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Abstract: Photocatalytic coatings can degrade volatile organic compounds into non-toxic products,
which has drawn the attention of scholars around the world. However, the pollution of dust on the
coating adversely affects the photocatalytic efficiency and service life of the coating. Here, a series of
TiO2-polyfluoroalkoxy (PFA) coatings with different contents of PFA were fabricated by suspension
plasma spraying technology. The results demonstrate that the hybrid coatings contain a large number
of circular and ellipsoidal nanoparticles and a porous micron-nano structure due to the inclusion
of PFA. According to the optimized thermal spraying process parameters, TiO2 nanoparticles were
partially melted to retain most of the anatase phases, whereas PFA did not undergo significant
carbonization. As compared to the TiO2 coating, the static contact angle of the composite coating
doped with 25 wt.% PFA increased from 28.2◦ to 134.1◦. In addition, PFA strongly adsorbs methylene
blue, resulting in a greater involvement of methylene blue molecules in the catalyst, where the
catalytic rate of hybrid coatings is up to 95%. The presented nanocomposite coatings possess excellent
photocatalytic and self-cleaning properties and are expected to find wider practical applications in
the field of photocatalysis.

Keywords: hydrophobic; photocatalytic; suspension plasma spraying; TiO2-PFA

1. Introduction

Photocatalytic surfaces have become increasingly popular in recent years, since their
discovery in 1969 by Fujishima and Honda [1]. TiO2 coatings have attracted much attention
in recent years due to their potential for photocatalysis [2]. However, traditional TiO2-
based photocatalytic surfaces are superhydrophilic, with low light utilization and easy dust
adsorption, both of which are bad for photocatalysis. Superhydrophobic surfaces can easily
roll over and take away the surface pollutants, thereby maintaining the cleanliness of the
photocatalytic coating, ensuring its mechanical strength, and preserving its photocatalytic
capabilities [3,4].

While most studies have focused on the TiO2 superhydrophilic photocatalytic surfaces,
there has been little research on TiO2 superhydrophobic photocatalytic surfaces. Typi-
cally, TiO2-based photocatalytic superhydrophobic coatings are produced using chemical
methods, such as hydrothermal [5,6], liquid phase deposition [7], sol–gel [8], etc. The
hydrothermal modification of TiO2 with silicone rubber results in self-cleaning surfaces
with a multilevel structure that is highly hydrophobic and photocatalytic [9]. Sanghyuk
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et al. [10] created a self-cleaning surface with both superhydrophobicity and photocatalytic
activity by grafting PDMS molecular brushes with TiO2. Several studies have used photo-
catalytic materials other than TiO2, such as SiO2, for the preparation of superhydrophobic
surfaces. By using the sol–gel method, Tian et al. [11] developed PDMS–TiO2–SiO2 coatings
with hydrophobic photocatalytic properties. Using dip-coating, Jiang et al. [12] prepared
fluorine-free superhydrophobic photocatalytic synergistic self-cleaning functional cotton
fabrics by modifying cotton fabric surfaces with anatase TiO2 and PDMS. In spite of the fact
that all of the above processes prepared TiO2-based hydrophobic photocatalytic coatings,
there were issues, such as many preparation steps, complicated processes, uneven coating
formation, and lower photo-catalytic properties. It is a rather challenging task combining
superhydrophobic with considerable photocatalytic activity in TiO2-based coatings, as
the TiO2 coating typically exhibits hydrophilic properties, turning superhydrophilic upon
ultraviolet (UV) light exposure.

