
Citation: Zeng, Z.; Li, S.; Que, X.;

Peng, J.; Li, J.; Zhai, M. Gamma

Radiation Synthesis of Ag/P25

Nanocomposites for Efficient

Photocatalytic Degradation of

Organic Contaminant. Nanomaterials

2023, 13, 1666. https://doi.org/

10.3390/nano13101666

Academic Editor: Detlef W.

Bahnemann

Received: 27 April 2023

Revised: 9 May 2023

Accepted: 16 May 2023

Published: 18 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Gamma Radiation Synthesis of Ag/P25 Nanocomposites for
Efficient Photocatalytic Degradation of Organic Contaminant
Zihua Zeng †, Shuangxiao Li †, Xueyan Que, Jing Peng , Jiuqiang Li and Maolin Zhai *

Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory
of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
* Correspondence: mlzhai@pku.edu.cn
† These authors contributed equally to this work.

Abstract: Titanium dioxide (TiO2) has garnered significant attention among various photocatalysts,
whereas its photocatalytic activity is limited by its wide bandgap and inefficient charge separation,
making the exploration of new strategies to improve its photocatalytic performance increasingly
important. Here, we report the synthesis of Ag/P25 nanocomposites through a one-step gamma-ray
radiation method using AgNO3 and commercial TiO2 (Degussa P25). The resulting products were
characterized by powder X-ray diffraction, UV-Vis diffused reflectance spectroscopy, transmission
electron microscopy, and X-ray photoelectron spectroscopy. The effect of free radical scavengers,
feed ratios of Ag/P25, and dose rates on the photocatalytic activity of the Ag/P25 nanocomposites
were systematically investigated using rhodamine B under Xenon light irradiation. The results
showed that the Ag/P25 photocatalyst synthesized with a feed ratio of 2.5 wt% and isopropyl alcohol
as the free radical scavenger at a dose rate of 130 Gy/min exhibited outstanding photocatalytic
activity, with a reaction rate constant of 0.0674 min−1, much higher than that of P25. Additionally,
we found that the particle size of Ag could be effectively controlled by changing the dose rate,
and the Ag/P25 nanocomposites doped with smaller size of Ag nanoparticles performed higher
photocatalytic activities. The synthesis strategy presented in this study offers new insight into the
future development of highly efficient photocatalysts using radiation techniques.

Keywords: Ag/P25 nanocomposites; gamma-ray radiation method; photocatalytic performance

1. Introduction

Environmental protection has become an urgent and crucial concern nowadays in
the face of increased organic and inorganic pollutants in the natural environment due to
rapid industrialization [1,2]. The consequences of this pollution pose a significant threat
to human health, social stability, and sustainability [3,4]. Consequently, there has been a
surge of research in both academic and industrial settings toward reducing environmental
pollution from organic and inorganic pollutants. The challenge lies in finding simple,
eco-friendly, and effective techniques to remove contaminants [5].

Advanced oxidation processes (AOPs) are a series of chemical treatment for water or
wastewater aimed at removing organic contaminants by oxidation. AOPs rely on the in
situ generation of highly reactive oxidants, in particular, hydroxyl radical (OH·), which can
oxidize virtually any compound in water [6]. The applications of AOPs in the treatment of
a wide range of organic pollutants such as industrial dyes, pesticides, and fertilizers, have
shown high reaction rate constants and excellent removal efficiency [7,8]. Photocatalysis, as
a process technology which has been investigated for use as a kind of AOPs, has emerged as
a promising and eco-friendly method, owing to its energy-saving, environmentally friendly,
and highly efficient properties [9–11]. During the photocatalytic process, reactive oxygen
species (ROS) are generated from electron capture by oxygen and water oxidation, such as
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superoxide (O2
−) and OH·, which will engage in subsequent oxidation–reduction reactions

as highly reactive oxidants [12]. Unlike activated carbon adsorption or membrane filtra-
tion methods, photocatalysis can achieve complete degradation of organic and inorganic
pollutants through a series of oxidation–reduction reactions [13,14].

