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Abstract: Advanced head and neck cancer (HNC) is functionally and aesthetically destructive,
and despite significant advances in therapy, overall survival is poor, financial toxicity is high, and
treatment commonly exacerbates tissue damage. Although response and durability concerns re-
main, antibody-based immunotherapies have heralded a paradigm shift in systemic treatment. To
overcome limitations associated with antibody-based immunotherapies, exploration into de novo
and repurposed small molecule immunotherapies is expanding at a rapid rate. Small molecule
immunotherapies also have the capacity for chelation to biodegradable, bioadherent, electrospun
scaffolds. This article focuses on the novel concept of targeted, sustained release immunotherapies
and their potential to improve outcomes in poorly accessible and risk for positive margin HNC cases.

Keywords: immunotherapy: head & neck cancer; small molecule immunotherapies; neutrophil
extracellular trap immunotherapies; nanofiber scaffolds; immunotherapeutic nanofiber scaffolds

1. Head and Neck Cancers

Head and neck cancer (HNC) is the sixth most common group of malignancies world-
wide, with 890,000 new cases and 450,000 deaths in 2018; its incidence continues to rise,
with a predicted 30% increase in cases of head and neck squamous cell carcinoma (HNSCC)
by 2030 [1–3]. Approximately 65% of cases are present in an advanced state [4], commonly
requiring functionally and aesthetically deforming procedures that impact the quality of
life. Recent research has demonstrated that the incidence of stage IV HNC is increasing
even in developed countries [5]. Despite significant therapeutic advances, the average
five-year overall survival (OS) has improved little over the past 30 years and remains at
approximately 66% [6]. Financially, HNC is also one of the most expensive cancers to
manage [7,8]. This places an enormous burden on patients and health systems alike. New
and effective therapies beyond surgery alone are therefore keenly sought.

2. Nanofibers

Nanofibers are a unique one-dimensional nanomaterial with a variety of physiochem-
ical properties and a cross-sectional diameter that can range from one to hundreds of
nanometres [9,10]. These can be produced from many materials and are characterised
by small pore diameter, high porosity, and a high surface area-to-volume ratio [11–13].
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This suggests versatile use in a range of biomedical applications. Nanofiber production
can be achieved using the following techniques: template synthesis, self-assembly, phase
separation, and electrospinning [14–19]. These are addressed in turn below.

3. Template Synthesis

Nanoporous membranes are used in template synthesis to create nanofibers that are
either solid or hollow. For example, Deeney and colleagues created luminous carbon
nanofibers using microwave pyrolysis of polyethyleneimine and citric acid with a tem-
plate [20]. A dense vertical network of nanofibers averaging a diameter of 200 nm was
generated. Similarly, Li and colleagues utilised a soft-template technique, producing a
microporous device with a nanofiber three-dimensional structure [21]. These nanofibers
were created from Li2FeSiO4/C with diameters ranging from 20 to 30 nm. A key benefit of
this technology is the ability to produce nanofibers from various base materials, namely
metals, polymers, and carbons [20,21]. However, a significant limitation of this method is
the inability to generate nanofibers continuously and sequentially [22].

4. Self-Assembly

Nanofibers can be created by self-assembly via self-organisation of pre-existing com-
ponents, namely proteins or peptides [23,24]. Unfortunately, self-assembly is comparatively
ineffective for producing continuous polymeric nanofibers [25,26]. In a chemistry first,
Chen and colleagues utilised chalcogen-bonding interactions to create nanofibers with
quasi-calix-4 chalcogenadiazole (C4Ch) serving as a macrolide donor with a tailed pyri-
dine N-oxide surfactant serving as a molecule acceptor. TeO or SeO chalcogen-bonding
interactions and the self-assembly process produced the nanofibers. The creation of a
one-dimensional fibre network with a uniform radial diameter of 6.5 nm was confirmed by
TEM imaging [27].

