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Abstract: MXenes, as a typical graphene-like material, excels in the realm of humidity sensing owing
to its two-dimensional layer structure, high electrical conductivity, tunable chemical properties,
hydrophilicity, and large specific surface area. This study proposed a quartz crystal microbalance
(QCM) humidity sensor using a nanochitin/TizC, Tx MXene composite as a humidity-sensing material.
The morphology, nanostructure, and elemental composition of nanochitin, TizC,Tx MXene, and
nanochitin/Ti3C,Tx MXene composite materials were characterized using transmission electron
microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. Compared to the pure
Ti3CyTx MXene-coated QCM humidity sensor, the nanochitin/TizCp Tx MXene-coated QCM humidity
sensor exhibited a higher sensitivity (20.54 Hz/%RH) in the humidity range of 11.3% to 97.3%. The
nanochitin/Ti3C,; Tx Mxene-coated QCM humidity sensor also demonstrated low humidity hysteresis
(2.12%RH), very fast response/recovery times (4.4/4.1 s), a high quality factor (37 k), and excellent
repeatability and sustained stability over time. Eventually, a bimodal exponential kinetics adsorption
model was utilized for the analysis of the response mechanism of the nanochitin/Ti;C, Tx MXene
composite material-based QCM humidity sensor. This study provides new ideas for optimizing the
moisture-sensitive performance of MXene-based QCM humidity sensors.

Keywords: humidity sensor; quartz crystal microbalance (QCM); nanochitin; Ti3C,Tx MXene; high
quality factor

1. Introduction

Accurate humidity measurement holds significant importance in various fields, such as
agricultural production and storage, industrial manufacturing, food processing, healthcare,
and meteorology [1-4]. With the advancement of technology, researchers have employed
various methods to enhance the performance parameters of humidity sensors, including
resistors [5,6], capacitors [7,8], field-effect transistors (FET) [9,10], and quartz crystal mi-
crobalances (QCMs) [11,12]. Among these, the QCM transducer has gained popularity
as a favored candidate in the realm of humidity sensing owing to its high sensitivity to
nanoscale changes in water molecule mass, strong interference rejection capability, excellent
stability, and digital output [13-16]. The QCM sensor is based on the classical Sauerbrey
equation [17]:

2
2 p
A\/Pqtiq

In the equation, fj represents the fundamental resonance frequency of the quartz
crystal, p; and y, are the density and shear modulus of the quartz crystal, respectively,
and A denotes the electrode area. The mass variation of the surface load on the quartz
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crystal (Am) is equivalently converted into a frequency change (Af) of the quartz crystal’s
resonance. However, the electrode can only adsorb a small number of water molecules,
resulting in a low-frequency shift of the QCM. To address this issue, researchers have
proposed adding a specific sensing material on the surface of the QCM crystal to adsorb
water molecules. Different materials exhibit varying degrees of adsorption strength towards
water molecules. The sensitivity of humidity sensors can be enhanced by altering the
electrode coating material, thereby modifying the mass of water molecules adsorbed on the
QCM’s surface and enabling the fabrication of humidity sensors with higher sensitivity.
In the past few years, a rising number of researchers have been exploring hydrophilic
materials [18] or incorporating other micro-particles into humidity-sensitive materials at
the microstructural level to enhance the adsorption capacity of the materials for water
molecules [12,16,19,20].