Photocatalysts play a crucial role in the photocatalytic process since they greatly affect
the absorbance spectrum and the electron–hole separation efficiency, which ultimately
determines the photocatalytic efficiency [15]. Semiconductors have been extensively stud-
ied as photocatalysts because of their unique energy band structures and their ability
to contain inequal numbers of electrons and holes [16,17]. The P-type semiconductors
contain an excess of holes, while the N-type semiconductors are abundant of electrons.
As a N-type semiconductor, titanium dioxide (TiO2) has garnered significant attention
due to its low cost, easy commercial availability, nontoxicity, high thermal and photo-
chemical stability, and unique optical properties [18,19]. TiO2 exists in various nanoscale
forms, including nanospheres [20], nanowires [21,22], nanotubes [23], nanofibers [24],
and has found wide-ranging applications in pollutant degradation [25,26], hydrogen
production [27,28], and carbon dioxide reduction [29], etc. However, the large band gap
width of TiO2 (3.0–3.2 eV) restricts its light absorption to the UV region and limits its
use in visible light irradiation [13,30]. Additionally, TiO2 exhibits fast recombination of
photogenerated charges, which decreases the generation of ROS, lowers the photocatalytic
quantum yield for OH· radical production, and hence hampers its practical application in
photocatalysis [31].

To overcome these challenges, researchers have employed a range of specific surface
modifications, including doping with non-metallic or metallic elements [27,32–35] and
compounding with other semiconductors [14,36,37]. Moreover, the Z-scheme, a conceptual
model in photosynthesis, has inspired researchers to design heterostructures and hybrid
systems to preserve photogenerated electrons and holes with higher redox potentials and
improve photocatalytic performance [38]. Among these modification methods, doping
noble metal nanoparticles onto the surface of TiO2 has proven particularly effective be-
cause the doped metal nanoparticles usually have high Schottky barriers, functioning as
electron traps to enhance electron–hole separation and inhibit recombination of electrons
and holes at the same time [39,40]. Additionally, the localized surface plasmon resonance
(LSPR) effect triggered by the doped metal nanoparticles reduces the band gap width of
metal-modified TiO2, extending its absorption range into the visible light spectrum [41,42].
Silver (Ag) nanoparticles offer advantages over other noble metals, including ease of avail-
ability, excellent conductivity [43], and anti-bacterial properties [44]. Recent studies have
focused on controlling the shapes and sizes of metal nanoparticles, including Ag. Under
certain experimental conditions, the size of Ag nanoparticles can be controlled [45,46],
influencing the LSPR effect, similar to other metals such as platinum [47], aurum [48], and
ruthenium [49].

Various techniques have been developed to prepare Ag/TiO2 nanocomposites, includ-
ing photoreduction [50], sol-gel [51], solvothermal and hydrothermal treatment [52–56], as
well as plasmonic fabrication [57–60]. In the field of water purification, extensive studies
have demonstrated that Ag/TiO2 nanocomposites can be applied to photodegrading or-
ganic dyes such as rhodamine B (RhB). Liang et al. synthesized Ag/TiO2 nanocomposites
under UV light irradiation and proposed different mechanisms of selective oxidation of RhB
under UV or visible light [61]. Zhou et al. fabricated heterostructured Ag/g-C3N4/TiO2
ternary photocatalyst through thermal oxidation etching process to form g-C3N4/TiO2 and
photoreduction process to load Ag nanoparticles on it. The as-synthesized photocatalyst
showed a reaction rate constant of 0.0179 min−1 when degrading RhB under visible light,
and high recycling stability [62]. As a matter of fact, the synthesis of the aforementioned
Ag/TiO2 nanocomposites necessitates intricate experimental conditions or relatively elabo-
rate procedures. For instance, both solvothermal and hydrothermal treatments demand the
sample to be heated above 180 ◦C for 5–10 h, while plasmonic fabrication requires intricate
pretreatment to establish a suitable atmosphere for plasma treatment.
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Radiation synthesis, however, presents a promising technology for synthesizing
Ag/TiO2 nanocomposites in aqueous solutions, since it is a clean, simple one-step, and
highly effective method [63]. In the gamma-irradiation process, both oxidative and re-
ductive species are generated such as electrons, H· and OH· radicals, where OH· radicals
perform strong oxidative property, while the electrons and H· radicals possess the reduc-
tive potential to reduce Ag(I) [64,65]. This process can be carried out at room temperature
without side reaction products, and the radiation chemical yield of those reductive species
can usually achieve a high value, indicating its high efficiency. A free radical scavenger,
which can prevent oxidative radicals from oxidizing the reduced Ag nanoparticles and
reduce excess of reductive radicals, is essential to this method. Most common used free
radical scavengers are alcohols (i.e., isopropyl alcohol [49], tert-butyl alcohol [66], and
ethanol glycol [67]) and formic acid [68], and imidazolium-based ionic liquids also have
diverse applications due to their high radiation stability [69]. Additionally, the irradiation
dose rate plays an important role in radiation synthesis, since different dose rates affect
the size of nanoparticles during their formation [63], and Ag particle size is controllable
by changing different dose rate. To date, there have been few studies on the radiation
synthesis of Ag/TiO2 nanocomposites, particularly with regard to how dose rate influences
the photocatalytic activities.