5. Phase Separation

Both self-assembly and phase separation are comparatively slow techniques for pro-
ducing continuous nanofibers [28,29]. Phase separation requires polymer dissolution,
gelation, extraction with a different solvent, freezing, and, ultimately, drying [30]. This
process produces a foam with nanoscale pores. For example, Zhao and colleagues created a
nanofiber made of chitosan acetate using solid–liquid phased separation. Of importance,
temperature, acetic acid, and chitosan concentrations are all capable of altering nanofiber
structure. The study demonstrated the production of nanofibers of 50 to 500 nm size in the
presence of 0.05% (w/v) chitosan and 0.024% (v/v) acetic acid in liquid nitrogen [31].

6. Electrospinning

Electrospinning is an efficient, inexpensive, and technically straightforward means of
producing nanofibers. Fibres are produced essentially by applying an electric field across
a polymer mixture [32–34]. The following outlines the minimal apparatus required to
develop a simple electrospinning facility: a viscous polymer solution, an electrode (solid,
hollow or tubular) that is kept in contact with the polymer solution, the electrode connected
to a high-voltage DC generator, and to collect the nanofibers, a grounded or oppositely
charged surface [19]. A syringe pump affords a consistent, steady flow of polymer [35].
The intent of this electrostatic technique is to induce the ejection of a liquid jet towards a
grounded surface known as a collector by applying a high voltage field strength that starts
as low as 1 KV cm−1 to the polymer solution droplet surface being held at the end of a
spinneret or syringe needle, known as the Taylor cone effect [36,37] (Figure 1).
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Figure 1. Schematic representation of electrospinning apparatus.

The Taylor cone effect identified that a single jet would initially split into several
filaments when the critical voltage (CV) is reached via radial repulsion [13]. This splay
of filaments evaporates the solvent, hardening nanofibers and landing upon the recipient
plate. Importantly, the critical voltage differs between base polymers [38]. Ultimately, the
configuration or shape of the produced fibres depends upon several operational factors,
namely electric field intensity, jet distance, and flux, inclusive of polymer solution variables:
viscosity, concentration, volatility, and dielectric constant.

Many polymers can be difficult to electrospin; however, optimising experimental
strategy and set-up can mitigate many of the associated issues [19,39]. ‘Up-scaling’ or
producing continuous nanofibers on an industrial scale can also be achieved by utilising
multi-jet electrospinning devices that have been reported to process at least 6.5 kg/h of
polymer to create uniform nanofibers, improving the potential for commercially viable
products from laboratory experiments [40,41]. Unfortunately, ‘up-scaling’ is not achievable
with all ‘polymer to nanofiber’ configurations.

Currently, there are several commercially available products generated from elec-
trospinning. These include the Zeus Bioweb, a polytetrafluoroethylene (PTFE)-based
composite [42]. The Bioweb has a large surface area and a pore consistency of 1–4 nm. It
has a variety of described applications, including endovascular stent coatings, scaffolds
for drug loading, and implantable body structures [42]. Similarly, SpinCare, produced by
Nanomedic, is another commercially available electrospun scaffold. SpinCare is a portable
device utilised to create nanofibers for wound healing. The produced nanofiber dressing
has several useful characteristics; a semi-permeable layer allowing for moisture regulation,
can be tailored to a wound and reduces microbial infection [43].

7. Pharmacology Loading onto Electrospun Nanofibers

The potential for loading drugs onto nanofiber scaffolds represents a paradigm shift
in the targeted delivery of therapies to pathology, especially malignancy. To date, excipient
loading onto nanofiber scaffolds has demonstrated potential in wound care [13,17,18],
diabetes [44–46], and cancer [47–50]. There are four typical techniques for loading ther-
apies onto electrospun nanofibers: blending, core–sheath, encapsulation, and chemical
immobilisation (Figure 2).
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8. Blending