In recent years, there has been increasing interest in utilizing two-dimensional materi-
als with a high specific surface area and intricate surface chemistry as highly promising
sensor materials among the diverse range of materials studied in the field [21,22]. Among
all two-dimensional materials, transition metal carbides/nitride (MXene) has emerged as
a prominent candidate. TizC,Tx is the first Mxene that was synthesized by the Gogotsi
group through room-temperature etching of Ti3AlC; in HF [23,24]. T represents functional
groups including =0, -OH, -F, etc., and x represents the quantity of these groups. MXene ex-
hibits higher mechanical strength, higher specific surface area, and better chemical stability
compared to graphene [25-27]. Following HF acid etching, MXene possesses a chemically
active surface with abundant hydroxyl (-OH) and fluorine (-F) groups, rendering it a highly
hydrophilic surface. Moreover, its highly tunable surface functional groups facilitate its
compatibility with other materials, making MXene-based sensitive films hold great po-
tential in the field of humidity-sensitive materials [28]. Shpigel et al. [29] investigated the
water adsorption characteristics of MXene electrodes when immersed in various electrolyte
solutions. An et al. [25] examined the mechanism underlying the humidity response of
MXene/polyelectrolyte multilayer films. This response is attributed to the modulation of
film thickness and interlayer spacing by water molecules, consequently influencing the tun-
neling resistance between MXene sheets. Li et al. [30] developed a QCM humidity sensor
based on MXene, which exhibited a sensitivity of 12.8 Hz/%RH, response/recovery times
of 6 s/2 s, and a hysteresis of only 1.16%RH. Li et al. [14] fabricated QCM humidity sen-
sors using Ti3C,Tx MXene, alkali-treated Ti3C, Ty, and sulfurized Ti3C,Tx via spin coating.
Among these sensors, the QCM humidity sensor based on sulfurized Ti3C,Tx demonstrated
exceptional sensitivity of 105 Hz/%RH at ambient temperature, accompanied by rapid
response and recovery times of 13 s and 6 s, respectively.

However, as a two-dimensional nanosheet with a high aspect ratio and large specific
surface area, MXene possesses inherent structural characteristics that enable it to self-stack.
Furthermore, the loss of surface functional groups during synthesis or environmental
exposure diminishes electrostatic repulsion, promoting stacking behavior. Coupled with
the strong van der Waals forces, self-stacking phenomena are prone to occur [31-33], which
limits the contact between internal active sites and water molecules. Chitin, derived
from crab and shrimp shells, is a natural polysaccharide and the second most abundant
biopolymer on Earth [34]. Nanochitin, as a nanomaterial, offers unique characteristics
due to its nano-sized structure derived from chitin. Understanding its physiochemical
properties is crucial as nanochitin exhibits remarkable properties such as high surface
area, biocompatibility, and mechanical strength. Nanochitin has excellent hydrophilic
properties due to the presence of a large number of hydroxyl (-OH) and amino (-NH2)
hydrophilic groups on its macromolecular chain [35-37]. In this study, nanochitin was
introduced as an interlayer support material in MXene. The excellent hydrophilicity
and dispersibility of nanochitin can help MXene to be better dispersed in an aqueous
solution; it can be embedded in the layers of MXene, and nanochitin is usually positively
charged, which increases the repulsive force between the layers of MXene to prevent self-
stacking. Additionally, the hydrophilic nature of nanochitin provides more active sites
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for the humidity-sensitive film [38]. The nanochitin/TizC;Tx MXene composite material
was first prepared, and then, the deposition of the humidity-sensitive material onto the
central region of the QCM electrode was achieved through the drop-casting method. The
performance parameters of the QCM humidity sensor, including sensitivity, humidity
hysteresis, response/recovery time, repeatability, and stability, were evaluated using a
saturated salt solution humidity chamber. Ultimately, an in-depth analysis was conducted
to elucidate the humidity-sensing mechanism of the nanochitin/TizC,Tx MXene coating
employed on the QCM humidity sensor.

2. Materials and Methods
2.1. Fabrication of QCM Humidity Sensors

The QCM was repeatedly cleaned with deionized water and acetone, followed by drying
in a drying oven at 60 °C for future use. The preparation process of the nanochitin/Ti3CyTx
MXene composite material is depicted in Figure 1. Bulk TizAIC; MAX (4.0 g) was slowly
added to a 40 wt% HF etching solution (80 mL) and stirred magnetically at ambient tem-
perature for 24 h. At 15 °C, ultrasonic oscillation was applied using a constant temperature
ultrasonic device for 3 h. The TizC,Tx MXene nanosheets were collected via centrifugation
at 10,000 rpm for 30 min. A Ti3CyTx MXene solution with a concentration of 1 mg/mL was
prepared, and 5 mg, 10 mg, and 20 mg of nanochitin powder were added to a separate
10 mL of the Ti3C,Tx MXene composite solution. The solution was sonicated for 2 h at
15 °C to obtain a homogeneous solution, which was named NCM-A, NCM-B, and NCM-C,
respectively. Following this, the sensitive material was meticulously deposited at the central
region of the QCM electrode utilizing a facile drop-coating technique until the sensitive
material dried and adhered to the electrodes, thereby enabling the fabrication of the QCM
humidity sensor.
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Figure 1. Schematic diagram of the nanochitin/Ti3C, Tx MXene humidity sensor preparation process
and detection device.
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2.2. Devices