Superhydrophobicity is typically described as resulting from nano- and micro-scale
roughness in combination with the hydrophobic functionality of the material [13]. This
study used the simple, easy, low-cost, fast, and efficient suspension plasma spraying (SPS)
method [14,15]. SPS can better construct a micro-nano porous porous coating by solvent
evaporation, which is advantageous to photocatalytic performance. Meanwhile, a typical
low surface energy substance, polytetrafluoroethylene PFA was selected [16]. The low
surface energy of PFA provides the necessary conditions for hydrophobicity. In detail, a
TiO2-PFA hydrophobic photocatalytic coating was constructed in one step through the
spraying of a suspension of TiO2 nanopowder and PFA emulsion using SPS. It is possible
to prepare hydrophobic photocatalysis TiO2/PFA coatings over a large area quickly and
efficiently. Because SPS uses the evaporation of the solvent to remove a large amount of
heat, and the droplets are ejected from the flame flow at very high speeds, the flight time
of droplets is very short, and the heat absorbed by the solid particles in the droplets is
sharply reduced [17–20], resulting in fewer anatase transformations to the rutile phase in
the suspension plasma sprayed TiO2 particles in this study. In the meanwhile, PFA is not
decomposed by carbonization. This ensures the photocatalytic and hydrophobic properties
of the PFA/TiO2 coating.

In the present work, the TiO2-PFA hydrophobic photocatalytic self-cleaning coatings
were prepared in a one-step process using suspension plasma spraying. The self-cleaning
and photocatalytic properties of the developed TiO2-PFA composited coatings against
contaminants were investigated under UV-light irradiation. This study’s main aim was to
evaluate the suitability of the suspension plasma spraying method for superhydrophobic
photocatalytic coatings and the potential applications of TiO2-PFA coating in outdoor
contamination prevention.

2. Experiment Methods
2.1. TiO2-PFA Suspension

In this suspension, anatase TiO2 powder with an average particle size of 200 nm was
combined with polyfluoroalkoxy (PFA, 60 wt.%) emulsion, dispersant NNO, and deionized
water. The mass of PFA accounted for 0%, 5%, 15%, and 25% of the total mass of TiO2-PFA,
and the corresponding suspensions and prepared coatings were named as: 0PT, 5PT, 15PT,
and 25PT, respectively. The specific components of each suspension are shown in Table 1.

Table 1. Contents of components in TiO2-PFA suspension.

Total Mass (g) Solid (wt.%) Deionized Water (g) NNO (g) TiO2 (g) PFA Aqueous Dispersion (g)

0PT 500 15 425 1.5 75 0
5PT 500 15 416 1.425 71.25 7.5
15PT 500 15 417 1.27 63.5 18.75
25PT 500 15 386 1.125 56.25 37.5
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2.2. Coatings Preparation

(1) A stainless-steel sheet with dimensions of 20 mm × 20 mm× 2 mm was employed as
the substrate and sandblasted using 46# SiO2. It was then cleaned ultrasonically with
alcohol and dried using compressed air.

(2) For suspension plasma spraying, an F4 plasma gun (GTV CL, WI-091) with an in-
ner diameter of 6 mm was employed. The suspension was dispersed and stirred in
real-time using a custom-made thermostatic magnetic stirring and ultrasonic vibra-
tion machine, ensuring good fluidity and stability of the suspension during the SPS
spraying process (Figure 1). A peristaltic pump was utilized to convey the TiO2-PFA
suspension from a 0.3 mm diameter injection port into the plasma stream at a rate of
30 mL/min. The spraying parameters are shown in Table 2. Importantly, cooling the
substrate with air during the spraying process can be beneficial for the retention of
anatase TiO2 and avoiding the over-firing carbonization decomposition of PFA.
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Figure 1. Schematic diagram of suspension plasma spraying.

Table 2. Suspension plasma spraying parameters.

Simple Coatings

Ar flow/slpm 45
H2 flow/slpm 7

Power/kW 27
Current/A 370

Spraying distance/mm 50

2.3. Coating Characterization

Additional insights into the surface morphology were acquired via a field emission
scanning electron microscope (FE-SEM; Hitachi, SU8010, Tokyo, Japan). The chemical
composition of the coatings was determined using a Philips X-ray diffractometer (XRD,
X’Pert MPD, Royal Philips, Amsterdam, The Netherlands; Cu-Kα radiation, potential 40 kV,
current 30 mA), Fourier transform infrared spectroscopy ((ATR-FTIR, Nicolet IS5), and
X-ray photoelectron spectroscopy (XPS, ThermoSCIENTIFICESCALAB250Xi, Waltham,
WA, America). Static water contact angles (WCA) were measured with a Theta Lite optical
tensiometer. The average contact angle values were obtained by taking a mean value of
5 measurements across the sample surface.

