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Abstract: Biochar is considered as a promising candidate for emerging sustainable energy systems
and environmental technology applications. However, the improvement of mechanical properties
remains challenges. Herein, we propose a generic strategy to enhance the mechanical properties
of bio-based carbon materials through inorganic skeleton reinforcement. As a proof-of-concept,
silane, geopolymer, and inorganic gel are selected as precursors. The composites’ structures are
characterized and an inorganic skeleton reinforcement mechanism is elucidated. Specifically, two
types of reinforcement of the silicon-oxygen skeleton network formed in situ with biomass pyrolysis
and the silica-oxy-al-oxy network are constructed to improve the mechanical properties. A significant
improvement in mechanical strength was achieved for bio-based carbon materials. The compressive
strength of well-balanced porous carbon materials modified by silane can reach up to 88.9 kPa,
geopolymer-modified carbon material exhibits an enhanced compressive strength of 36.8 kPa, and
that of inorganic-gel-polymer-modified carbon material is 124.6 kPa. Moreover, the prepared carbon
materials with enhanced mechanical properties show excellent adsorption performance and high
reusability for organic pollutant model compound methylene blue dye. This work demonstrates a
promising and universal strategy for enhancing the mechanical properties of biomass-derived porous
carbon materials.

Keywords: inorganic skeleton; mechanic properties; biochar; adsorption performance

1. Introduction

Utilizing non-food biomass to produce renewable energy and bio-based materials is
a sustainable strategy for addressing environmental deterioration and achieving carbon
neutrality. Biochar, a solid material with a porous structure and high carbon content, can
be obtained by removing volatile components from biomass feedstocks through pyrolysis
in an oxygen-limited or oxygen-free environment [1–3]. Compared with fossil-fuel-derived
activated carbon and carbon black, biomass pyrolysis to produce biochar is an energy-
conserving and sustainable process that helps to reduce anthropogenic CO2 emissions [4].
Owing to the advantages of a large specific surface area (1000–2500 m2/g), high-cost per-
formance, rich porosity (0.8–0.9 m3/g), and rich surface functional groups (-COOH, -CHO,
and so on), carbon-based materials extracted from biomass have been used in various
fields such as electrocatalysis, energy storage, and environmental remediation [5–10]. The
main reasons for selecting biomass as the precursor for carbon materials are as follows:
(i) Biomass has Earth-abundant resources mainly composed of cellulose, protein, carbo-
hydrates, and a few inorganic minerals, which can provide in situ doping of heteroatoms
(such as N, S, and P) for carbon materials. The combination of heteroatoms and carbon
materials is crucial for regulating the surface electrochemical and chemical states. Moreover,
co-doping can improve the overall performance of the material thanks to the synergistic
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effect of heteroatoms [11–14]. (ii) Biomass-derived biochar has a porous skeleton and is
formed by overlapping two-dimensional (2D) carbon nanosheets. Two-dimensional carbon
materials are widely used in energy systems and environmental technology fields because
of their large specific surface area, additional electrochemical active sites, and high level
of mechanical flexibility [15–20]. However, in the specific application of carbon materials,
there are still various problems in use [21–27]. For example, at present, the process for
producing vinyl chloride monomer (VCM) adopts fixed bed reaction technology, which
is simple and mature. However, the mechanic properties of the catalyst are poor and it
is easy to pulverize, leading to large consumption and low heat transfer efficiency, which
limits the catalytic performance of the catalyst. In addition, the poor mechanical strength
of biochar materials is unfavorable in terms of transportation, handling, and storage [28].

