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Abstract: Slippery liquid-infused porous surface (SLIPS) realized on commercial materials provides
various functionalities, such as corrosion resistance, condensation heat transfer, anti-fouling, de/anti-
icing, and self-cleaning. In particular, perfluorinated lubricants infused in fluorocarbon-coated porous
structures have showed exceptional performances with durability; however, they caused several
issues in safety, due to their difficulty in degradation and bio-accumulation. Here, we introduce
a new approach to create the multifunctional lubricant-impregnated surface with edible oils and
fatty acid, which are also safe to human body and degradable in nature. The edible oil-impregnated
anodized nanoporous stainless steel surface shows a significantly low contact angle hysteresis and
sliding angle, which is similar with general surface of fluorocarbon lubricant-infused systems. The
edible oil impregnated in the hydrophobic nanoporous oxide surface also inhibits the direct contact
of external aqueous solution to a solid surface structure. Due to such de-wetting property caused by
a lubricating effect of edible oils, the edible oil-impregnated stainless steel surface shows enhanced
corrosion resistance, anti-biofouling and condensation heat transfer with reduced ice adhesion.

Keywords: stainless steel; edible oil; corrosion resistance; de-icing; anti-biofouling; condensation
heat transfer

1. Introduction

Oil-impregnated porous surfaces (or slippery lubricant-infused porous surface (SLIPS))
have been explored as a promising candidate to solve various issues related to the surface
of commercial materials. The water-immiscible oil is retained in the porous structure, so
that the oil inhibits a contact of external liquids to porous solid surface. Moreover, the
porous structure stably immobilizes the oil against external disruption such as forced flows.
Therefore, the surface shows a significant repellency to water and mobility of water droplets;
thereby, various functionalities, such as water/oil separation [1,2], self-cleaning [3,4],
corrosion resistance [5,6], de/anti-icing [7,8], and anti-biofouling [9,10], can be realized on
commercial materials. Since the shape and dimension of pore affects not only the stability of
oil in porous structure, but also the performance and durability, an appropriate technology
should be employed to create a porous surface structure regarding the base material. In
the case of glass, TiO2 and SiO2 nanoparticles, which are intrinsically transparent to visible
light, have been used to create the porous surface structure retaining immiscible oil and
maintaining its transparency [11–13]. Chemical conversion treatment creating nanoporous
oxide structures has been used for steels and copper to enhance corrosion resistance and de-
wetting performance [14,15]. Among various techniques, an anodic oxidation, which creates
an oxide layer with cylindrical high-aspect-ratio dead-end pores, has been considered as
the most effective method to fabricate the oil-impregnated porous surface on aluminum
substrate, due to its unique pore geometry and arrangement [16]. In particular, since the
shape and size of nanopores are controllable by fabrication conditions and post-treatments
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(e.g., pore-widening), the anodic aluminum oxide (AAO) is employed to improve the
understanding on enhancement of oil stability in nanopores; and thereby, durability, which
is one of the most significant issues to be solved for practical applications [17–19]. Moreover,
the isolated pore geometry with high porosity of AAO exhibits significantly advanced
durable omniphobicity and oil stability, compared to open interconnected pore structure,
such as nanoneedle and pillared-surface morphology [20]. Based on such understanding,
the anodic oxidation is employed to realize a omniphobic and omnicorrosion-resistant
surface on stainless steel, which is used in many applications, such as chemical plants, heat
exchangers, seawater desalination, marine system, and food processing [20–22].

Despite such efforts to extend application fields and the life-time of oil-impregnated
porous surfaces, another issue for real application is the safety of lubricants (or oils) to
the human body and ecosystem. In particular, even though the perfluorinated liquids
with immiscibility to water and hydrocarbon liquids have been demonstrated to show
superior and unique surface performances, they caused several issues in safety, due to their
difficulty in degradation and bio-accumulation [23–25]. Therefore, the U.S. Environmental
Protection Agency classifies fluorinated materials as “emerging contaminants”. Hence,
research to find alternatives of perfluorinated liquids are important in the real application
of lubricant-impregnated surfaces [26,27].