2.4. Evaluation of Photocatalytic Activity

The UV–Vis analysis was performed using a UV–Vis diffuse reflectometer (UH4150,
Hitachi, Japan) to examine the light absorption capacity of the prepared samples in the
wavelength range of 200~800 nm. The band gap value of TiO2 was determined by generat-
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ing a Tauc plot curve from the UV–Vis diffuse reflectance data. The absorption coefficient α
is related to the bandgap Eg in accordance with Equation (1):

(αhv)1/n= z × (hv − eg) (1)

where n = 0.5 for direct bandgap semiconductors, n = 2 for indirect bandgap semiconductors,
hν is the incident light energy hν = 1240/λ, λ is the incident wavelength, and Z is a
constant [21].

A photochemical reactor (Guangzhou Xingchuang Electronics Co., Ltd., Guangzhou,
China, XC-BU921-2) was used as the photocatalytic reaction device, with a light intensity of
2 mW/cm2 for UV light and 30 mW/cm2 for visible light, and its UV portion was shielded
using a cut-off filter of 420 nm. Methylene blue (MB, Beilian Fine Chemicals Co., Ltd.,
Tianjin, China) solution was used to simulate polluted water, and the absorbance of MB
solution was tested by a spectrophotometer (Spectrum 752PC, Shanghai, China) as a means
to evaluate the photocatalytic activity of the coatings [22]. The dried coating samples
were placed in a jacketed beaker containing circulating water, and the MB solution (30 mL,
5 ppm) was added to completely immerse the samples. The circulating cooling water was
implemented to mitigate the impact of solution evaporation on the results during light
exposure. First, the entire device was kept in darkness for one hour, then an appropriate
amount of MB solution was removed, and the concentration of MB solution was recorded
by utilizing a UV–Vis spectrophotometer to detect the absorption value of the solution at
664 nm. This concentration was determined as the concentration C0 after the dark reaction.
The sample was introduced into the reactor while the UV/visible light lamp was activated.
An appropriate amount of MB solution was withdrawn every 20 min, and its concentration
was recorded as Ct. After the test, the solution was returned to the beaker. The residual
rate P of the MB solution was calculated by Equation (2).

P =
Ct

C0
×100% (2)

where C0 is the concentration of the solution after the dark reaction, and Ct is the concen-
tration of the MB solution at time t.

By using kinetic modeling, the degradation results of coatings and powders were
compared more intuitively. Due to the fact that, at a certain concentration, the concentration
of organic dyes changes with time in accordance with the Langmuir–Hinshelwood first-
order kinetic equation [23], namely:

(−dCt)/dt = kCt. (3)

Calculating Formula (3) using both sides yields:

− ln
(

Ct

C0

)
= kt (4)

where k indicates the slope of the straight-line fitting illumination time (t) and ln (C0/C)
are the horizontal and vertical coordinates, which represent the apparent rate constants.

3. Results and Discussion
3.1. Coating Microstructure

Figure 2 illustrates the corresponding surface morphologies of 0PT, 5PT, 15PT, and
25PT. It was observed that the coating was all composed of micro- and nano-sized clusters
of small circular or ellipsoidal particles—the formation of the melt semi-melt agglomera-
tions when TiO2 nanopowder particles are heated by flame flow. The solvent evaporates
instantaneously, depositing onto the substrate and creating numerous pores within the
coating. The surface of the composite coatings associating TiO2 and PFA exhibited a floccu-
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lent drawing substance, with the mass of this flocculated, drawn substance increasing as
the PFA content increased.
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Figure 2. Surface high-rate SEM of coatings with different doping ratios: (a) 0PT, (b) 5PT, (c) 15PT,
and (d) 25PT.