Biomass is mainly composed of hemicelluloses, cellulose, and lignin, and these com-
ponents are pyrolyzed through different pathways and at different rates (Figure 1a). The
preparation process of biochar is the graphitization process of dehydrogenation and deox-
idation of biomass (Figure 1) [29]. Specifically, the preparation of biomass-based carbon
materials through pyrolysis can be divided into three stages. The first stage is the dehy-
dration process, which is accompanied by the partial breakage of chemical bonds. The
second stage is the evaporation process, during which volatile organic compounds inside
the biomass are released. The third stage is carbonization, which refers to the enrich-
ment of carbon elements and the formation of a relatively stable carbon skeleton structure.
Ideally, the structure of obtained biomass-based carbon materials is a fully graphitized
two-dimensional planar structure. However, owing to the chain breaking of the biomass
precursor and the incomplete graphitization process, the actual microstructure of obtained
biomass-based carbon materials is an irregular graphene-like structure with many defects.
The irregular structure is composed of multiple benzene rings, condensed aromatic rings,
and branched structures. At the molecular level, the excellent mechanical properties of the
biomass precursor come from the natural interweaving of biopolymer fibers and tightly
packed bulk materials. However, after pyrolysis and carbonization, a large number of
defects are formed owing to bond breaking and chain breaking in the carbonization process,
which greatly reduces the mechanical properties of biomass-based carbon materials. Specif-
ically, only a small part of the carbon skeleton in the biomass-based carbon material exhibits
regular circular graphene structures, and most of it is filled with defects and pores, resulting
in an irregular and incomplete structure. Therefore, biomass-based carbon materials are
prone to collapse under even small external forces [30–34]. The application of biochar
functional materials has been the focus of researchers, while the basic but challenging
mechanical properties of biochar have been neglected.
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Figure 1. Dehydrogenation, deoxygenation, and graphitization of biomass. (a) The chemical struc-
tures of hemicelluloses, cellulose, and lignin; (b) the actual two-dimensional plane structure of biochar
with defects.

To improve the mechanical properties of biomass-based carbon materials, in this
work, mechanically enhanced biochar was prepared by adding an inorganic skeleton
reinforcement of tetraethoxysilane (TEOS), fly ash, and cement. There are two technical
routes: (1) the inorganic skeleton can be formed in situ by hydrolysis and condensation of
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TEOS in the process of biochar preparation; (2) the bio-based carbon material is mixed with
inorganic skeleton precursors (fly ash, and cement), which provide an inorganic skeleton
through the hydration of cement and alkaline activation of fly ash to which bio-based
carbon material can attach. There are benefits arising from the formation of the inorganic
skeleton. The formed inorganic skeleton provides effective support for delicate and fragile
biochar, thus improving the mechanical properties of the bio-based carbon materials. This
provides an alternative approach to enhance the mechanical properties of biochar.

2. Materials and Methods
2.1. Materials

The ginkgo leaves were collected from the campus of University of Electronic Science
and Technology of China. These leaves were cleaned, dried, and ground into ginkgo leaf
powder for later use. Ethanol and hydrochloric acid were used as analytical reagents;
the carbon powder used was 200-mesh wooden activated carbon. The chemical reagents
used in the experiment were purchased from Aladdin Bio-Chem Technology Co., Ltd.
(Shanghai, China) TEOS (Si(OC2H5)4, 98%) is an analytical reagent that was purchased
from Aladdin. Fly ash was obtained from Tianchi Energy Power Plant of Xinjiang Tebian
Electric Apparatus Stock Co., Ltd. (Xinjiang, China), with the main components being
silicates and aluminates (75%). Cement was purchased from Bopo Run Refractory Material
Co., Ltd. (Henan, China), with the main component being silicates (85%). All solutions were
prepared using deionized water produced using an ultrapure water machine. Universal
testing machine (MTS Corporation, Eden Prairie, MN, USA); UV-Visible-Near Infrared
Spectrophotometer (Shimadzu Corporation, Kyushu, Japan).

2.2. Synthesis of Ginkgo Leaf Biochar Modified by TEOS

As shown in Figure 2a, ginkgo leaf powder (GL, 2.5 g), water (10 mL), and ethanol
(2.5 mL) were mixed by ultrasound for 5 min to make the mixture uniform, then different
amounts of TEOS (0.5, 1, 1.5, 2, and 2.5 mL) were added, and then hydrochloric acid (1 mL)
was dropped into the mixed solution and it was stirred for 2 h. Then, the mixed solution
was heated in a water bath to 80 ◦C and kept there for 12–15 min (the magneton just leaks
out) until it was mushy. The sample was placed into a porcelain boat for pyrolysis at 800 ◦C
for 2 h with a heating rate of 5 ◦C/min under the condition of argon atmosphere. After
cooling down to ambient temperature, the obtained sample was immersed into the HCl
solution (1 mol·L−1) and stirred for 1 h, and then washed repeatedly with ultra-pure water
until the pH value reached 7. Finally, the black sample was dried in a vacuum oven at 60 ◦C
for 12 h and denoted as GL-TEOS-x (x = 0.5, 1, 1.5, 2, and 2.5). Because the optimal addition
of TEOS is 1.5 mL, GL-TEOS is referred to herein as GL-TEOS-1.5 unless otherwise stated.
As a contrast, the samples obtained from single ginkgo biloba leaf powder and silane with
other conditions being kept constant are named as GL and Si, respectively.