In this study, we fabricated the multifunctional oil-impregnated nanoporous stainless
steel without using the fluorocarbon compounds, such as perfluorinated lubricants, PTFE,
or FDTS coatings. Instead of perfluorinated lubricants, degradable various edible oils,
which have fewer potential issues in the human body and ecosystem, are used to create
a lubricant layer on the nanoporous surface. A fatty acid (i.e., stearic acid), which is
also degradable in nature and a friend to human body, is employed to hydrophobize the
nanoporous anodic oxide of stainless steel in order to improve chemical affinity between
the edible oil and porous structure. In order to demonstrate the multifunctionalities of
the edible oil-impregnated surface, de-wetting to water, corrosion resistance, de-icing,
condensation heat transfer, and anti-biofouling were evaluated. Then, we discussed the
potential of an edible oil-impregnated nanoporous surface as an alternative to perflurianted
lubricant-impregnated surfaces by comparing the performance reported in previous papers.

2. Materials and Methods
2.1. Pretreatment of Stainless Steel

A mirror-finished AISI 304 stainless steel (SS304) sheet (thickness: 1 mm) cut into 30 ×
30 mm2 size was used as a substrate for surface treatment. In order to remove contamination
and native oxide film, the specimen was degreased and activated in detergent aqueous
solution for 5 min and 15 wt.% HCl (Junsei Chemical, Tokyo, Japan) for 10 min, respectively.
A cleaned SS304 sample was immersed in 1.65 M FeCl3 (Junsei Chemical, Japan) + 12.08 M
HCl + 9.76 M H2O2 (Samchun Chemicals, Seoul, Republic of Korea) aqueous solution
for 20 min as a chemical etching to make the surface rougher. After each treatment, the
specimen was washed in deionized water with ultrasonication for 2 min; then, dried with
compressed air.

2.2. Anodization of SS304

An anodic constant voltage of 60 V was applied to the SS304 sample in an ethylene
glycol-based electrolyte with 0.1 M H2O + 0.2 M NH4F (Samchun Chemicals, Republic of
Korea) at 15 ◦C for 5 min. The platinum mesh was used for the cathode. Then, the surface
was immediately cleaned with acetone, and annealed on a hot plate at 350 ◦C for 1 h to
stabilize the nanoporous oxide layer [21].

2.3. Hydrophobization and Oil Impregnation

The anodized specimen was immersed in an ethanol solution with 0.05 M stearic acid
(Samchun Chemicals, Republic of Korea) for 3 h to hydrophobize the nanoporous oxide
surface. Then, the sample was washed with ethanol and dried with compressed air. As
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a model case, we used oleic acid, which is the main ingredient of edible oil. Considering
practical applications, we also used 5 different edible oils, such as olive oil, canola oil,
sunflower oil, corn oil, and grape seed oil, which can be easily found in our daily life. In
order to completely impregnate the edible oil into nanopores of anodic oxide, we used the
solvent-exchange method. First, the hydrophobized sample with nanoporous anodic oxide
is immersed in acetone for 20 min with ultrasonication. Then, the sample is transferred
to edible oil without drying the wetted acetone on the surface and immersed in edible
oil for 30 min with ultrasonication. We fabricated various type of samples to examine
performances; thus, the name of samples regarding the treatments and oil types were
summarized in Table 1.

Table 1. Sample name regarding the treatments and oil types.

Sample Name Bare SEA SEAS SEASO SEASOl SEASCa SEASSu SEASCo SEASGr

Chemical etching - O O O O O O O O
Anodic oxidation - O O O O O O O O
Hydrophobizing - - O O O O O O O

Oil impregnation - - - Oleic acid Olive oil Canola oil Sunflower
oil Corn oil Grape

seed oil

2.4. Material Characterizations

The surface and cross-section of the nanoporous anodized layer were observed using
a field-emission scanning electron microscope (FE-SEM, MIRA 3, TESCAN, Brno, Czech
Republic). Chemical analysis for hydrophobic coating with stearic acid was conducted
using Fourier-transform infrared (FT-IR, VERTEX 70, Bruker, Billerica, MA, USA) analysis
in the wavenumber range of 500 to 4000 cm−1.