Blending is the most common approach and involves initially dissolving or dispersing
the therapeutic agent within the polymer solution [51]. Consequently, drug release is
influenced by molecule distribution within the fibres, as well as the fibres’ morphological
characteristics [52]. In this technique, consideration must be given to the interaction
between the drug and the loadable polymer, as this can influence encapsulation efficacy,
drug dispersal and sustained release profile. It is also imperative to consider the effect of
solvent exposure on the therapeutic agent/s. Given that blending preserves nanoparticle
integrity in the setting of being quick and easy, there is a preference for its use in products
incorporating metal-based therapies [53]. For instance, silver nanoparticles are an effective
anti-septic and antibacterial therapy [54]. Polyacrylonitrile (PAN) electrospun nanofibers
loaded with silver nanoparticles were developed by Rujitanaroj and colleagues, who
demonstrated that PAN scaffolds lacking silver nanoparticles failed to impair S. aureus
or E. coli growth. Comparatively, when compared to vancomycin and gentamycin (for
S. aureus and E. coli), silver nanoparticle PAN scaffolds demonstrated significant and
comparable zones of bacterial inhibition (p < 0.05) [55].

9. Core–Sheath

Co-axial or emulsion electrospinning produces core–sheath nanofibers [56,57]. Co-
axial electrospinning is a dual-stream technique for creating multipolymer fibres; the
internal stream serves as the ‘core’, and the outer serves as the ‘sheath’. Loading the
‘core’ affords protection by the ‘sheath’, mitigating potential loss of the loaded thera-
peutic agent/s, especially if they are at risk of unwanted degradation [58]. In addition,
this technique attenuates therapeutic contact with the sheath polymer blend, which is
commonly produced with solvents, protecting the loaded nanofiber scaffold core. Investi-
gators have recognised the potential benefit of this method for gene delivery due to such
properties [58,59]. It is therefore imperative to inhibit loaded genetic material exposure to
organic solvents and excessive voltages. In electrospinning, a non-woven fibre matrix, Luu
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and colleagues encapsulated condensed DNA into a poly(lactic co-glycolic acid) (PLGA)
core shielded by a PLA sheath. DNA was protected from degradation, remained viable
and demonstrated sustained release over 20 days. Approximately 69–80% of the loaded
DNA was ultimately released from the nanofiber scaffold [60].

Emulsion electrospinning, in contrast to co-axial, utilises a single nozzle to create
nanofibers from two immiscible liquids with core–sheath morphologies [61]. This technique
relies upon chemical separation, accomplished by the addition of an emulsion to the initial
polymer solution and utilising surfactant to keep the phases apart. Emulsion is commonly
utilised for the loading of delicate biological molecules (i.e., enzymes or growth factors) [59].
The emulsion can accomplish the protection of biomolecules or hydrophilic drugs from
solvents that commonly reside in the sheath part of the fibres by dissolving them in the
water phase of a water-in-oil emulsion.

Utilising DNA-based nanoparticles and chitosan loaded on nanofiber or encapsulated
within HA/PLGA solution prior to electrospinning, Nie and colleagues developed elec-
trospun nanofibers made of PLGA/HA containing naked pDNA (encoding BMP-2) [62].
Using human mesenchymal stem cells (hMSC), these researchers found that hydrophilic HA
accelerated pDNA release, increasing hMSC adhesion. When scaffold transfection efficacy
was studied using hMSCs, it was noted that loading of nanoparticles post-electrospinning
was the only viable technique for boosting BMP-2 transgene expression. Interestingly, the
scaffold appeared to exhibit a decline in cell viability over time. Intense transfection of the
nanoparticles produced from chitosan and pDNA was identified as the cause of this issue.
Although such findings using emulsion are encouraging, it is important to note, in contrast
to co-axial electrospinning, that there is potential for emulsion to harm macromolecules
(pDNA) secondary to shearing force and tension between the two phases.

10. Attachment of Potential Therapeutics

Another well-described technique is the modification of the electrospun nanofiber
surface to improve the integration and attachment of therapeutic agents. By utilising this
technique, devices can be developed that modify release dynamics and specifically decrease
burst release for loaded therapeutic scaffolds [63]. Importantly, surface conjugation and
gradual release help loaded drugs (especially enzymes and gene therapy) retain their
biological function against strong solvents and voltage exposure.