2.3. Synthesis of Inorganic-Skeleton-Reinforced Bio-Carbon with Cement and Fly Ash

As shown in Figure 2b, carbon powder (CP, 2 g), water (2 mL), and cement (0.4, 0.8,
1.2, 1.6, and 2.0 g) were stirred together for five minutes, followed by ultrasonic for five
minutes, and then stirred for half an hour. After drying the mixture at 80 ◦C for 1 h, a
small amount of water was added, and then it was dried at 80 ◦C for 1 h; this was repeated
twice. Finally, the black sample was dried under a vacuum at 80 ◦C for 2 h. In the synthesis
process, the hydration process of cement will form inorganic-gel-like polymers (IG), thus
the obtained carbon materials are denoted as CP-IG-x (x = 0.4, 0.8, 1.2, 1.6, and 2.0).

The synthesis of inorganic-skeleton-reinforced bio-carbon with fly ash is the same
as CP-IG-x, except for the addition of different ingredients: carbon powder (2 g), water
(1.5 mL), 1 M KOH (1.5 mL), and fly ash (0.4, 0.8, 1.2, 1.6, and 2.0 g). Under alkaline
conditions, fly ash is activated. It undergoes a reaction similar to the cement hydration
process for crosslinked inorganic networks, ultimately forming geological polymer (GP).
Therefore, the prepared materials are designated as CP-GP-x (x = 0.4, 0.8, 1.2, 1.6, and 2.0).
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2.4. Materials’ Characterization

X-ray diffraction (XRD) patterns of GL and GL-TEOS-x were obtained on an XRD
analyzer (D8-Advance, Bruker AXS, Karlsruhe, Germany) equipped with a diffracted-beam
monochromator using Cu Kα radiation (50 kV, 40 mA). Infrared analysis was performed
using a Nicolet 170SX Fourier transform infrared (FTIR) spectrometer (Bruker corporation,
Karlsruhe, Germany). The sample was scanned in the range of 400–4000 cm−1 after it
was mixed with KBr and pressed at room temperature. The Raman spectra were obtained
using Raman spectroscopy (Horiba Scientific, Paris, France) with a 532 nm blue laser beam.
Using the Raman test results, the maximum values in the corresponding D-band and
G-band regions were directly taken as their intensities. The surface area was tested by the
Brunauer–Emmer–Teller (BET) method with the use of nitrogen adsorption/desorption
measurement (V-Sorb 2800P, Anhui, China). All samples were degassed in a vacuum at
200 ◦C for 5 h before sorption experiments.

2.5. Pollutants’ Removal

At present, with the rapid development of the printing and dyeing industry, the
environmental problems caused by the discharge of dye wastewater are increasingly
prominent. Most of the dyes currently used (such as methylene blue, acid fuchsin, methyl
violet, and so on) do not degrade easily because of their aromatic structure, causing serious
harm to the water environment and human life and health. Methylene blue (MB) is a
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thiazide dye. Although it has a good effect in the treatment of methemoglobin, if the dose
of MB used is excessive, it will cause diseases such as Heinz-body anemia and red blood cell
morphological changes [35–38]. To investigate the absorption capacity of GL, GL-TEOS-x,
CP, CP-IG-x, and CP-GP-x, MB was selected as the adsorbed substance. In detail, 5 mg of
each of acetonitrile, GL, GL-TEOS-x, CP, CP-IG-x, and CP-GP-x were added into 5 mL of
MB solution with an initial concentration range from 50 to 700 mg·L−1. This was followed
by shaking the mixtures continually for 2 h. Each sample was passed through a Teflon filter
to separate particles from the supernatant. Residual concentrations of MB in the filtrate
were quantified by measuring the UV absorbance at 664.5 nm. The adsorption capacity can
be calculated according to Equation (1).

Qt =
(C0 − Ct)V

m
(1)

where Qt (mg/g) is adsorption capacity of materials at different time intervals; C0 (mg/L)
and Ct (mg/L) are the initial and residual concentrations of MB, respectively; V (L) is the
volume of MB solution; and m (g) is the mass of the absorbent.