Here, we report the synthesis of Ag/P25 nanocomposites through a one-step gamma-
ray radiation method using AgNO3 and commercial TiO2 (Degussa P25). Rhodamine B was
selected as the model organic contaminant to investigate the photocatalytic performances of
the resulting Ag/P25 nanocomposites under Xenon light irradiation. The effect of Ag/P25
feed ratio, dose rate, and different free radical scavengers on photocatalytic activity and the
related mechanism were both discussed.

2. Materials and Methods
2.1. Materials

TiO2 (P25, Degussa, Germany), silver nitrate (AgNO3, AR, Xilong Scientific Co.,
Ltd., Shantou, China), isopropyl alcohol (IPA, AR, Beijing TongGuang Fine Chemicals
Company, Hebei, China), ethylene glycol (EG, AR, Concord, Tianjin, China), 1-ethyl-3-
methylimidazolium acetate (EMImAc, 99%, Energy Chemical, Shanghai, China), rhodamine
B (RhB, AR, Macklin, China). All reagents were used as received without further purification.

2.2. Synthesis of Ag/P25 Nanocomposites

Ag/P25 nanocomposites were synthesized through a one-step gamma-ray radiation
reduction method. In detail, 200 mg P25 powders were added to a mixed solution of IPA
and pure water (1:9, v/v, 40 mL in total). The resulting suspensions were sonicated for
30 min to make P25 powders evenly dispersed. Different volumes of AgNO3 solution
(0.020 mol/L) were injected into the as-prepared suspensions to form a series of hybrid
solutions with different feed ratios of Ag to P25 (0.5 wt%, 1.0 wt%, 2.5 wt%, and 5.0 wt%,
respectively). The samples were then bubbled with nitrogen for 10 min to remove oxygen,
sealed, and irradiated by gamma-ray from a 60Co radiation source (Department of Applied
Chemistry of Peking University). The absorbed dose was fixed at 28 kGy with different
dose rates (7.2 Gy/min, 31 Gy/min, and 130 Gy/min). The products were subsequently
centrifuged, washed with pure water several times, and finally lyophilized for three days.
Two additional samples were synthesized under the conditions of 2.5 wt% Ag/P25 mass
ratio and a dose rate of 31 Gy/min, with the pre-solutions mixed with 1.0327 g ionic liquid
EMImAc (1 mL) and 39 mL pure water, or EG and pure water (1:2, v/v, 40 mL in total).
The postprocessing of products remained unchanged. The abbreviations of the prepared
samples and details of their synthesis are listed in Table 1.

2.3. Characterization

The phase compositions were analyzed by powder X-ray diffraction (XRD, PAN-
alytical, Netherland, X-Pert3 Powder) with Cu Kα radiation (λ = 1.5418 Å). The X-ray
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photoelectron spectroscopy (XPS) spectra were recorded on the AXIS Supra X-ray photo-
electron spectrometer (Kratos Analytical, Manchester, UK) with an exciting source of Al Kα,
using adventitious carbon (C 1s = 284.80 eV) as the calibration reference. The UV-vis diffuse
reflectance spectra were measured by a UV-3600 Plus ultraviolet-visible-NIR spectrometer
(Shimadzu, Nagoya, Japan) with the wavelength ranging from 200 to 800 nm. The micro
morphologies of the catalysts were studied by field emission high-resolution transmission
electron microscopy (HRTEM, JEOL, Tokyo, Japan, JEM-2100) at an acceleration voltage of
200 kV. The actual mass ratios of Ag in catalysts were characterized by inductively coupled
plasma-optical emission spectrometry (ICP-OES, Leeman, Northern Outagamie County,
WI, USA, Prodigy 7).

Table 1. Sample abbreviations and corresponding synthesis details.