Figure 1 illustrates the experimental configuration, comprising a quartz crystal mi-
crobalance (QCM), vector network analyzer (VNA), phase-locked oscillator (PLO), humid-
ity bottles, and personal computer (PC). The AT-cut QCM with a fundamental frequency of
6 MHz was obtained from Wuhan Haichuang Electronics Co., Ltd., Wuhan, China, with
the diameters of quartz crystal and silver electrodes are 8 mm and 5 mm, respectively.
The PLO and VNA used in the experiment were acquired from Leopboard Technologies
Co., Ltd. (Chengdu, China). The phase-locked oscillator serves as an excitation circuit
designed to measure the resonant frequency of the nanochitin/Ti3C;Tx MXene composite
humidity sensor, facilitating the real-time acquisition of the dynamic frequency changes of
the QCM sensor. Meanwhile, the vector network analyzer was utilized to analyze the reso-
nant behavior and conductance spectrum of the QCM humidity sensor. Subsequently, the
frequency signals and resonance characteristics were transferred to the personal computer
(PC) for meticulous data acquisition and in-depth analysis. Different relative humidity
levels were generated using saturated solutions of K,SO4, KCI, NaCl, NaBr, MgCl,, and
LiCl at 25 °C, corresponding to 97.3%, 84.3%, 75.3%, 57.6%, 32.8%, and 11.3% relative
humidity, individually. All experiments were conducted at ambient temperature (25 °C).
Bulk TizAlC, MAX, nanochitin, hydrofluoric acid (HF, 40 wt%), potassium sulfate (K;SOy),
potassium chloride (KCl), sodium chloride (NaCl), sodium bromide (NaBr), magnesium
chloride (MgCly), and lithium chloride (LiCl), were purchased from Shanghai Aladdin
Biochemical Polytron Technologies Inc. (Shanghai, China). All the solvents and chemicals
were of analytical grade and used without further purification).

3. Results and Discussion
3.1. Structural and Morphological Features

Figure 2a—c exhibit the observed images of Ti3C, Tx MXene, nanochitin, and NCM-C
composite materials using transmission electron microscopy (CM10, Philips, Eindhoven,
The Netherlands). Figure 2a reveals the two-dimensional sheet-like structure of TizC,Tx
MXene. Figure 2b demonstrates that nanochitin consists of needle-shaped microcrystals
with lengths ranging from tens to hundreds of nanometers. Incorporating nanochitin
into Ti3C2Tx MXene effectively prevents the self-stacking of TizCoTx MXene, as shown
in Figure 2c. Figure 2d characterizes the surface functional groups of TizC;Tx MXene,
nanochitin, and NCM-C through Fourier transform infrared spectroscopy (Nicolet iS10,
Thermo Fisher Scientific Inc., Waltham, MA, USA). Nanochitin exhibits two characteristic
peaks at 1616 cm~! and 1553 cm ™!, mainly attributed to the stretching of the C=O bond
in amide I and the combined vibrations of C-N and N-H in amide bending [39]. The
presence of abundant hydrophilic groups in nanochitin is indicated by the two distinct
peaks observed at 3431 cm~! and 3255 cm ™!, corresponding to the stretching vibrations of
O-H and N-H, respectively [39,40]. Furthermore, analysis of the FTIR spectra of NCM-C
indicates the presence of characteristic peaks of both nanochitin and MXene, confirming the
successful preparation of the composite material. In Figure 2e, through X-ray diffraction
(D8 ADVANCE, Bruker, Bremen, Germany), a prominent peak is observed at 6.19° for
Ti3C,Tx MXene, corresponding to the (002) crystal plane of TizCoTx MXene [41], without
significant impurity peaks, indicating an ideal etching effect and the desired Ti3C,Tx MXene
solution. The presence of a strong peak at 5.57° for NCM-C indicates the leftward shift of
the main peak of the (002) crystal plane and increased interlayer spacing in the composite
film [42].
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Figure 2. TEM images of (a) Ti3C,Tx MXene, (b) nanochitin, and (¢) NCM-C composite. (d) FTIR
spectra and (e) XRD image of Ti3C,Tx MXene, nanochitin, and NCM-C.