2.6. Compressive Strength Test

In order to facilitate the stress test, the material was prepared into cylindrical material,
as shown in Figure 3a. The universal testing machine was applied to test the compres-
sive strength of cylindrical materials, and the measuring curve of the real-time pressure
measuring system was obtained. As shown in Figure 3b, it can be observed that the curve
presents three different pressure displacement intervals: near the sample area, resistance
zone, and compressed sample area. The authenticity and reliability of the mechanical
property curve are verified by repeated experiments. Therefore, mathematical statistics
can be used to scientifically fit the force value (F) of the sample. The method is as follows:
adding the pressure values of each data point in the broken sample area of each curve
and then dividing the total displacement in the broken sample area to obtain the average
pressure of each curve. It is worth noting that all statistical pressures must belong to the
area of the broken sample. The calculation is presented in Formula (2) as follows:

F =
∑

i=j
i=i Fi

Dj − Di
(2)

where Fi and Fj are the pressures at the beginning and end, respectively, of the broken
sample area. At the same time, Di and Dj are the distance to the start length and end length,
respectively, of the broken sample area.
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Then, Formula (3) is used to calculate the compressive strength:

p =
F
S

(3)

where p is the compressive strength and F is the calculated pressure. At the same time, S is
the cross-sectional area of the cylindrical material.

3. Results and Discussions
3.1. Characterization of GL-TEOS

The crystalline structures of GL and silane-modified GL were analyzed by X-ray
diffraction (XRD). As shown in Figure 4, the diffraction peaks of GL at 2θ = 24◦ and 2θ = 43◦

belong to the (002) and (001) faces of graphite carbon, respectively [39–42]. The broad band
of the (002) plane reveals that the biochar from ginkgo biloba leaves has a high graphitiza-
tion degree. After adding TEOS, the intensity of the (002) peak decreased significantly, and
the (100) peak almost disappeared, indicating that the graphitization degree of GL-TEOS
decreased dramatically. In addition, for GL-TEOS, the characteristic peaks at 30.2◦, 40.2◦,
45.8◦, and 60.5◦ are in correspondence with SiO2, and the characteristic peaks at 28.1◦, 32.3◦,
and 45.1◦ matched well with CaSiO4, indicating that silicon enters GL-TEOS in the form of
inorganic substances.
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The morphology and structure of GL and GL-TEOS were evaluated by SEM. As shown
in Figure 5a,b, the pristine GL presents a sponge-like network form with a large number of
continuous interconnected porous structures, which can be attributed to the evaporation
of water and the acid erosion during pyrolysis. The cross-linked porous structure can
provide channels for ion diffusion and transport. After silane modification (Figure 5c,d),
GL-TEOS shows a smooth and dense surface structure with limited pores and channels.
This may be due to the consumption of some HCl in the silane hydrolysis process, resulting
in fewer pore formations and some inorganic components entering the material to fill the
pores, thus significantly reducing the porosity of the material. The energy-dispersive X-ray
spectroscopy (EDX) displays the existence of C, O, and Si signals, and the elements are
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evenly distributed on the surface of GL-TEOS, indicating that Si has successfully bound to
the GL matrix (Figure 5e–h).
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The Raman spectra of GL and GL-TEOS-x present two characteristic peaks at 1350 cm−1

and 1600 cm−1, corresponding to the D-band and G-band, respectively (Figure 6). The D-
band vibration originates from defects and disorder structures in carbon, while the G-band
comes from the vibration of sp2 hybrid carbon in the microcrystalline structure. Accord-
ingly, the D-band is related to the degree of crystal defects, while the G-band represents the
microcrystalline structure, and the degree of defect and graphitization can be evaluated by
the ratio of the D-band to G-band (ID/IG) [43–46]. After modification with TEOS, the ID/IG
ratios of GL-TEOS-x (ratios of x = 0.5, 1, 1.5, 2, and 2.5 assigned to 1.08, 1.18, 1.31, 1.20, and
1.25, respectively) are greater than that of pristine GL (0.8), and the maximum value of ID/IG
(1.31) can be obtained when the amount of TEOS is 1.5 mL. This indicates that the entry of
silane decreases the graphitization degree of GL-TEOS-x. Moreover, from Table 1, it can
be seen that the ID/IG value is consistent with the change in the compressive strength and
product quality. Specifically, with the increase in TEOS, the silicon content entering GL first
increases and then tends to a stable value. The introduction of TEOS leads to an increase in
the disorder of the material and a decrease in the graphitization degree, which is consis-
tent with the XRD results. These results indicate that the improvement in the mechanical
property of the material comes from the inorganic skeleton formed by the entry of silane.
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Table 1. Comparison of the product quantity, theoretical carbon content, and compressive strength of
different carbon materials.