To evaluate the wettability and mobility of liquid droplets on the specimen, the
static contact angle and the contact angle hysteresis of a sessile water droplet (5 µL) were
measured using a goniometer system (SmartDrop, Femtobiomed, Seongnam, Republic of
Korea). To observe the sliding of water droplet on the oil-impregnated surfaces, a sessile
water droplet was gently deposited on the pre-inclined (3◦) surface.

The corrosion resistance of oil-impregnated anodized stainless steel was evaluated by
a potentiodynamic polarization test in a 1.0 M HCl solution at room temperature with a
three-electrodes flat cell and potentiostat (VersaSTAT3, AMETEK, Berwyn, PA, USA). The
saturated calomel electrode (SCE) and platinum mesh were used as reference and counter
electrodes, respectively. Before the potential scan, the specimen was immersed in a 1.0 M
HCl solution for 30 min to stabilize the open-circuit potential (OCP). The potential was
scanned from −650 mV to 800 mV vs. OCP at 2 mV/s rates. To minimize the experimental
error in electrochemical corrosion analysis (i.e., potentidynamic polarization test), we used
seven samples fabricated by each condition. Excluding potentiodynamic polarization
curves with the maximum and minimum corrosion current density, five corrosion current
densities were averaged. Then, potentiodynamic polarization curves, which have the most
similar values (i.e., corrosion current density), on average, were shown as representative
results.

The ice-adhesion force was measured using a horizontal push method in the cus-
tomized experimental setup at the surface temperature of −5 ◦C. A polytetrafluoroethylene
(PTFE) cube was installed on the specimen. When the surface temperature of the specimen
reached to −5 ◦C, the PTFE cube was filled with 1 mL of distilled water and cooled for
30 min to be completely frozen. Then, the maximum shear load was measured by pushing
the PTFE cube with a push–pull gauge. The de-icing force, which is the maximum shear
load to move the PTFE cube with adhere ice, was measured a total of 5 times and then
averaged.

For the anti-biofouling test, we used Pseudomonas aeruginosa bacteria (KCTC 1637),
which can be best seen in daily life and form biofilm. The sample was immersed in 4 µL of
Tryptic soy broth (TSB; Difco Laboratory Inc., Detroit, MI, USA) solution with bacteria; then,
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the bacteria were cultured in an incubator at 35 ◦C for 24 h. After that, each sample was
transferred to another clean Petri dish and rinsed with distilled water 3 times to remove
the contaminated TSB solution. The cleaned sample was stained with 0.1% crystal violet
dye for 15 min at room temperature; then, the stained sample was rinsed with distilled
water 3 times to remove residual dye on the sample surface. The dye-bonded bacteria on
the sample surface were solubilized using 95% ethanol; then, the quantitative nature of
stained cells was measured by optical density (OD) at the wavelength of 570 nm using a
multi-mode microplate reader. Each experiment was carried out five times [28].

The condensation heat transfer was evaluated by the customized-manufactured exper-
imental setup. The specimen was fixed to the copper (Cu) meter bar attached to cooling
block, which is cooled by water circulation at 20 ◦C. Four T-type thermocouples are inserted
in the Cu meter bar with 1 cm spacing, so that the heat transferred from the sample surface
to the cooling block can be estimated by the temperature gradient in the meter bar and
the thermal conductivity of the meter bar. The sample surface is exposed to 99 ◦C, humid
conditions. The temperatures in the meter bar are stabilized by operating more than two
hours. A more detailed setup for the condensation heat-transfer test can be found in the
Supplementary Information (Figure S1).