Efficacious targeted delivery of therapeutic agents has been proposed as a signifi-
cant benefit of combining gene therapy with biomaterials. In line with the above, elec-
trospun biomaterials show promise for gene delivery in regenerative medicine. For ex-
ample, local targeting of upregulated genes associated with wound chronicity can be
downregulated by delivery of gene therapy utilising siRNA. The effective preservation
of siRNA-MMP-2 from degradation was successfully achieved via a gene delivery sys-
tem: linear polyethyleneimine (LPEI). MMP-2 dysregulation is associated with chronic
wounds. In these experiments, LPEI-siRNA complexes were immobilised upon PCL and
PEG nanofibers and delivered which led to MMP-2 inhibition, promoting chronic wound
healing. Comparing untreated wounds and those treated with nanofiber scaffold alone
or nanofiber scaffolds loaded with LPEI-siRNA, researchers inhibited MMP-2 expression
(p < 0.01) and improved wound healing [64].

11. Post-Treatment

There is potential for therapeutics to be synthesised within nanofiber scaffolds after
the electrospinning process is completed. Commonly metallic, this can be achieved by
electrospinning metallic precursor material within the preferred polymer solution, with
subsequent procedures facilitating nanoparticle creation. A benefit of this approach is
continuous or sustained release of therapeutic agents, either by diffusion or degradation
and release from the nanofiber scaffold.

Gas–solid interaction is a technique of post-treatment loading where nanofiber expo-
sure (to a specific gas environment) catalyses the reaction. First described by Wang and
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colleagues in the setting of electrospun polyvinylpyrrolidone (PVP), lead ion nanofibers
of average 5 nm size [65] were produced within the fibres subsequent to exposure to H2S
gas at room temperature. Similarly, Yang and colleagues investigated PAN nanofibers
electrospun from AgNO3 and exposed them to an environment of hydrochloric acid (HCl),
facilitating the general distribution of AgCl nanoparticles throughout the scaffold [66].

A further technique is plasma treatment, which modifies the chemistry of a hybrid matrix
and provides a platform for nanoparticle synthesis [67]. To date, nanoparticle development
by plasma treatment is thought to be a straightforward and effective process that is also
ecologically friendly. Utilising PAN and AgNO3 precursor, and PAN HAuC14 precursor
solutions, Bei and colleagues produced electrospun nanofibers at 50 W, 100 mTorr, and 10
cm3/min; both varieties of nanofiber were treated using an argo plasma laser. Both approaches
were deemed to generate appropriately sized nanoparticles for systemic delivery [66].

12. Electrospun Nanofibers in Cancer Therapy

Population statistics predict progressive increases in cancer incidence over the coming
decade, 72% since 2008 [68]. Therapy for HNC has changed little in the last 50 years and
is associated with de-forming/functioning surgical procedures and radiotherapy, with
systemic chemotherapy as required. However, systemic therapy can have significant off-
target side effects [69]. Novel targeted therapeutic strategies are a necessity to mitigate
these issues.

There are several instances in head and neck oncology that would benefit from targeted
delivery of pharmacologically loaded nanofiber scaffolds. In the setting of surgical resection,
proximity to important functional anatomy (i.e., eye) may result in a surgical decision to
reduce the resection margin, increasing the likelihood of a close or involved margin and
risk of ongoing disease, recurrence or necessity for adjuvant therapy which may injure
the structure of concern (i.e., radiation-induced optic neuropathy) [70]. Loaded nanofibers
could be delivered intra-operatively to the site of potential or positive margin promoting
residual cancer cell death, mitigating recurrence without the necessity for radiotherapy or
systemic therapies [17,71].