3.2. Sensitivity

In the domain of humidity sensors, sensitivity refers to the magnitude of change
in the sensor’s output signal corresponding to variations in humidity. It is typically
quantified as the ratio of the change in the sensor’s output signal (frequency shift Af) to
the relative humidity level ARH. Figure 3a illustrates the dynamic frequency response of
the five QCM sensors prepared in this experiment under different humidity conditions. As
shown in Figure 3b, within the humidity range of 11.3% to 97.3%, the maximum frequency
shifts of TizC,Tx MXene, nanochitin, NCM-A, NCM-B, and NCM-C are measured as
624.89 Hz, 632.51 Hz, 785.9 Hz, 1097 Hz, and 1766.61 Hz, respectively. The corresponding
sensitivities are calculated as 7.27 Hz/%RH, 7.35 Hz/%RH, 9.14 Hz/%RH, 12.76 Hz/%RH,
and 20.54 Hz/%RH. These results demonstrate a substantial improvement in the sensitivity
of the QCM humidity sensor based on Ti3C,Tx MXene upon incorporating nanochitin.

3.3. Humidity Hysteresis and Stability

Humidity hysteresis refers to the disparity or delay in the output signal of a humidity
sensor during the process of increasing and decreasing humidity levels. This phenomenon
typically arises from discrepancies in the humidity adsorption and desorption processes of
the sensor’s materials. The presence of humidity hysteresis can lead to inaccuracies and
instability in humidity measurements. Consequently, minimizing hysteresis is a crucial
objective in the design and optimization of humidity sensors. As shown in Figure 3c,
within the range of 11.3% RH to 97.3% RH, the maximum frequency differences for TizC,Tx
MXene, nanochitin, NCM-A, NCM-B, and NCM-C are measured as 33.56 Hz, 13.16 Hz,
39.31 Hz, 28.29 Hz, and 38.6 Hz, respectively. The corresponding humidity hysteresis values
are calculated as 5.37% RH, 2.02% RH, 4.90% RH, 2.54% RH, and 2.12% RH. The TizC,Tx
MXene-based QCM humidity sensor exhibits a significantly higher humidity hysteresis
compared to the nanochitin-based humidity sensor. The introduction of nanochitin into
Ti3C,Tx MXene enhances the sensitivity and concurrently reduces the humidity hysteresis
of the humidity sensor.
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Figure 3. (a) Dynamic characteristics, (b) sensitivity, and (c) humidity hysteresis. (d) Long-term
stability of NCM-C.

As can be seen from the experimental results, all five groups show excellent repeata-
bility. Frequency response tests were performed at various humidity levels every 4 days
for a duration of 24 days to assess the long-term stability of the NCM-C sensor. The results
demonstrate that there is no significant frequency change, indicating excellent long-term
stability, as shown in Figure 3d.