Material Product
Quantity 1 (g)

Carbon
Content (%)

Compressive Strength
(kPa)

GL 0.25 100 0
GL-TEOS-0.5 0.48 55.6 14.3
GL-TEOS-1.0 0.62 36.2 45.3
GL-TEOS-1.5 0.77 30.5 88.9
GL-TEOS-2.0 0.84 32.9 74.9
GL-TEOS-2.5 1.06 31.6 79.8

Si 0.58 0 -
CP 2 100 -

CP-GP-0.4 2.4 83.3 12.3
CP-GP-0.8 2.8 71.4 18.5
CP-GP-1.2 3.2 62.5 24.3
CP-GP-1.6 3.6 55.5 30.3
CP-GP-2.0 4.0 50 36.8
CP-IG-0.4 2.4 83.3 8.8
CP-IG-0.8 2.8 71.4 13.9
CP-IG-1.2 3.2 62.5 34.9
CP-IG-1.6 3.6 55.5 65.4
CP-IG-2.0 4.0 50 124.6

1 The product quantity in Table 1 refers to the specific weight of the prepared product.

Figure 7 shows the FT-IR spectra of silane-modified biochar with different silane
contents. The strong and broad absorption band at about 3430 cm−1 is attributed to the
O-H tensile vibration peak of the GL. It can be found that, compared with GL, the O-H
peak of GL-TEOS-x exhibits a slight shift, which can be attributed to the introduction
of silicon [47]. The absorption bands around 2929 cm−1 and 2855 cm−1 correspond to
stretching vibrations of -CH2 and -CH3 groups on the surface, while the absorption bands
of GL-TEOS-x show negligible changes, which could be due to the formation of silicon
dioxide structures existing inside the material, rather than on the surface. The absorption
bands near 1621 cm−1 and 1464 cm−1 correspond to the total aromatic absorption bands
caused by the stretching of the C-C bond of the benzene ring [48,49]. The characteristic
peaks at 1070 cm−1 and 717 cm−1 are assigned to Si-O-Si and Si-O structures, respectively.
It is suggested that there is a silica network in GL-TEOS-x, which may be formed by the
interaction between the phenolic hydroxyl group in biochar and the alcohol group of
silane [50–52]. The silica network is conducive to promoting mechanical properties by
providing a supporting skeleton. The absorption band near 600 cm−1 is assigned to the
C-O tensile vibration peak on the surface, which is not affected by the introduction of silane,
indicating that there is no reaction between Si and the C-O bond on the surface. Combined
with all of the above results, this implies that the formation of the inorganic skeleton via
silane hydrolysis and condensation is successful.
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3.2. Mechanical Properties of Modified Carbon Materials