Many polymers have demonstrated potential as nanofibers in the setting of cancer
prevention and treatment. For example, utilising electrospun nanofibers as a cell capture
device may enable earlier and more accurate oncology diagnosis and treatment. Zhang
and colleagues developed TiO2 nanofibers expressing EpCAM and coated upon a silicon
substrate to investigate colorectal cancer diagnosis, where utilised colorectal cell lines
(BGC823 and HCT116) are both noted to express EpCAM [72]. To determine efficacy,
peripheral blood was collected from patients suffering from colorectal and gastric cancers.
Systemically circulating cancer cells were detected as captured, or otherwise, by three
colour immunohistochemical techniques. Experiments concluded that circulating cancer
cells ranged from 0 to 19/0.5 mL blood in colorectal (2/3) and gastric cancer (7/7) patients.
Consequently, confirming an oncological diagnosis with an inexpensive and non-invasive
test would be invaluable in diagnosis, management, and prognosis. This technology has
enormous potential in cancer diagnosis.

Similarly, Li and colleagues developed PAN fibres utilising 3-aminopropyltriethoxysilane
as the electrospinning precursor. The presence of amine groups on the nanofiber surface
facilitated negatively charged nanoparticles to be conjugated. In this study, platinum was
employed as a negatively charged loading molecule. Platinum, as a radiosensitiser, is
a common chemotherapeutic agent utilised in HNC. It is also used in the photothermal
treatment of malignancy. A high nanofiber loading rate (5.61%) was achieved secondary to
evenly distributed, cationic amine groups [73].

Chen and colleagues successfully demonstrated the anti-tumour activity of PLA nanofibers
loaded with 15% titanocene dichloride in vitro. Utilising lung SPAC-1 cancer cells, researchers
demonstrated that titanocene and loaded titanocene (PLA nanofibers + titanocene) inhibited
cancer cell development [74]. Additionally, Ignatova and colleagues produced electrospun
poly(L-lactide-co-D, L-lactide) fibres loaded with quaternised chitosan together with DOX
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on HeLa cells, discovering that these fibres attenuate cellular activity with greater potency
than DOX alone for the first 6 h [75]. This research identified that these electrospun fibres,
loaded with quaternised chitosan, were effective when utilised in conjunction with DOX
to treat human breast cancer cell lines. In these experiments, drug-loaded quaternised
chitosan significantly inhibited the proliferation of carcinoma cells, suggesting electrospun
scaffolds may be used successfully for at least some cancers [76].

Luo and colleagues examined the anticancer effect of electrospun PEG-PLA nanofibers
containing hydroxycamptothecin (HCPT) with mouse hepatoma H22 cells and found that
HCPT was initially released in bursts followed by a period of sustained release in vitro [77].
Results showed that HCOT was highly sensitive secondary to a lactone ring, with up to
90% of the loaded drug released after 20 days’ incubation, and PEG-PLA fibre degradation
increased in the presence of the drug. This loaded nanofiber composite subsequently
demonstrated effective cytotoxicity towards H22 cancer cells in an in vivo murine model.

Deng and colleagues produced nanofibers by electrospinning thermoresponsive pNI-
PAM in a core–sheath arrangement with pNIPAM as the shell and polylactic acid PLA as
the core [78]. PLA nanofibers were prepared in the presence of combretastatin A4 (CA4),
a tubulin polymerisation inhibitor, and N,N’-methylenebisacrylamide cross-linker. The
study found that decreasing the critical solution temperature varied drug release. When
below the lower critical solution temperature (LCST), the rate of CA4 release was mitigated
by the pNIPAM shell, with the rate of drug release increasing significantly when greater
than the LCST.

Researchers have recently identified techniques to stimulate electrospun nanofibers
to respond to different tumour microenvironment conditions to become active. Acidity,
reactive oxygen species, light and magnetic fields have all been shown to enable targeted
activation of scaffolds and mediate tumour cell death [79–81].