Sample Feed Ratio (Ag/P25 wt%) Dose Rate (Gy/min) Free Radical Scavenger

P25 0 / /
Ag/P25-1 0.5 31 IPA
Ag/P25-2 1.0 31 IPA
Ag/P25-3 2.5 31 IPA
Ag/P25-4 5.0 31 IPA
Ag/P25-5 2.5 7.2 IPA
Ag/P25-6 2.5 130 IPA
Ag/P25-7 2.5 31 EMImAc
Ag/P25-8 2.5 31 EG

2.4. Measurements of Photocatalytic Activities

The photocatalytic activity of the Ag/P25 nanocomposites was estimated by the
photodegradation of RhB (as the target pollutant) under Xenon light irradiation. To this
end, a 100 mL jacketed beaker was used as the photoreactor. In the typical experiment,
30 mg catalyst was dispersed in the beaker containing a 90 mL aqueous solution of 30 mg/L
RhB (pH = 5.5~6.5). The suspension was sonicated for 5 min and stirred for 55 min in the
dark to reach an absorption–desorption equilibrium of RhB. Subsequently, the mixed
suspension was exposed to Xenon light irradiation for 90 min while the distance between
the lamp and the top surface of the suspension remained unchanged. At predetermined
time intervals, a 2.5 mL aliquot was drawn out from the suspension and filtered by a
0.22 µm Nylon filter. Afterward, the transparent solution was transferred to a quartz
cuvette and analyzed by UV-Vis absorption spectroscopy in a wavelength range from
450 nm to 600 nm. The concentration of RhB was determined by the absorbance at the
wavelength of 554 nm, in accordance with the Lambert–Beer’s Law. To investigate the
photocatalytic recycling stability of the catalyst, a 12 mg sample was added to a 36 mL
aqueous solution of 30 mg/L RhB. The suspension was irradiated with the Xenon light
for 60 min. After filtration and washing, the catalyst was retrieved and added to another
RhB solution with the same conditions, and this process was repeated three times. In this
photocatalytic process, only the initial and final concentrations were measured to calculate
the removal percentage of RhB in the solution.

The degradation rates of RhB with Ag/P25 nanocomposites are calculated by the
following formula:

Degradation (%) = (c0 − ct)/c0 × 100 = (A0 − At)/A0 × 100, (1)

where c0 is the initial concentration of RhB solution and ct is the corresponding concen-
tration of RhB solution at time t, A0 is the initial absorbance of RhB solution and At is
the corresponding absorbance of RhB solution at time t. The reaction rate constant k is
calculated based on a pseudo-first order kinetics [61] from the following equation:

−ln(At/A0) = −ln(ct/c0) = kt. (2)
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3. Results and Discussion
3.1. Synthesis and Characterizations of Ag/P25 Nanocomposites

Ag/P25 nanocomposites were synthesized through a simple one-step gamma-ray
induced reduction method, as illustrated in Figure 1. After being irradiated by gamma-ray
from 60Co source, Ag(I) was reduced to Ag nanoparticles (NPs) and doped on the surface
of P25. The conversion to Ag NPs is confirmed by PXRD results. As shown in Figure 2,
the peak at 44.3◦ can be attributed to (200) crystal plane of the cubic Ag phase (04-0783) of
Ag/P25-4. The weak intensity of the Ag diffraction peak in Ag/P25-1 was due to the small
amount of AgNO3 precursor added, and the detection limitation of the PXRD technique.
The ICP-OES results presented in Table 2 provide the actual mass ratios of Ag/P25 for
the samples, which demonstrate an increase corresponding to the feed ratios of Ag/P25.
Notably, when the sizes of Ag NPs are similar (1~3 nm), their actual amounts also show
a proportionality to their respective feed ratios [70]. Furthermore, under the conditions
studied, the doping efficiency of Ag on P25 consistently exceeds 70%, thereby indicating
the efficiency of the method.
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Figure 1. Schematic illustration of the one-step synthesis of Ag/P25 nanocomposites.

Figure 2. PXRD patterns of Ag/P25 nanocomposites of different Ag/P25 feed ratios. A: anatase TiO2

(21-1272); R: rutile TiO2 (21-1276); Ag: cubic silver (04-0783).