As the amount of PFA content approached 25%, the flocculated drawing material
took on a net-like structure, from an irregular, one-dimensional flocculation to a two-
dimensional, net-like structure. Table 3 demonstrates the average surface roughness of the
coatings was influenced by surface morphology of the coatings. Presumably, as a result
of the flocculent material produced, it is evident that the surface roughness of the coating
increases as the PFA content rises. The hydrophobic nature of PFA results from the low
surface energy and the surface roughness of microporous surfaces.

Table 3. Arithmetic mean surface roughness (Ra) of coatings with different PFA contents.

Coating 0PT 5PT 15PT 25PT

Surface roughness
parameter Ra (µm) 1.542 ± 0.5 2.418 ± 0.2 2.725 ± 0.3 4.966 ± 0.4

To further investigate the distribution state of the PFA in the coatings, surface scanning
analyses were performed on the coatings, as depicted in Figure 3. As shown, the elemental
distribution of Ti and F was extremely homogeneous, and as the PFA concentration rose,
the prominence of the green hue on the coating’s surface increased. This correspondence
signifies the presence of a higher concentration of F elements in the coating. The hydropho-
bic nature of the coating is attributed to the presence of the F element, which is derived
from the low surface energy component of the PFA. The Ti element serves as a photocatalyst
within the coating, and the content of the PFA does not appear to impact the amount of
TiO2 on the surface. Consequently, the coating is capable of reacting with oxygen or water
in the air under certain wavelengths of light, leading to the generation of redox active
molecules.
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The cross-sectional structure and EDS analysis of different coatings are presented in
Figure 4. The findings reveal a striking uniformity in the distribution of the F element
content across the composite coatings. Different from the irregular distribution of the
F element in the Al2O3/PFA wear-resistant hydrophobic coating prepared directly by
atmospheric plasma spraying [24], the ceramic–polymer composite coating was prepared
by suspension plasma spraying in this study, so that the F element was evenly distributed in
the composite coating, thus, ensuring the stability of the coating performance and excellent
hydrophobicity.

3.2. Coating Composition

The XRD patterns of the TiO2, PFA powder (PFA emulsion dried at 150 ◦C), and coating
are shown in Figure 5a,b, respectively. The PFA powder had the main crystalline phase
(C2F4)n, whereas the diffraction peaks of TiO2 were 25.3◦, 53.9◦, 68.8◦, 70.3◦, and 78.7◦,
which corresponded to the (101), (105), (116), (220), and (206) crystal planes of the anatase
phase of TiO2, respectively [25]. The diffraction peaks at 41.2◦ and 62.7◦ corresponded
to the (111) and (002) crystal faces of the TiO2 rutile phase, respectively [26]. As shown
in Figure 5b, the coating obtained by SPS had different peaks than the original powder.
The plasma spraying of the TiO2 coatings results in mostly anatase TiO2, but also rutile
and TiO2-x. The phase composition of composite coatings is essentially the same, but
their anatase content differs. The coatings exhibited the presence of both anatase and
rutile phases of TiO2; some additional crystal planes also started to appear, such as the
(113) crystal planes of the TiO2 anatase phase and the (110) crystal planes of the TiO2
rutile phase. The presence of this phenomenon verifies the existence of TiO2 anatase–rutile
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heterojunctions in the coatings, and the heterojunctions still existed after the introduction of
PFA. The formation of this heterojunction suppresses the recombination of photogenerated
carriers to a certain extent, thus improving the photocatalytic activity [27,28]. Table 4 shows
the anatase content of the coatings. The amount of anatase in the 5PT coating is comparable
to that in the 0PT coating. As the amount of PFA content increased, the concentration of
anatase in the coating grew accordingly. The contents of the PFA exhibited a moderate
alleviating effect on the conversion of anatase to rutile. It may be due to the fact that the
PFA in the coating consumes a fraction of the heat in the flame stream, thereby exposing
the TiO2 powder particles to less heat and preserving the anatase phase. As the PFA
content and anatase content in the coating increase, the coating will exhibit hydrophobic
catalytic properties.
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Table 4. The phase content of the coating, derived from Figure 5.