13. Chelation of Immunotherapies to Electrospun Nanofiber Scaffolds

Compared with traditional HNC therapeutic strategies, namely surgery, radiotherapy
and platinum-based chemotherapy, new immunotherapeutic agents, specifically human-
ised antibodies targeting the PD-1-PD-L1 cell receptor system, have heralded a paradigm
shift in treatment. Known as immune checkpoint inhibitors (ICI), these have demonstrated
improved efficacy and lower toxicity in patients with advanced HNSCC that is recurrent or
metastatic [82–85]. PD-1 is targeted by nivolumab and pembrolizumab, whilst avelumab,
atezolizumab, and durvalumab are approved PD-L1 inhibitors [86,87].

PD-1 is mainly expressed in T cells, and the PD-1 pathway plays a role in regulating
previously activated T cells [88]. PD-L1 and PD-L2 are expressed by a variety of tumours,
including HNSCC [89]. The interaction of PD-L1/PD-L2 with PD-1 on T cells leads to
immune evasion [88]. Furthermore, elevated levels of PD-1 are biomarkers for T cell
exhaustion, a differentiation state in chronically stimulated T cells; this state is linked
with the loss of T cell function [90]. However, resistance is currently a major limitation of
targeting PD-1. Mechanisms of resistance are complex and include expression of multiple
immune checkpoints that suppress T cell function (such as LAG-3 and TIM-3), deficiency in
antigen presenting machinery (APM), and gene expression (such as PI3K/AKT and JAK2
mutations) leading to T cell exhaustion [91]. Indeed, pembrolizumab has a response rate of
only 15% in HNSCC [92].

To date, although antibodies have recently been chelated to electrospun nanofibers
scaffolds for the detection of illicit medications [93], and their combination has also been
raised as a potential benefit for biosensing analytical tools [94], no literature currently
exists for their potential as a combination therapy in HNC. Given the electrospinning
environment, post-treatment chelation of antibodies to the nanofiber scaffold may be most
appropriate; however, fibre specificity for the Fc domain of the antibody would be required.
Certainly, targeted delivery to the tumour and/or tumour bed may help attenuate adverse
events observed with systemic delivery of antibody immunotherapies.
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Alternatively, small molecule immunotherapies (SMIs) may offer characteristics more
amenable to nanofiber chelation and sustained release profiles. SMIs are potentially less ex-
pensive than antibodies and can target intracellular signalling and transcriptional pathways
and mechanisms upstream of PD-1-PD-L1 receptors expressed on the cell surface. Table 1
provides details in respect to clinical trials that have been conducted using SMIs for HNC.
These strategies have targeted a range of key mediators, spanning transcription factors
(signal transducer and activator of transcription 3, aryl hydrocarbon receptor, peroxisome
proliferator-activated receptor-alpha) and stimulator of interferon genes (STING), an adap-
tor protein that induces the secretion of type I interferons and proinflammatory cytokines.
Delivering these directly to the tumour and/or tumour bed will increase the concentration
of SMI delivered to the tissue and may also overcome issues with hydrophobicity associated
with oral delivery techniques, metabolism, and tissue distribution.

Neutrophil extracellular traps (NETs) have recently been demonstrated to play an
integral role in cancer metastasis [95]. Multiple NET-based therapies are currently being
tested in pre-clinical and clinical models and may also provide an opportunity for chelation
to electrospun nanofiber scaffolds for delivery to the post-resection tumour bed to mitigate
the potential for tumour metastasis. Table 2 provides a summary of agents targeting NETs
in different phases of development.

14. SMI Nanofiber Scaffold Delivery to the Difficult-to-Access Primary HNC

The development of bioadherent, sustained release nanofibers may provide an op-
portunity for anti-tumour therapies, specifically SMIs, that can be delivered by minimally
invasive techniques to the primary tumour to promote immunorecognition and tumour ly-
sis. This may overcome the necessity for functionally and aesthetically destructive surgical
or radiotherapy techniques targeting areas that are difficult to access, namely the sinonasal
vault, nasopharynx, and larynx.