3.4. Response/Recovery Times

In the ambient environment, the humidity-sensitive film of the QCM humidity sen-
sor undergoes a continuous process of water absorption and desorption. If the environ-
ment is stable, these two processes gradually reach dynamic equilibrium. In practical
humidity measurement, changes in the environmental humidity induce alterations in
the frequency response of the sensor. Because the frequency change in the QCM sen-
sor is typically exponential, the response/recovery time refers to the time required for
the sensor to respond to humidity changes and reach a stable state at 63.2% of the final
value. A shorter response/recovery time indicates better sensor performance. We con-
ducted tests on the five sets of humidity sensors we prepared in a low humidity range
of 57%RH to 11%RH. The results shown in Figure 4a indicate that the response times (t;)
for Ti3Cy Ty MXene, nanochitin, NCM-A, NCM-B, and NCM-C are 3.2s,2.5s,3.15,39s,
and 4.4 s, respectively, while the recovery times (t.) are 2.8 s,2.5s,3.0s,3.4s,and 4.1 s,
respectively. The experimental findings demonstrate a positive correlation between the
amount of nanochitin adhered to the surface of Ti3C,; Ty MXene and the corresponding
increase in sensor sensitivity. However, at the same time, the response/recovery time also
becomes longer.
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Figure 4. (a) The response/recovery times and (b) the repeatability times of Ti3C,Tx MXene,
nanochitin, NCM-A, NCM-B, and NCM-C from 57.6% RH (ambient humidity) to 11.3% RH.
The performance indicators of humidity sensors, such as sensing range, response
recovery time, and humidity hysteresis, are common parameters for all humidity sensors.
Therefore, in Table 1, we compared the performance indicators of our sensor NCM-C
with those of sensors based on other sensing principles reported in the past two years.
Table 1 shows that, compared to other published humidity sensors, NCM-C demonstrates
excellent low humidity hysteresis performance, as well as relatively good response and
recovery times.
Table 1. Comparative performance evaluation of humidity sensors based on different sensing
principles.

Sensing Principle Materials Senségllgul;)a nge Hysteresis (%RH)  Res./Rec. Time (s) Ref.
Resistance Gelatin thin fi 15-86 / 4/6.3 [43]
Impedance Ni-Co-P 0-97.5 3 95/27 [44]
Resistance CERP 0-100 / 5/16 [45]
Impedance Self-supported polymer 11-95 8.5 12.5/>100s [46]

Capacitance Purple sweet potato peel 0-85 5 1/2 [47]
Impedance PVA/GF 40-90 / 2/3.2 [48]
Frequency shifts NCM-C 11.3-97.3 2.12 44/41 This work

3.5. Repeatability and Quality Factor

In this experiment, the QCM humidity sensor was subjected to five repeated exper-
iments in humidity bottles with a humidity level of 11%RH, starting from an ambient
environment of 57%RH. The frequency variations of all sensors are recorded and graphi-
cally illustrated in Figure 4b.
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In humidity sensors, the quality factor represents the quality factor of the crystal,
which reflects the energy loss of the crystal. The quality factor is closely related to the
stability of the QCM humidity sensor. Vig and Walls, among others, have found that a
decrease in the quality factor can lead to significant frequency noise [49]. The minimum
achievable resolution and frequency noise of a quartz crystal resonator are closely related
to the quality factor [50,51]:

Am ~ V/Pqlq . 9.6 x 10_8f0 @)
A 2f2 Q
1.0 x 1077
o-y(T)min = XQ (3)

As shown in Equations (2) and (3), it can be observed that as the quality factor increases,
the frequency noise oy, of the quartz crystal resonator decreases, and the minimum achiev-
able resolution becomes higher. This indicates that the resonator becomes more stable.

Conductance spectrum analysis serves as an effective approach for investigating the
electrical characteristics and mechanical properties of QCM sensors. Figure 5a—e present
the conductance spectra of Ti3C,Tx MXene and nanochitin-coated QCM sensors measured
using a vector network analyzer at different relative humidity levels. When the resonant
state is stable, all parameters of the QCM vibration can be detected. As the humidity
level rises, the conductance peak of the QCM sensor undergoes a frequency shift towards
lower frequencies, accompanied by a gradual widening of the half-bandwidth (HBW). The
quality factor (Q) can be defined as the ratio between the maximum frequency value (f)
and the HBW:
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Figure 5. The conductance of (a) Ti3C,Tx MXene, (b) nanochitin, (c) NCM-A, (d) NCM-B, and
(e) NCM-C. (f) Quality factors.