3. Results and Discussion

In order to create the nanoporous oxide layer, which is necessary for oil-impregnation
and the retention of oil on the surface, a chemical etching, anodic oxidation, and hydropho-
bic coating are employed. Figure 1a shows the schematic fabrication process of the edible
oil-impregnated nanoporous oxide surface on SS. The native oxide layer on SS is removed
and the surface is etched to create a micro-scale rough surface morphology (Figure 1(b-i))
by chemical etching. After that, the sample is anodized in ethylene glycol-based solution.
As a result of chemical etching and anodic oxidation, a porous oxide layer (thickness: 2 µm)
with cylindrical pores (diameter: 25 ± 8 nm) is formed on SS304 (Figure 1(b-ii,b-iii)).
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Figure 1. (a) Schematic procedure for sample preparation with chemical etching, anodic oxidation,
hydrophobizing, and oil impregnation. (b) SEM image of (i) chemically etched SS304 surface,
(ii) surface, and (iii) cross-section of the anodic oxide of SS304. (c) SEM image of (i) before and
(ii) after the hydrophobizing by immersing in stearic acid, and (iii) FT-IR spectra of anodic oxide
surface with and without hydrophobizing (i.e., immersing in stearic acid).

The nanoporous oxide structure, which is naturally hydrophilic, significantly increases
surface roughness compared to the bare surface; thus, the anodized SS304 shows an ex-
tremely low static contact angle of 11.3 ± 2◦ (insert in Figure 1(c-i)). Moreover, the wettable
nanoporous oxide surface to water precludes the observation of water/solid contact line
and measurement of dynamic contact angle (i.e., advancing and receding contact angle).
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Due to this high wettability of the nanoporous oxide surface, the hydrophobizing surface
coating is necessary for realization of the slippery oil-impregnated surface [16]. The hy-
drophilic oxide surface is hydrophobized in stearic acid solution that does not contain
fluorine, causing serious environmental problems and health issues. Figure 1(c-i,c-ii) show
the SEM images of the nanoporous anodic oxide of SS before and after hydrophobizing
in stearic acid, respectively. The coating in stearic acid shows a negligible effect to the
nanoporous oxide structure; however, the static contact angles significantly increase from
11.3 ± 2◦ to 141.1 ± 1◦, indicating that the wettability of surface to the water decreases to be-
come hydrophobic. In addition, due to the hydrophobizing in stearic acid, an enhancement
of peaks for C-H vibration in FT-IR (Figure 1(c-iii)) can be observed in the wavenumber
range of 2800–3100 cm−1. These results indicate that the hydrophobic hydrocarbon molecu-
lar is bonded to the oxide surface to form a monomolecular layer in the stearic acid solution,
so that the chemical affinity between nanoporous oxide surface and edible oil, and the
repellency to water can be enhanced.