Targeted delivery to the tumour site would avoid excessive systemic drug circula-
tion, attenuating off-target side effects to the tissues of the body. Sustained compound
release enables therapeutic dose delivery to the primary site whilst limiting systemic drug
concentration. Local release kinetics will need to be determined for a given drug. An under-
standing of biological interactions with local tissue would also help in avoiding systemic
side effects Additionally, this may reduce the necessity for repeated drug administration,
commonly used in current systemic chemotherapy or immunotherapy regimes [96].

Immunotherapy chelated nanofiber scaffolds could be delivered endoscopically to
early-stage (T1 or T2) tumours of these sites, releasing the brakes of the immune sys-
tem within the tumour microenvironment [97]. Endoscopic delivery (nasendoscopy or
microlaryngoscopy) could involve a direct application to the affected tissue bed (as an
‘on lay’ to the tumour) or after resection of the tumour (i.e., laser resection of early la-
ryngeal cancer or ‘piecemeal’ resection of a sinonasal or anterior skull base tumour) to
the resection bed. Given recently identified neoadjuvant benefits of immunotherapy in
melanoma, oral cavity SCC (OCSCC) and locoregionally advanced OCSCC, oropharynx,
hypopharynx and larynx [98–102], there may even be potential to utilise this technique to
facilitate tumour shrinkage prior to surgical intervention or even generation of tumour
targeting memory cells to mitigate future recurrence and improve disease-free and overall
survival [103,104]. There may also be potential for a similar device to be developed for
delivery to cutaneous malignancies.

This approach may also mitigate the risk of adverse events caused by systemic delivery
of immunotherapy agents. Adverse events have been reported in 68.2% of patients receiving
monoclonal antibody immunotherapies, with grade III/IV events occurring in 10% of
recipients [105,106], even after 2 years [107].

15. Nanofiber Scaffold Delivery to Support Immunorecognition in the Positive Margin

Ranging from 10.8 to 22.7% of cases, positive post-operative surgical resection margins
remain a significant issue in the management of HNC [104,108,109]. Positive margins are
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associated with a worse prognosis, a local recurrence rate of 90%, and a reduction in 5-year
overall survival to 10% in oral cavity cancer [110–114]. A recent study has demonstrated
that radiotherapy does not improve survival in positive margin cases [115]. Higher positive
margin rates in HNC likely represent the balance between providing a clear surgical margin
and reducing the necessity to remove functionally important structures, compared to
surgical ablation of cancers in other areas of the body.

Although likely to be multifactorial, these poor outcomes may, at least in part, be
attributable to the repopulation phenomenon, dormant tumour cell activation and exacer-
bation of tumour cell migration caused by NET-mediated inflammatory cell processes asso-
ciated with wound healing and loss of tissue boundaries secondary to surgery [116–122].
Certainly, elevated concentration of circulating NETs in the post-operative period has
been associated with an increased risk of recurrence and metastasis [123–125]. High-risk
positive margins are an appropriate group in which to evaluate the potential utility of
nanofiber immunotherapy chelated scaffolds to the primary and regional surgical beds to
aid immunorecognition of the tumour whilst also reducing tumour cell metastasis.

Localised delivery of small molecule immunotherapy scaffolds could provide new oppor-
tunities for synergistic or adjuvant therapy in current treatment modalities and help to control
residual locoregional cancer prior to delivery of radiotherapy or chemoradiotherapy. There
may also be potential for this approach to provide long-term cell-mediated immunological
memory, reducing the risk of tumour recurrence. Scaffold degradation duration could be
associated with adverse delivery of adjuvant radiotherapy. Whether a degradable scaffold may
affect tissue penetration or cause beam scatter would be an added important consideration in
determining the feasibility of incorporating scaffold delivery into treatment strategies.

16. Limitations

Like all new therapeutic strategies, it is difficult to determine all the potential issues
that may arise; however, several potential challenges can be extrapolated from previous
interventions associated with the insertion of biomaterials into human tissue beds.