To further confirm the elementary components of the catalysts and the valence state of
Ag inside, XPS spectra of Ag/P25-6 are obtained and shown in Figure 3. The survey scans
of XPS spectra (Figure 3a) indicate that Ag/P25 nanocomposites mainly consist of Ag, Ti, O,
C, and no other elements, which is consistent with the results of PXRD. The XPS spectrum
of C 1s (not shown) is used for the purpose of the drift correction of other elements. The
XPS spectrum of Ag 3d in Figure 3b shows fitted peaks at 373.3 eV and 367.3 eV, which are
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ascribed to Ag0 3d3/2 and Ag0 3d5/2, respectively. These two peaks with a 6.0 eV splitting
confirm the existence of metallic Ag particles on P25 through the reduction of Ag+ during
the irradiation process. The fitted peaks corresponding to Ag+ may be attributed to the
partial oxidation of metallic silver particles, which is inevitable for the resultant samples in
contact with air.

Table 2. ICP-OES results of samples with different Ag/P25 feed ratios.

Sample Feed Ratio (Ag/P25 wt%) Ag (wt%) Doping Efficiency (%)

Ag/P25-1 0.5 0.37 74
Ag/P25-2 1.0 0.71 71
Ag/P25-3 2.5 2.18 87
Ag/P25-4 5.0 4.22 84
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TEM measurements were applied to detect the distribution and particle size of Ag NPs
of Ag/P25 nanocomposites. TEM images in Figure 4a–c reveal that Ag NPs were loaded
on the surface of P25 after gamma-ray irradiation, and that these Ag NPs at different dose
rates are similar in shapes and locations but differ in particle size distributions. Figure 4d–f
show the average diameters of Ag NPs of Ag/P25-5, Ag/P25-3, and Ag/P25-6. As the
dose rate increases from 7.2 Gy/min, 31 Gy/min to 130 Gy/min, the average particle
sizes decrease from 2.05 nm, 1.85 nm to 1.52 nm, respectively, and it is highly intuitive to
notice that fewer outstanding large clusters of Ag NPs are observed under a higher dose
rate. The morphology of Ag/P25 nanocomposites was examined by HRTEM, as shown
in Figure 5. The lattice spacings of 0.35 nm and 0.24 nm match the crystal lattices of TiO2
and Ag and can be attributed to anatase TiO2 (101) and cubic Ag (111) species, respectively.
Furthermore, the elemental mapping pictures of Ag/P25-6 (shown in Figure 4g–i) confirm
the presence of the small dopped dots as Ag NPs.

The band gap width between the valence band and conduction band of a semiconduc-
tor material is a crucial parameter because it determines the potential energy difference
between the electrons and the holes, which can be measured from the UV-Vis diffuse re-
flectance (DR) spectra. Figure 6 shows the UV-Vis DR spectra of P25 and different catalysts
with various amounts of Ag and free radical scavengers. The cutting-line method is a
common band gap calculation method whose principle is that the band edge wavelength
λg is determined by the band gap width Eg, Eg = 1240/λg (nm) [71]. The x value of the
tangent of the absorbance curve intersected with the x-axis is recorded as the band edge
wavelength λg. UV-Vis DR spectrum of P25, shown in Figure 6b, exhibits an absorption
band at λg = 400 nm, indicating its band gap width of 3.10 eV, which is consistent with
previous research [72]. For Ag/P25 photocatalysts prepared at different Ag/P25 feed ratios
shown in Figure 6c–f, there are other wide absorption bands centered at 490–515 nm. The
appearance of these absorption bands in the visible light range can be attributed to the
LSPR effect of Ag NPs doped on the surface of P25. As the feed ratio of Ag/P25 increases,
both the peak intensity and half width increase, indicating that higher concentrations of
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silver nitrate led to the formation of more clusters of Ag NPs. On the other hand, the band
gap widths of catalysts decrease with increasing Ag content because of the enhancement of
the LSPR effect. For catalysts synthesized with different free radical scavengers, their band
gap widths are smaller than P25, and band edge wavelengths extend to the visible light
range, which can be attributed to the doped Ag NPs [27,42].
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3.2. Photocatalytic Activities

The photocatalytic performances of the as-prepared Ag/P25 nanocomposites were
measured under Xenon light (λ > 200 nm). Figure 7 illustrates the changes in UV-Vis absorp-
tion spectra of RhB solutions in the presence of P25 and Ag/P25-4 at predetermined times.
The dotted arrow indicates the blue shift in the maximum absorption wavelength (λmax)
of RhB solutions during the photodegradation, which implies the de-ethylation process
of RhB [39]. Previous studies by Natarajan et al. [73] and Liang et al. [61] have reported
that λmax of the oxidation products of RhB under UV and visible light irradiation are grad-
ually decreasing though the de-ethylation process. The RhB solutions with catalysts can
reach the absorption–desorption equilibrium in the dark for 60 min, and almost complete
degradation of RhB molecules was achieved after a 60-min Xenon light irradiation.