The edible oil was impregnated into the hydrophobized nanoporous anodic oxide of
SS; then, the wettability and mobility of water droplet on surfaces were examined (Figure 2).
In addition, sequential images of water droplets on pre-inclined (3◦) surfaces were shown in
Figure S2. Due to the hydrophobizing in stearic acid solution, the nanoporous anodic oxide
surface (SEAS) shows a hydrophobicity with a static contact angle of 141◦. In addition,
the nanoporous oxide structure also contributes to a high static contact angle, following
the Cassie-Baxter rendering and reduction of contact area of the water droplet to a solid
surface [29]. However, the disconnected pore arrangement with the continuous oxide
surface of anodic oxide strengthens the pinning of the liquid/solid contact line [30,31].
Therefore, even though the SEAS shows a static contact angle of 141.1◦ and contact angle
hysteresis of 44.3◦, the water droplet is immobile on pre-inclined surface at 3◦ (SEAS,
Figure S2). The impregnation of oleic acid and edible oils into nanoporous anodic oxide
decreases the static contact angle; however, the mobility of the water droplet is significantly
increased with a significant decrease of contact angle hysteresis (less than 6.0◦) and sliding
angle (less than 3◦, Figure S2). Such a low contact angle hysteresis and sliding angle of
the water droplet is not realized on the edible oil-impregnated hydrophobic SS304 surface
without the nanoporous oxide structure. This is because the oleic acid on hydrophobized
SS304 and SS304 with chemical etching forms an oil droplet, while the oleic acid is extremely
wettable on a hydrophobized nanoporous surface to form a lubricating layer (Figure S3).
These results also imply that the hydrophobic nanoporous oxide layer with cylindrical
pores not only improves the wettability of edible oil to solid surface for repellency to water,
but also enhances the retentivity of oil [21].
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The types of edible oil do not show any significant differences in contact angle hystere-
sis and sliding angle, while the static apparent contact angle on the oleic-acid-impregnated
surface (~78.2◦) is lower than those of the edible oil-impregnated surfaces (e.g., olive,
canola, sunflower, corn, and grape seed oil). The edible oil is generally a mixture of oleic
acid (surface tension: ~32 mN/m) and linoleic acid (surface tension: ~25 mN/m); thus,
the surface tension of edible oil is lower than that of oleic acid. The shape of the water
droplet on oil-impregnated surface is affected by the interfacial force balance among the
oil, liquid, and air; instead of the solid, liquid, and air for the cases without oil impregna-
tion [32–34]. Therefore, the water droplet on edible oil-impregnated surfaces shows a more
spherical shape than the case of oleic acid. Moreover, Krytox lubricants (16–20 mN/m)
generally used for SLIPS have a lower surface tension than edible oils; thus, the Krytox-
lubricants-impregnated surface shows a higher apparent contact angle (~100◦) than the
surface fabricated in this study [20,35]. Despite the difference in the apparent contact angle
of the water droplet by the surface tension of lubricants below the droplet, the sliding angle
(less than 3◦) and contact angle hysteresis (less than 7.0◦) of the water droplet on the edible
oil-impregnated surfaces is almost similar. These results indicates that the oil is lubricating
between the water droplet and porous oxide; thus, the multifunctionalities of SLIPS (using
Krytox (or perfluorinated) oils) can be also realized using the edible oils.