Sample 0PT 5PT 15PT 25PT

Phase content anatase
(%) 70 69 81 85

3.3. FT-IR Analysis of Composite Coatings

In general, APS technology is commonly employed for the preparation of metal or
metal oxide coatings, while high molecular weight polymers are not suitable for APS due
to their characteristics, such as high-temperature resistance and thermal decomposition.
Therefore, it is necessary to investigate whether PFA will undergo decomposition after SPS
technology. Gawne et al. successfully prepared polymer coatings using APS technology,
and by optimizing parameters related to spraying, they were able to melt the white powders
of the polymer without decomposition or defluorination [29]. As illustrated in Figure 6,
infrared spectroscopic tests were conducted on PFA powder (produced by drying a PFA
emulsion at 150 ◦C) and composite coatings, respectively, to better understand the form of
PFA present in the coatings. The results indicated that the peaks in the composite coatings
(1000–1400 cm−1) remained consistent with those observed in the initial PFA powder, with
minimal displacement variation in the distinctive peaks. The polytetrafluoroethylene target
spectrum had two characteristic peaks at 1201 cm−1 and 1150 cm−1 that were attributed to
asymmetrical and symmetrical CF2 stretching. A third weaker peak corresponding to the
CF2 wagging was observed at 642 cm−1, which is consistent with the literature data [30].
This meant that the PFA in the coatings was about the same as it was before spraying.
Research findings indicate that the SPS process melts PFA without inducing decomposition
or stripping, hence preserving the hydrophobic characteristics of the coating.
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3.4. Composite Coating XPS Analysis

To further study the chemical composition of the surface the cotings, the element
contents of PFA powder and coating were determined by using XPS. Figure 7 shows the
XPS spectra of PFA powder. As a result of the spectral analysis, it is evident that the
characteristic peaks of PFA powder are the F, C, and O peaks. Figure 8 displays the XPS
spectra of the composite coatings. Obviously, the surface elements of composite coatings
are primarily composed of C, O, F, Si, and Ti, respectively. Figure 8d shows the Ti 2p
spectrum composed of two dominant peaks positioned at 457.68 and 463.38 eV, which
specifies the characteristic peak of Ti 2p3/2 and Ti 2p1/2, respectively [31]. On the surfaces
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of the composite coatings, the F peak is always the main peak, and the Ti and O peaks
are significantly weaker than the F peak in intensity. The vast C-F bonds with low surface
energy from the PTFE powder are enriched onto the surface of the as-prepared coatings.
This can be directly interpreted that the C-F bonds on the surface of coatings are constituted
as the “material-level” factor for forming a superhydrophobic surface [32]. These results
reveal the presence of a low surface energy material, fluoropolymer (PFA) on the coating’s
surface, which contributes to its hydrophobic properties.

Nanomaterials 2023, 13, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 7. High-resolution XPS spectra of PFA powder: (a) whole spectra, (b) C 1 s, (c) O 1 s, and (d) 
F 1 s. 

 
Figure 8. High-resolution XPS spectra of composite coatings: (a) whole spectra, (b) C 1 s, (c) F 1 s, 
(d) Ti 2 p, and (e) O 1 s. 

3.5. Effect of PFA Content on Light Absorption Performance of Coatings 
Figure 9 depicts the results of the coating light absorption performance test. Figure9a 

shows the UV–visible absorption spectrum of the sample. As can be seen from Figure 9a, 
compared with 0PT, with the increase of PFA content in the composite coating, the UV 
absorption intensity of the coating increased, while the visible light absorption intensity 

Figure 7. High-resolution XPS spectra of PFA powder: (a) whole spectra, (b) C 1 s, (c) O 1 s, and (d) F
1 s.

