by crosslinking, although an increase in the amount of SWCNTs is accompanied by
an increase in dispersants and solvents. As they inhibit energy density, the SWCNT content
must be limited in order to achieve high energy density. We found that the introduction of
a hybrid additive containing both CB and SWCNTs both suppressed volume expansion
and minimized interface resistivity. Experimental GITT and DCIR measurements show
that the hybrid conductive additive improved ion conductivity and electrical conductivity
compared to single components (CB and SWCNTs). In addition, this hybrid conductive ad-
ditive resulted in more stable cyclability of full-cell LIBs compared to the single-component
additive. A 50% reduction in hybrid conductive additive (0.5 wt%) resulted in a similar
output power and cyclability with LIBs using 1 wt% hybrid conductive additive. These
results show that a hybrid conductive additive exerts a synergetic effect compared to single
components, suggests a pathway for high-energy-density LIBs by reducing the portion of
conductive additive.
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Figure S4: (a) GITT curves for 4 samples. (b) Detailed GITT curves from 1200 to 2400 s at 0.5C;
Table S3: Detailed values of Li ion diffusion coefficient; Figure S5: Resistance vs. SOC profiles during
the charge; Table S4: Detailed values at various SOC.
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