The fluorocarbon lubricant impregnated in the nanoporous surface oxide layer inhibits
the direct contact of corrosive liquid to the base metal, so that the surface significantly
enhances the corrosion resistance by ~99.99% of the protection efficiency [20]. In order
to verify the efficiency of the edible oil-impregnated surface for this anti-corrosion, a
potentiodynamic polarization test was conducted in a 1.0 M HCl solution. The obtained
potentiodynamic polarization curves and estimated corrosion potential/current density
were shown in Figure 3. In this study, we used a HCl solution, which has lower pH than
NaCl solution; thus, the current response in anodic polarization is much more reliable and
reproducible. However, the 304 stainless steel was not shown in the passivation region
in anodic branch, unlike the case of the NaCl solution. Due to the hydrophobizing and
anodic oxidation of stainless steel (SEAS) enhancing the de-wetting of water, the corrosion
potential increased to −0.39 V from −0.41 V (bare SS304) and the corrosion current density
decreased to 1.50 × 10−5 A/cm2 from 2.65 × 10−5 A/cm2 (bare SS304). Such reduction in
corrosion current density is contributed by the formation of the Cassie-Baxter state between
the corrosive liquid and porous surface, which impregnates air within the pores of the
oxide layer under aqueous solution. The impregnation of edible oil (i.e., oleic acid) in this
hydrophobic nanoporous oxide layer further decreases the corrosion current density and
increases corrosion potential, indicating the better corrosion resistance than the case without
oil impregnation. These results indicate that the oleic acid impregnated in the nanopores
are more effective to inhibit the penetration of corrosive liquid toward base stainless steel
than the air, which is entrapped in nanopores rendering the Cassie-Baxter state [29]. The
nanoporous oxide layers with conventional edible oils (e.g., olive, canola, sunflower, grape
seed oils) show a slightly lower corrosion current density and similar potential with the
surface compared to the case of oleic acid, indicating that the impregnation of conventional
edible oils is also effective for anti-corrosion in a manner the same as oleic acid. Moreover,
the types of edible oils did not show significant differences in corrosion current density and
corrosion potential. However, the protection efficiency of the edible oil-impregnated surface
(~99.2%) is lower than the case with fluorocarbon lubricants (~99.9%) [21]. This difference
in protection efficiency is caused by the surface tension of impregnated lubricants. The
surface tension of oleic acid is higher than edible oils; thus, the static contact angle on oleic
acid-impregnated surface is higher than the cases with edible oil, indicating that the water
can more easily contact the nanoporous surface structure. Since the corrosion resistance of
oil-impregnated surface depends on the contact of corrosive media to the surface porous
structure, the oleic acid-impregnated surface shows a higher corrosion current density
than the cases of edible oils. For the same reason, the edible oil-impregnated surfaces
show a slightly lower protection efficiency than the nanoporous surface impregnated with
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fluorocarbon lubricants, which have lower surface tensions than edible oils. Nevertheless,
it should be noted that the impregnation of edible oil for anodized SS304 reduces the
corrosion current density by more than two orders of magnitude compared to bare SS304,
indicating a significant improvement in corrosion resistance.
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Icephobicity is one of the representative properties of lubricant-impregnated surfaces.
In previous reports, the fluorocarbon lubricant-impregnated nanoporous surfaces show a
significantly low adhesion force (~ 0.1 N/cm2) between the ice cube in the shear-detaching
test [36]. Therefore, in order to find out whether the edible oil-impregnated surfaces also
have such icephobicity, we also evaluated the ice-adhesion force. Details of the procedure
and test setup for the shear-detaching test of ice were shown in Figure 4a,b, respectively.
The maximum load of the push–pull gauge while pushing the ice cube attached to the
surface was recorded as the adhesion force of ice. The adhesion force on the bare SS304
was 17.85 N/cm2. Due to the realization of the hydrophobic surface (SEAS), rendering
the Cassie-Baxter state, the adhesion force of ice decreases to 14.19 N/cm2. However, the
decrease of ice adhesion force by anodic oxidation and following hydrophobization is not
so significant compared to the change of static contact angle, because the ice forms an
interlocking with the top of the nanoporous surface [37]. The impregnation of oleic acid
to a nanoporous hydrophobic surface (SEASO) further decreases the ice adhesion force
to 9.27 N/cm2. However, the edible oil-impregnated surfaces show a significantly low
ice-adhesion force less than ~1.0 N/cm2, which indicate the ice cube is easily moved by
a slight push. Even though the oleic acid sufficiently inhibits the direct contact of water
to a nanoporous surface, it can freeze at below 15◦; thus, the dramatic decrease of ice
adhesion was not achieved with oleic acid. Meanwhile, the edible oils did not freeze at the
temperature of the testing surface (~−5 ◦C). Therefore, the edible oils inhibit the formation
of interlocking between ice and the nanoporous surface, so that the ice can be easily moved
by a weak shear force [38–40]. Fluorocarbon lubricant-impregnated surfaces have also been
reported to show a significant low adhesion of ice (~0.1 N/cm2) [36]. Thus, as long as the
lubricants do not freeze, the edible oil-impregnated surfaces would have similar deicing
performance to the surfaces with fluorocarbon lubricants.
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Since the omniphobic lubricant-infused porous surface is introduced, its anti-bioufouling
and inhibition of biofilm formation have been widely explored [22,41,42]. The bacterial
medium is immiscible to the infused lubricant; thus, the bacterial attachment and formation
of biofilm are significantly inhibited. We also tested such anti-bacterial performance of
the edible oil-impregnated surface by incubating Pseudomonas aeruginosa on surfaces for
24 h. Crystal violet was used to stain the attached biofilm cells on surfaces; then, the optical
density (OD) of the stained bacterial solution was measured at 570 nm. Figure 5 shows
the images of stained bacterial solution with the sample and measured OD at 570 nm for
crystal violet absorbance, which is proportional to the attached biomass. The OD of bare
SS304 is 3.21, and it decreased to 2.09 by anodic oxidation. Further decrease of OD to 1.71