In general, there is a limit to the increase or decrease in the compressive strength of
modified materials, and the maximum improvement in compressive strength achieved
by adding a modifying agent after the synthesis of carbon materials depends on the type
of agent chosen. Figure 8 shows the test results corresponding to three materials, with
the appearance of three corresponding regions. For the modified carbon materials that
were prepared, the compressed sample area appears earlier, which may be because the
fractured pieces are also stuck together. The corresponding calculated results are shown
in Table 1, which indicate that the quality of silicon-modified biochar first increases and
then tends toward a constant value with increasing amounts of silicon. The product quality
of GL-TEOS-1.5 is 0.77 g, which is less than the sum of the product quality obtained by
adding only 1.5 mL of TEOS and the product quality obtained by adding only ginkgo
leaves. This may be because, during the thermal decomposition process of the carbon
material, some of the silicon elements are carried away by volatile organic compounds with
the airflow. TEOS was added during the preparation of ginkgo biloba leaf biochar, and
the inorganic framework produced by the hydrolysis and condensation of silicon alkoxide
significantly enhanced the mechanical properties of the biochar. The addition of TEOS
changed the powder-like charcoal material that was originally obtained into a regular
cylindrical shape. The maximum compressive strength of reinforced bio-carbon material
can reach 88.9 kPa, thanks to the strong support provided by the silicon-oxygen network
formed by silane alkoxide. For CP-IG-x, the compressive strength increases with the
addition of cement. The maximum compressive strength of CP-IG-x can reach 124.6 kPa,
which is related to the hydration reaction of cement to form a silicon-oxygen network.
Specifically, after mixing with water, the mineral particles immediately undergo a chemical
reaction with water and form hydration products, resulting in heat release and volume
expansion, forming an inorganic skeleton. In this hydration process, the carbon powder
will adhere to the inorganic skeleton, thereby enhancing the mechanical properties. As for
CP-GP-x, in the synthesis process, the activation of fly ash will form geological polymer
(GP) as an inorganic skeleton. The inorganic skeleton of CP-GP-x has a silicon-aluminum
oxide structure, which is formed by the alternative of silicon tetrahedra and aluminum
tetrahedra through sharing oxygen atoms. This skeleton provides a supporting effect for
carbon materials, which is effective in improving the mechanical properties of carbon
materials. Therefore, the mechanical properties of CP-GP-x are correlated to the amount
of geopolymer, with a maximum value of 36.8 kPa. From the above results, it is shown
that the compressive strength of carbon materials can be effectively improved by selecting
appropriate modification methods and inorganic reinforcement agents.
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3.3. Adsorption Performance of Modified Carbon Materials

The pore structures of GL and GL-TEOS-x were characterized through nitrogen ad-
sorption and desorption tests. Figure 9 shows the nitrogen adsorption and desorption
isotherms and the corresponding pore structure distribution of GL and GL-TEOS-x (x = 0.4,
0.8, 1.2, 1.6, and 2.0). According to the IUPAC (International Union of Pure and Applied
Chemistry) classification, the GL adsorption curve is a type IV isotherm adsorption curve,
as shown in Figure 9a. At low pressures (P/P0 < 0.1), it has a high adsorption capacity,
indicating that there are many micropores in GL. When the relative pressure (P/P0) is in
the range of 0.4 to 1, a type H4 hysteresis loop can be observed, which is related to capillary
condensation, indicating that GL contains a certain amount of mesopores. It is worth
noting that the nitrogen adsorption and desorption curves of the silane-modified biochar
exhibit the same type IV curves, but, with the increase in silane, the adsorption capacity
of GL-TEOS-x decreases. At low pressures (P/P0 < 0.1), the high adsorption capacity
indicates that there are micropores in GL-TEOS-x. However, with the increase in silane, the
proportion and porosity of micropores significantly decreased, which is consistent with the
SEM results. Specifically, the declining trend first increased with the increase in silane and
then became constant, consistent with the change in product quality. As shown in Table 2,
the specific surface area of GL is 1614 m2/g and the total pore volume is 4.41 cm3/g. After
the addition of silane, the specific surface area decreased to 422 m2/g and the pore volume
decreased to 0.77 cm3/g. This is because the introduction of silane changes the structure of
GL-TEOS-x from porous and rough to strict and smooth, resulting in a decrease in pore
volume. Further, with the increase in silane, the changes in pore volume and specific surface
area are consistent with the changes in product quality, indicating that the addition of silane
is the main reason for this change. Figure 9b presents the pore size distribution of GL and
GL-TEOS-x (x = 0.5, 1, 1.5, 2, and 2.5). It can be seen that all materials have both micropores
and mesopores. The proportion of micropores of GL is greater than that of mesopores. The
number of micropores can provide a large number of active sites for ion storage, material
adsorption, and surface reaction. However, GL-TEOS-x with a low apparent pore volume
is dominated by micropores. The pore size distribution of GL-TEOS-x also changes with
the addition of silane, which first decreases and then stabilizes. A higher pore volume and
surface area can greatly enhance the adsorption performance of materials, but the addition
of TEOS leads to a decrease in pore volume, and the adsorption performance may also
slightly decline.
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Table 2. The specific surface areas investigated by Brunauer–Emmett–Teller (BET) (SBET) and pore
volume of GL and GL-TEOS-x (x = 0.5, 1, 1.5, 2, and 2.5).