Nanomaterials 2023, 13, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 7. High-resolution XPS spectra of PFA powder: (a) whole spectra, (b) C 1 s, (c) O 1 s, and (d) 
F 1 s. 

 
Figure 8. High-resolution XPS spectra of composite coatings: (a) whole spectra, (b) C 1 s, (c) F 1 s, 
(d) Ti 2 p, and (e) O 1 s. 

3.5. Effect of PFA Content on Light Absorption Performance of Coatings 
Figure 9 depicts the results of the coating light absorption performance test. Figure9a 

shows the UV–visible absorption spectrum of the sample. As can be seen from Figure 9a, 
compared with 0PT, with the increase of PFA content in the composite coating, the UV 
absorption intensity of the coating increased, while the visible light absorption intensity 

Figure 8. High-resolution XPS spectra of composite coatings: (a) whole spectra, (b) C 1 s, (c) F 1 s,
(d) Ti 2 p, and (e) O 1 s.



Nanomaterials 2023, 13, 3123 10 of 15

3.5. Effect of PFA Content on Light Absorption Performance of Coatings

Figure 9 depicts the results of the coating light absorption performance test. Figure 9a
shows the UV–visible absorption spectrum of the sample. As can be seen from Figure 9a,
compared with 0PT, with the increase of PFA content in the composite coating, the UV
absorption intensity of the coating increased, while the visible light absorption intensity
decreased; it may be caused by the PFA being deposited on the coating surface, reducing
the effective light absorption area of the coatings.
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The direct and indirect bandgaps of the coatings derived from extrapolating the
straight-line portion of the (αhν)2-hν and (αhν)1/2-hν plots are shown in Figure 9b,c and
Table 5. According to the table, both indirect and direct bandgaps of the composite coatings
are larger than those of the 0PT. Nevertheless, in relation to the theoretical band gap value
of TiO2 (3.2 eV), the coating exhibits a marginal reduction in the bandgap. It is speculated
that during the synthesis of TiO2 coating by spraying, TiO2 undergoes reduction by H2 at
elevated temperatures to facilitate self-doping modification with Ti3+, thereby significantly
reducing the bandgap and enhancing the catalyst’s photocatalytic activity under visible
light. The direct bandgaps of the composite coatings increased with increasing content,
but the indirect band gap had little difference. The optical property of a semiconductor is
considered one of the parameters affecting photocatalytic performance since its activity
in the visible region can be enhanced by extending the light absorption into this region.
In the semiconductor industry, any absorption edge shift is attributed to a change in the
bandgap [33], and these results indicate that oxygen vacancies could effectively decrease
the titania bandgap. An electron may be excited from the filling valence band of the band
gap to the empty conduction band by the energy of the photon if the energy of the photon
exceeds the bandgap. Among the two types of electron transitions from the valence band to
the conduction band, indirect bandgap is mostly found in anatase, whereas direct bandgap
is considered for rutile [34]. While, in the direct bandgap, electrons are ejected directly from
the valance band maximum to the conduction band minimum; a momentum change is



Nanomaterials 2023, 13, 3123 11 of 15

needed for the indirect bandgap transition, resulting in an increment of the charge carrier
lifetime in anatase compared to that of rutile. This longer lifetime makes anatase more
efficient for photocatalytic applications, as a larger number of the photo-generated electron-
holes pairs are available to participate in surface reactions [35,36]. It is clear from the dark
gray color of the 0PT that visible light is strongly absorbed. Normally, photocatalytic activity
begins with the excitation of electrons by selective absorption. In addition, considering
the different energy gaps of the rutile phase (Eg = 3.0 eV) and anatase phase (Eg = 3.2 eV),
the main phase (anatase) has a different bandgap. It has been shown that the presence
of the main phase (anatase) significantly affects the light absorption performance of the
coatings, resulting in the presence of the main phase (anatase) significantly affects the light
absorption properties of the sprayed coatings, which may lead to a higher indirect bandgap
of coatings with an anatase-rich phase.

Table 5. Optical direct bandgaps and indirect band gaps derived from (αhν)2-hν and (αhν)1/2-hν,
respectively.