was shown for hydrophobized anodic oxide. Such reduction in biofilm is attributed to a
decrease in surface area by anodic oxidation and adhesion force by hydrophobizing with the
low-surface-energy material [43]. Contrary to our expectations, the oleic acid-impregnated
surface (SEASO) showed ~10% higher OD (3.53) than bare SS304. The membrane forming
the cell of Pseudomonas aeruginosa has a similar molecular structure with oleic acid, which
is monosaturated fatty acid; thus, the Pseudomonas aeruginosa adheres better upon contact
with oleic acid. Thus, the Pseudomonas aeruginosa was more cultivated on the oleic acid-
impregnated surface. However, the edible oils also include linoleic acid, which is known to
inhibit biofilm formation under static and continuous conditions without inhibiting the
growth of Pseudomonas aeruginosa [44]. Therefore, the edible oil-impregnated surface shows
significantly reduced OD less than 0.2, which indicates the inhibition of biofilm formation
by more than 93.8% compared to bare SS304. Comparing to SEAS, which is a hydrophobic
nanoporous surface, more than 88.3% of biofilm formation is reduced by the edible oil-
impregnation. Such reduction in biofilm formation by the edible oil-impregnation is less
significant than the perfluorinated lubricant (i.e., Krytox oils), which showed more than
95% reduction for Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli [45].
These difference in anti-biofouling performance is attributed to the composition of edible oil
containing oleic acid, which allows the adhesion of bacterial to oily surfaces. Nevertheless,
it should be noted that the edible oil also contains linoleic acid, which inhibits the biofilm
formation, and the oily surface is immiscible to an aqueous medium; thus, the edible
oil-impregnated nanoporous surface has an anti-biofouling performance.
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When the highly de-wettable surface is cooled, the water droplets condense, and
the water droplets are easily removed from the highly water-mobile surface by gravity.
Therefore, the cold solid surface is continuously exposed to hot and humid conditions; then,
a condensation heat transfer, which is important in water harvesting and desalination, envi-
ronmental control, and power generation systems, is significantly enhanced. In particular,
the condensed water droplet has a larger contact area on the lubricant-impregnated surfaces
than nanoporous superhydrophobic/hydrophobic surfaces; thus, the transfer of latent heat
during the condensation is higher for the lubricant-impregnated surfaces. Therefore, the
lubricant-impregnated surfaces are promising candidates for improving the condensation
heat transfer in various engineering systems. We also evaluated the condensation heat
transfer of edible oil-impregnated nanoporous oxide of stainless steel using a self-fabricated
test setup (see Figure S1). The temperatures of humid ambient and coolant are maintained
at 20 and 99 ◦C, respectively. Then, the measured temperature gradient in the meter bar
is shown in Figure S4 and Table S1. The heat flux by condensation heat transfer from the
sample surface is calculated with the temperature gradient and thermal conductivity of
the meter bar (pure copper 99.9%, 391.1 W/m·K). A detailed method to determine the heat
flux can be found in the Supporting Information. The heat flux on bare SS304 is 2.7 W/m2;
then, it decreases to 2.6 W/m2 by the anodic oxidation. This is because the bare shows
dropwise condensation (Figure 6a), which is favorable to expose the cold solid surface,
while the water condensation on the nanoporous anodic oxide surface shows a filmwise
mode. The hydrophobizing with stearic acid on nanoporous anodic oxides changes the
condensation mode to dropwise; the heat flux increased to 3.2 W/m2. However, even
though the surface is hydrophobized (SEAS), the water droplet still has a significant contact
angle hysteresis, indicating the immobility of the droplet (Figure 2); thus, the heat flux
is not significantly increased. The edible oil impregnation into hydrophobic nanoporous
oxides enhanced the mobility of water droplets (Figure 6); thus, the oleic acid and edible
oil-impregnated surfaces show significantly increased heat flux to ~4.0 W/m2, which is
25% and 48% higher than the hydrophobized surface (SEAS) and bare SS304, respectively.
The enhancement of heat flux on the perfluorinated lubricant-impregnated surface was
reported to be 50% compared to the Cu substrate at a sample temperature of 23 ◦C and an
ambient temperature of 66 ◦C [46]. In our case, the temperatures of the sample and ambient
are 23 and 99 ◦C, respectively. Thus, it is not fair to compare directly with our results. If
it is considered that the heat flux by water condensation increases with the increase of
temperature differences between the sample surface and ambient; the condensation heat
transfer on the perfluorinated lubricant-impregnated surface would be higher than edible
oil-impregnated surfaces. However, the liquid lubricant in the nanoporous structure is not
perfectly immobile; thus, it can be depleted in the porous structure by moving the water
droplet on the surface and releasing to an ambient environment with condensed water. In
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this case, the edible oil can mitigate the impact to environmental pollution, which can be
an advantage compared to perfluorinated lubricants.
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In this study, we fabricated the multifunctional de-wetting surface on stainless steel
without using fluorocarbon materials and liquids, with which we have serious issues in
human body and nature. The nanoporous stainless steel surface with edible oil showed
similar functionalities to the surfaces with fluorocarbon compounds. However, such
superior multifunctionalities of the liquid lubricant-impregnated surface can be degraded
by a depletion of lubricant in the porous structure [47–49]. Moreover, a repeating de-
icing test, which also causes a loss of liquid lubricant on the surface, gradually increases
the ice adhesion strength. Moreover, some interconnected porous structures easily allow
the loss of lubricants against shear flow, which causes the redistribution of the liquid
lubricant layer [50], so that the superior de-wetting performance can be eliminated. Even
though such limitations of a liquid lubricant-impregnated porous surface are reported for
perfluorinated lubricants, the edible oil-impregnated surface cannot avoid these issues
and limitations in durability. Therefore, despite the advantage in practical application of
edible oil-impregnated surfaces with eco and human body friendship, the limitation in the
depletion of liquid lubricant in a porous surface structure should be overcome.