The photocatalytic degradation curves of RhB (c/c0 vs. irradiation time) are presented
in Figure 8a,d,g, revealing that the degradation rates of RhB with Ag/P25 nanocomposites
(calculated based on Equation (1)) are higher than that with P25. A pseudo-first order
kinetics fitting (Equation (2)) is performed to draw the plots of −ln(c/c0) vs. irradiation
time and determine the reaction rate constant k. The corresponding plots of photocatalysts
synthesized with different free radical scavengers, Ag/P25 feed ratios, and dose rates are
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depicted in Figure 8b,e,h and Figure 8c,f,i, respectively. The squared correlation coefficients
of linear fitting are all greater than 0.985, indicating that there is a strong linear relationship
between −ln(c/c0) and irradiation time, and that the variation of −ln(c/c0) versus time is
in accordance with the first order reaction. Applying IPA, EMImAc, and EG as different
free radical scavengers in Ag/P25-3, Ag/P25-7, and Ag/P25-8, the order of their rate
constants is Ag/P25-3>Ag/P25-7>Ag/P25-8. Therefore, isopropyl alcohol is selected to
act as the free radical scavenger in further studies of this work. With Ag/P25 feed ratios
increasing from 0.5%, 1.0%, 2.5% to 5.0%, the rate constants first increase and then decrease,
reaching the peak at 2.5 wt% Ag/P25 feed ratio, and they are better than that of P25.
This result indicates that Ag NPs significantly influence the photocatalytic activities of
Ag/P25 nanocomposites. Regarding the influence of different dose rates, the rate constants
of Ag/p25-5, Ag/P25-3, and Ag/P25-6 become greater while the dose rates increase
from 7.2 Gy/min to 130 Gy/min. Among the eight synthesized Ag/P25 nanocomposites,
Ag/P25-6 exhibits the best photocatalytic performance under Xenon light irradiation, with
a rate constant of 0.0674 min−1, which is 2.1 times higher than that of P25.
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Other investigations have also explored the photocatalytic performance of Ag/TiO2
nanocompounds in degrading RhB (shown in Table 3). For instance, Sun et al. [53] syn-
thesized Ag-TiO2 nanowire at a mole ratio of 3% (3 at%) and utilized 100 mg samples to
photodegrade 200 mL RhB solution (10 mg/L), achieving complete removal of RhB in
45 min. Hajipour et al. [74] developed another variant of Ag/TiO2 nanowire and utilized it
to break down a 12 mg/L RhB solution, with a rate constant of 0.026 min−1. In contrast,
Ag/P25-6, in our study, displayed a much higher rate constant of 0.0674 min−1 and required
less photocatalyst (30 mg) to degrade a higher concentration of RhB solution (30 mg/L),
showcasing superior photocatalytic performance when compared to previous works.

The recycling stability is also an important parameter for assessing the catalysts,
as high photocatalytic performance may be confronted with various risks such as the
shedding of Ag NPs during degradation process, which can cause a sudden decrease in
photocatalytic activities. To investigate the recycling stability, it is necessary to conduct
recycling experiments. Figure 9 displays the removal percentages of RhB under different
catalytic cycles. After four cycles, RhB can be completely removed with Ag/P25-6 as the
catalyst under 60 min Xenon light irradiation. The result clearly indicates that Ag/P25-6
exhibited a stable recycling photodegradation performance with a high rate, suggesting its
outstanding photocatalytic recycling stability.

3.3. Mechanism Clarification

The improved photocatalytic performance of Ag/P25 nanocomposites over P25 can
be attributed to the enhancement of electron–hole separation and light utilization efficiency.
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Under Xenon light exposure (Figure 10), the valence electrons of P25 become excited and
transfer to the conduction band, and Ag NPs serve as electron traps to facilitate the electrons
to participate in the reductive reaction of O2 to O2