Bandgap 0PT 5PT 15PT 25PT

Indirect (eV) 2.20 2.60 2.75 2.90
Direct (eV) 3.0 3.30 3.25 3.20

3.6. Effect of PFA Content on the Photocatalytic Performance of Coatings

The photocatalytic performance of the four groups of samples was examined by degra-
dation of methylene blue (MB) under UV–Vis irradiation; the results are shown in Figure 10.
In Table 6, the values of MB degradation after 360 min, the reaction rate constant (k),
and the fitted correlation coefficient (R2) indicate the fitted first-order regression equation.
Compared with the 0PT, the composite coatings exhibit higher photodegradation activity.
As the content of PFA increases, the photocatalytic activity of 5PT, 15PT, and 25PT in visible
light significantly improves, which can be attributed to the strong adsorption of PFA in
the coating onto MB. As illustrated in Figure 10a,b, dark adsorption of the coating occurs
between −60 and 0 in the horizontal coordinate, and 5PT, 15PT, and 25PT are more effective
at adsorbing MB than 0PT. Due to the fact that the composite coatings are more likely to
adsorb MB, there are more MB molecules involved in photocatalysis when the light starts
at 5–6, so the catalytic rate of 5PT, 15PT, and 25PT is higher than that of 0PT. It is consistent
with the view that substrate concentration plays a significant role in the catalytic process.

Table 6. Photocatalytic degradation of the MB, rate constants, and correlation coefficients of the fitted
curves of the photocatalytic kinetics.

Simples Light MB Degradation (%) Rate Constant (min−1) Catalytic Rate Constant (R2)

0PT UV 72 0.00305 0.97
Vis 88 0.00496 0.98

5PT UV 91 0.00552 0.998
Vis 90 0.00528 0.98

15PT UV 87 0.00475 0.996
Vis 96 0.00661 0.96

25PT UV 93 0.00553 0.995
Vis 95 0.00743 0.98

3.7. Effect of PFA Content on the Wettability of the Coating Surface

A material is considered hydrophobic when the hydrostatic contact angle exceeds 90◦.
Each composite coating displays excellent hydrophobicity, as seen in Figure 11. Figure 12
illustrates the contact angle value of the coatings. The hydrophobicity angles of the 5PT,
15PT, and 25PT were 110.5◦, 123.5◦, and 134.1◦, respectively, all of which were larger than
90◦ and conferred hydrophobicity. In contrast, the 0PT included only TiO2 and had a
contact angle of 28.2◦. As the content of PFA increases, there is a gradual increase in the
contact angle. The magnitude of the contact angle is influenced by two main parameters:
surface roughness and surface energy controlled by surface chemistry [37,38]. According
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to the roughness results, the roughness increases as the PFA content increases, as does the
contact angle. Furthermore, when the coating contains the low surface energy substance
PFA, the contact angle of coating increases and its hydrophobicity is improved.
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4. Conclusions

A novel hydrophobic photocatalytic self-cleaning composite coating was designed by
combining photoactive TiO2 and the hydrophobic PFA. By using suspension plasma spray-
ing, the effective photocatalytic self-cleaning TiO2-PFA coatings were successfully prepared
on large surfaces without the complexity of using chemicals. The TiO2-PFA coatings present
many circular and ellipsoidal nanoparticles with a flocculent porous micron-nano structure
due to the PFA. The phase composition of TiO2-PFA coatings is mostly anatase TiO2, but
also rutile and (C2F4)n of PFA, as confirmed by XRD and XPS. Thus, the composite coating
(PFA~25%) had a static contact angle of around 134◦, indicating excellent hydrophobicity.
MB, an organic contaminant adsorbed on the surface of the composite coating, was also
successfully removed by photocatalytic oxidation by 95%, resulting in a sustained high
hydrophobicity. These results demonstrate the potential application of this functional
coating PFA/TiO2 in the development of photoactive hydrophobic materials for protecting
against outdoor pollution.
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