Figure 5f presents the quality factor (Q) of the prepared sensors at different environ-
mental humidity levels. The results demonstrate that the quality factor of TizC,Tx MXene
remains around 100 K without significant changes as the humidity increases. However,
with an increased amount of nanochitin, the quality factor decreases more significantly,
with nanochitin showing the largest decrease, with a magnitude of 30 k. This phenomenon
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can be attributed to the enhanced viscoelastic properties of the sensitive film upon water
absorption. The higher the amount of nanochitin, the greater the adsorption of water
molecules on the film surface, resulting in a larger frequency shift of the sensor. In par-
ticular, we observed that the nanochitin in Figure 5b—e, namely NCM-A, NCM-B, and
NCM-C, exhibits a significant decrease in frequency when the relative humidity (RH)
increases from 84.3% to 97.3%. This phenomenon can be attributed to the rigid nature of
the sensitive membrane in low-humidity environments. However, as the humidity rises
from 84% RH to 97% RH, the viscosity of the sensitive membrane increases sharply due
to water absorption, causing it to lose its rigidity and resulting in a drastic decrease in
its quality factor. Nanochitin-coated sensors degrade more than TizC,Tx MXene-coated
QCM sensors because the mechanical strength (about 300 GPa) of Ti3C, Tx MXene film is
superior to the original nanochitin film, resulting in less energy loss. Table 2 compares the
humidity-sensitive performance of NCM-C with other QCM humidity sensors reported
in the literature. It can be observed that NCM-C exhibits an excellent quality factor and
favorable response/recovery time while maintaining a decent sensitivity.

Table 2. Performance of nanochitin/Ti3Cp Ty Mxene-coated QCM humidity sensors compared to
other QCM humidity sensors.

. Sensing Range Sensitivit Hysteresis Res./Rec. Time
Materials CORE) (H2/%RH) ©oRH) () Q Ref.
ND/MWCNT 11.3-97.3 23.50 2 3/25 23 k [52]
S-TizCy 11.3-97.3 12.8 1.16 6/2 / [30]
NCNCs 11.3-84.3 25.6 5.9 18/10 / [53]
Graphite 11.3-97.3 2.38 / 8/5 43k [54]
PDA@CNC/GO30 11.3-97.3 54.66 4.3 37/5 / [55]
PANI/GO 0-97.3 20.20 / 13/2 6k [56]
BiOCl 11.3-97.3 7.3 2 5.2/4.5 / [57]
ZnS 22-97 10 / 42/259 / [58]
Lignin 11.3-97.3 61 6.2 28/5 1.5k [59]
PPy/SnS, 11.3-97.3 29.0 / 21/4 12k [60]
GO 6.4-93.5 22.1 / 45/24 / [61]
GO/PEI 11.3-97.3 27.25 0.54 53/18 / [62]
NCM-C 11.3-97.3 20.54 2.12 44/4.1 37k This work

3.6. Humidity-Sensing Mechanism

According to the existing literature discussions, Ti3C2Tx MXene and nanochitin sur-
faces possess abundant hydroxyl groups, facilitating water molecules’ spontaneous adsorp-
tion or desorption [28,39,40]. As depicted in Figure 6, at low humidity levels, a minimal
quantity of HyO chemically adsorbs onto Ti3C;Tx MXene and nanochitin surfaces, forming
a monolayer chemisorption of H,O. With an increase in humidity levels, a significant
number of water molecules undergo hydrogen bonding between the hydrogen atoms and
electronegative oxygen atoms, resulting in their physical adhesion to the material surface.
During this process, the variation in the quantity of adhered water molecules leads to
changes in the mass of the QCM surface composite material, subsequently influencing the
resonant frequency of the QCM.

Ti3C,Tx MXene is prone to self-stacking, making it difficult for water molecules to
penetrate. This implies that most active sites of Ti3C,Tx MXene are not exposed, resulting
in lower sensitivity. By incorporating nanochitin into Ti3CoTx MXene, nanochitin adheres
to the surface of the monolayer Ti3CoTx MXene sheets, preventing self-stacking. Moreover,
it offers an increased number of active sites, thereby facilitating the adsorption of a larger
quantity of water molecules and engendering heightened sensitivity.
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(b)

¢ o

Nanochitin

Figure 6. Illustration of the possible humidity-sensing mechanism of (a) TizC,;Tx Mxene and
(b) nanochitin/Ti3C, Tx MXene.