Material SBET (m2·g−1) Pore Volume (cm3·g−1)

GL 1614 4.41
GL-TEOS-0.5 422 0.77
GL-TEOS-1.0 270 0.31
GL-TEOS-1.5 197 0.25
GL-TEOS-2.0 213 0.28
GL-TEOS-2.5 201 0.26

The adsorption behavior of three modified carbon materials on the dye pollutants
is evaluated by equilibrium adsorption isotherms. As shown in Figure 10 and Table 3,
the three materials present different adsorption capacities. On the whole, the adsorption
capacity of MB increases sharply in the relatively low concentration of MB solution. With
the concentration increasing gradually, the adsorption capacity of MB tends to be saturated.
It is obvious that GL exhibits the highest adsorption capacity (434 mg/g) for MB, which
could be attributed to the high specific surface area and porosity of GL (Figure 10a, Table 3).
However, the adsorption performances of GL-TEOS-x decrease with the increase in TEOS,
and the decreasing trend is consistent with the changes in product quality, indicating that
this attenuation is caused by the decrease in particle size, surface smoothness, pore volume,
and specific surface area of the material after the addition of non-organic components. In
addition, the changes in the adsorption performances of CP-GP-x and CP-IG-x are different
from that of GL-TEOS-x. Specifically, the decreasing trend of adsorption capacity after
silane addition is direct, but the change with the increase in silane is slight. The adsorption
performances of CP-GP-x and CP-IG-x vary greatly with the number of additives. For
pristine CP, the maximum MB adsorption capacity is 194.4 mg/g (Figure 10b and Table 3).
After the addition of geological polymer, the adsorption performance of CP-GP-x slightly
decreases from 171.7 to 93.2 mg/g (Figure 10c and Table 3). Although the performance
has decreased, it is acceptable compared with the significant improvement in mechanical
properties. The adsorption performances of CP-IG-x with the addition of geopolymer
demonstrate a different trend from those of CP-GP-x. The adsorption capacity of carbon
material is reduced twofold after the addition of IG, but the subsequent change is relatively
small (Figure 10d and Table 3). This may be because of the more compact structure of
the geopolymer, resulting in a smaller pore volume. It is worth noting that, although the
adsorption performance has decreased, the material can be formed into blocks owing to
the improved mechanical properties. This is beneficial for the collection and reuse of the
material after simple filtration, effectively improving the utilization efficiency.

Table 3. The maximum adsorption capacity of the sample of GL and GL-TEOS-x (x = 0.5, 1, 1.5, 2,
and 2.5); CP; CP-GP-x (x = 0.4, 0.8, 1.2, 1.6, and 2.0); and IP-CP-x (x = 0.4, 0.8, 1.2, 1.6, and 2.0) to MB.

Material
Adsorption

Capacity
(mg/g)

Material
Adsorption

Capacity
(mg/g)

Material
Adsorption

Capacity
(mg/g)

GL 434 CP 194.4 CP 194.4
GL-TEOS-0.5 325 CP-GP-0.4 171.7 CP-IG-0.4 109.9
GL-TEOS-1.0 251 CP-GP-0.8 155.4 CP-IG-0.8 100.8
GL-TEOS-1.5 134 CP-GP-1.2 139.0 CP-IG-1.2 93.4
GL-TEOS-2.0 177 CP-GP-1.6 99.1 CP-IG-1.6 85.2
GL-TEOS-2.5 136 CP-GP-2.0 93.2 CP-IG-2.0 70.8
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4. Conclusions

In summary, to improve the poor mechanical properties at the macroscopic level of
bio-based materials, an inorganic skeleton reinforcement strategy was proposed and devel-
oped. It was implemented through two approaches as follows: (1) the addition of silane to
the synthesis process of bio-based carbon materials to generate an inorganic framework
in situ; and (2) the mixing of pre-synthetic bio-based carbon materials with a precursor
that can form an inorganic framework, enabling the bio-based carbon materials to adhere
to the generated inorganic framework. The formation of the inorganic frameworks is
verified by systematic characterization of the chemical composition and microstructure of
the as-prepared materials. Although the test results indicate that a decent improvement
in mechanical properties comes at the expense of adsorption performance, the modified
carbon materials with enhanced compressive properties can be molded into blocks, which
facilitates filtering, collection, and reutilization, effectively increasing the utilization effi-
ciency. In addition, the improved reusability of these materials is conducive to achieving
the balance between mechanical and physio-chemical properties. This research provides
new insights for improving the mechanical properties of bio-based carbon materials, thus
encouraging more research to expand the practical applications.
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