4. Conclusions

Edible oil-impregnation into the hydrophobized nanoporous anodic oxide of SS304
significantly increases the mobility of water droplets on the surface. Enhanced de-wetting of
the nanoporous surface by edible oil-impregnation also realized multifunctionalities similar
to the perfluorinated lubricant-impregnated surfaces, which are generally used. The edible
oil-impregnated nanoporous anodic oxide surface shows a significantly improved corrosion
protection up to 99.2% and reduced ice adhesion by 5.6% compared to bare surface. Due
to the de-wetting to aqueous media and linoleic acid, the edible oil-impregnated surface
inhibits the formation of biofilm by Pseudomonas aeruginosa. Furthermore, a dropwise
condensation and high mobility of the condensed water droplet is caused on the edible
oil-impregnated surface, thereby improving condensation heat transfer performance by
more than 48%. It has been confirmed that the slippery de-wettable liquid-impregnated
porous surfaces are well realized with multifunctionalities; even the eco-friendly edible oils
are impregnated in a nanoporous structure instead of the perfluorinated lubricant.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13050807/s1, Figure S1: Schematic images of (a) the test
setup and (b) cross-section of copper meter bar with sample attachment; Figure S2. Sequential images
of sliding water droplet on oil-impregnated nanoporous oxide surfaces (pre-inclined 3◦) on bare
stainless steel (Bare); stainless steel with chemical etching and anodic oxidation (SEA); stainless
steel with chemical etching, anodic oxidation, and hydrophobizing (SEAS); oleic acid (SEASO);
olive oil (SEASOl); canola oil (SEASCa); sunflower oil (SEASSu); corn oil (SEASCo); and grape
seed oil (SEASGr)-impregnated stainless steel surface with chemical etching, anodic oxidation, and
hydrophobizing; Figure S3. Contact angle of the oleic acid on stainless steel with chemical etching
(SE); stainless steel with chemical etching and anodic oxidation (SEA); and stainless steel with
chemical etching, anodic oxidation, and hydrophobizing (SEAS); Figure S4. Temperature profile in
the meter bar during the condensation test; Table S1. Estimated temperature gradient from measured
temperature in meter bar during condensation heat transfer.
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