The bimodal exponential kinetics adsorption model is a mathematical model used to
describe the variation of adsorption rate with time in an adsorption system. In contrast to
the common single exponential kinetic model, the bimodal exponential model assumes that
the adsorption rate is represented by a linear combination of two exponential terms. This
implies that the variation of adsorption rate with time is not a simple exponential decay
or increase but is influenced by two distinct exponential terms. The bimodal exponential
kinetics adsorption model is typically employed to describe the adsorption kinetics behavior
in complex adsorption systems, such as the adsorption process on porous materials or
heterogeneous surfaces. As the variation of adsorption rate in these systems may be
influenced by multiple factors, the use of the bimodal exponential model allows for a more
accurate capture of the rate variation during the adsorption process. The equations for
adsorption and desorption of the bimodal exponential kinetics model are as follows [63]:

—t —t
Y = AleﬁADs + Bje™ADs + YO (5)

—t —t
Y = AjeTDEs + Bye™DEs + Y (6)

In Equations (5) and (6), Y represents the total mass of H,O adsorbed by the humidity-
sensitive film on the quartz crystal chip at time ¢, and Yj is the total mass at a stable state. A;
and B; (i = 1, 2) represent the amplitudes of the physical and chemical dynamic processes,
respectively.7j 4ps and Ty 4ps represent the characteristic times for adsorption, while 71pgs
and Typrg represent the characteristic times for desorption. We performed fitting on the
two processes of the NCM-C humidity sensor between 11% RH and 97% RH, resulting in
the following fitted curve and equation.

Am = —1714.53¢ /330 _ 435 680 t/3811 | 1754 53 7)

Am = 2662.05¢ /1% 4 47.78¢1/5913 _ 1607 .47 (8)

As shown in Figure 7, the correlation coefficients (R?) for the fitted adsorbed and
desorbed processes are 0.9963 and 0.9931, respectively. The bimodal exponential kinetics
adsorption model effectively fits the data and provides a highly accurate explanation of the
adsorption and desorption process of water molecules in the composite membrane. Tj 4ps
is 5.30, representing the fast chemical adsorbed process of the first layer of H,O, while
T ADs is 38.11, typically associated with the slower physical adsorbed process of multilayer
water molecules. This observation can be ascribed to the difference in bonding energies
between various molecules as well as to the different orientations of water dipoles over
longer timescales. In contrast, in the desorption process, T1pgs and Tpgs -are 1.96 and
59.13, respectively, which could be assigned to the quick desorbed process of physically
adsorbed H,O and the slower desorbed process of chemisorbed monolayers [64].
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Figure 7. The fitting curve of the modal exponential dynamics model of the NCM-C. (a) Adsorption
process and (b) desorption process.

4. Conclusions

In summary, this study fabricated a QCM humidity sensor based on a nanochitin/
Ti3C, Tx MXene composite material. The introduction of the hydrophilic material nanochitin
into TizCpTx MXene effectively prevented self-stacking and improved the sensitivity of
the QCM humidity sensor. In comparison, the NCM-C QCM humidity sensor exhibited
the highest sensitivity (20.54 Hz/%RH), negligible humidity hysteresis (2.12% RH), rapid
response and recovery time (4.4 s/4.1 s), excellent repeatability, and stability. Further-
more, the study combined a bimodal exponential kinetics adsorption model to elucidate
the humidity-sensing mechanism of the nanochitin/Ti3C,Tx MXene composite material
QCM humidity sensor. In the future, we plan to conduct in-depth research on the sur-
face morphology, the thickness of the active layer, and the hydrophilicity /hygroscopicity
of the material, continuing to explore its humidity-sensing mechanism. The designed
sensor in this work holds great potential as a promising candidate for future humidity-
sensing applications.
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