−, as well as to prevent the recombination
of electrons and holes [39,40]. Meanwhile, the LSPR effect of Ag NPs under visible light
generates electron–hole pairs on their surface [61]. The photogenerated electrons from the
LSPR effect then transfer to the conduction band of P25, creating a rich electronic state as
the energy level of P25 is lower than that of Ag NPs [42]. As a result, compared to pure
P25, Ag/P25 nanocomposites make better use of Xenon light, enabling photogenerated
electrons to transfer and participate in the reaction, thereby significantly enhancing the
photocatalytic activity.
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In this work, Ag/P25-6, which was synthesized with a feed ratio of 2.5 wt%, an
irradiation dose rate of 130 Gy/min, and IPA as the free radical scavenger, exhibited the
best photocatalytic activity among all Ag/P25 nanocomposites. The impact of feed ratio
on the photocatalytic performance can be explained from the perspective of electron–hole
separation and recombination. A feed ratio below 2.5 wt% does not provide sufficient Ag
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NPs on the surface of P25 to serve as electron traps, limiting the efficiency of electron–hole
separation and reducing the reaction rate of RhB. Conversely, a high feed ratio increases the
distribution density of Ag NPs on the surface of P25, causing overlapping surface plasmon
resonance regions of Ag NPs, proceeding the electron–hole recombination process and
reducing the reaction efficiency [42,53,75].

Table 3. Comparison with other Ag/TiO2 photocatalysts.

Photocatalysts Preparation
Method Light Source Reaction Solution

and Amount
Removal Time
and Percentage

Reaction Rate
Constant (min−1) Reference

Ag-1%@P25 Photo reduction
Homemade light source

(λ > 400 nm,
~150 mW/cm2)

10 mg/L, 25 mL,
50 mg

30 min,
95% 0.113(4) [42]

3 at% Ag-TiO2
nanowire

Hydrothermal
process 350 W Xenon light 10 mg/L, 200 mL,

100 mg 45 min, 100% NA [53]

2 at% Ag-TiO2
nanostructure

Hydrothermal
process

800 W Xenon light
(λ > 420 nm)

10 mg/L, 50 mL,
30 mg 270 min, 95% 0.01108 [54]

Ag/TiO2-II Photo reduction

500 W mercury
lamp (UV) 10 mg/L, 300 mL,

600 mg

180 min, 93% 0.0144

[61]
500 W Xenon lamp

(Visible light) 180 min, 88% 0.0111

Ag/TiO2
nanowire Polyol method Xenon light of

75.9 kJ/m2 12 mg/L, NA 100 min, 84% 0.026 [74]

1.0%Ag–TiO2/
SBA-16

Wet impregnation
method

300 W Xenon light
(λ > 420 nm)

10 mg/L, 100 mL,
50 mg 120 min, 90% 0.02072 [75]

Ag/P25-6 Gamma radiation
reduction 300 W Xenon light 30 mg/L, 90 mL,

30 mg
45 min,

97% 0.0674 this work
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The influence of dose rate on the photocatalytic activity can be understood by the
size of Ag NPs. From previous research by Flores-Rojas et al. [63], given a certain dose
irradiation, lower dose rate induces larger particle size of Ag NPs because the production
rate of reducing free radicals is slower than the association of ions with atoms. As shown
in TEM image (Figure 3a–c), Ag NPs are formed in the shape of sphere, and the reduced
particle sizes lead to bigger specific surface area and contact area with RhB and greatly
enhance the surface-to-volume ratio of photocatalysts, which hence would improve the
photocatalytic activity of Ag/P25 nanocomposites [40,47].

4. Conclusions

In summary, we have reported the successful synthesis of an efficient photocatalyst
of Ag/P25 nanocomposites by utilizing a one-step gamma-ray induced reduction method
in aqueous solution. The gamma-ray irradiation allowed successful doping of Ag NPs
onto the surface of P25, where the dose rate had a significant impact on the size and
distribution of Ag NPs, as well as the photocatalytic activity of Ag/P25 nanocomposites.
Additionally, the feed ratio of Ag/P25 and the choice of free radical scavenger were found
to influence the photocatalytic activity of the resulting nanocomposites. Notably, Ag/P25-6,
synthesized with a feed ratio of 2.5 wt%, a dose rate of 130 Gy/min, and IPA as the free
radical scavenger, exhibited a reaction rate constant 2.1 times higher than that of P25 due to
its suitable load amount and small particle size. Furthermore, under Xenon light irradiation,
Ag/P25 nanocomposites demonstrated superior photocatalytic activity compared to P25
due to the enhanced electron–hole separation and the extended responding range to the
visible light spectrum caused by the LSPR effect. This study offers an effective method
for the synthesis of Ag/TiO2 nanocomposites with efficient photocatalytic performance,
which could be potentially extended to the synthesis of other metal-doped semiconductor
catalytic system.
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