16.1. Foreign Body Reaction

Implantation of foreign material often leads to an inflammatory and fibrotic process
mediated by an immune system attempting to degrade it [126]. Although it is hoped that a
nanofiber scaffold degrades within a short period, limiting regional fibrosis, it remains a
possibility. Regions of ongoing inflammation and or fibrosis may affect the interpretation of
diagnostic imaging tests (i.e., FDG PET/CT), making it difficult to exclude persistent and
or recurrent disease [127]. Animal studies to investigate degradation rate, and locoregional
immunological and fibrotic reactions will help to quantify this issue.

16.2. Adjuvant Therapy

Scaffold degradation duration could also be associated with adverse delivery of
adjuvant radiotherapy. Whether a degradable scaffold may affect tissue penetration or
cause beam scatter resulting in under- or overdosing of ionising radiation contributing to
treatment failure would also be an important consideration in determining the feasibility of
incorporating scaffold delivery into radiotherapy-associated treatment strategies. Certainly,
this has been a previous issue with titanium in the reconstruction of the craniofacial skeleton
and materials like glass fibre-reinforced composite and polyether ether ketone to a lesser
degree [128]. Preclinical radiochromic and diamond detector assessment would aid in
identifying whether scaffolds affected radiation delivery characteristics.

16.3. Immunotherapeutic Sustained Release Profile and Locoregional Tissue Perfusion

Optimising release kinetics to ensure effective dosing and tissue penetration will
also require thorough assessment. Head and Neck subsite delivery will also need to be
considered, as release dynamics within the sinonasal vault may differ significantly from
the soft tissue compartment of the neck. Further to this, the effect of vasculogenesis
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and regional tissue perfusion will also affect diffusion characteristics and locoregional
tissue concentrations of a given immunotherapeutic. The high surface area of scaffolds
improves compound loading, while nanofiber length, chemical composition, diameter, and
surface functionalisation have been shown to influence drug absorption rates, which can
be optimised for specific disease applications and tissue types [129–131].

16.4. Endoscopic Delivery

Characteristics associated with easy delivery will also need to be explored. Will specific
instruments be required, will it emulsify, disintegrate, or fragment upon contact with tissue
or fluids, or will it be difficult to distribute over the tissue bed and all considerations that
will require assessment and optimisation.

Consequently, preclinical studies will play a significant role in determining efficacy
and helping to understand and overcome some of these potential challenges.

17. Personalising SMI Electrospun Scaffolds
17.1. Clinical Scenarios

Scaffolds could be beneficial as a personalised therapeutic option in several patient
groups, namely patients unsuitable for standard-of-care therapy (i.e., patients with multiple
medical co-morbidities and advanced age) or patients with tumours not amenable to
surgical intervention (i.e., locally invasive or near important functional structures). SMI
Scaffolds could also be beneficial in tumours deemed too large for resection, where a
reduction in size after therapy may enable subsequent surgical intervention.

17.2. Specific Biomarkers

Biomarkers are gaining importance in aiding clinical decision-making and personalis-
ing therapeutic strategies. Although there is a wide variety of tumour biomarkers currently
being investigated within the HNC space [132], at this time, tumour PD-L1 expression and
tumour mutation burden (TMB) are being used clinically to help guide immunotherapeutic
decision making [133,134]. The American Society for Clinical Oncology (ASCO) recently
published a guideline supporting the benefit of quantifying these biomarkers in tumour
specimens [135]. Although there has been a focus in this article towards SCC associated
HNC, there is also potential to utilise nanofiber scaffolds in differentiated thyroid cancer.
Tyrosine receptor kinase inhibitors targeting RET and BRAF pathways (i.e., sorafenib and
lenvatinib) could also be chelated to scaffolds and delivered to the surgical bed to mitigate
systemic side effects [136].

Table 1. SMIs in HNC clinical trials [137].

Drug Target Phase n NCT ID Objective Results

BAY2416964 AHR 1 78 NCT04069026 [138] Safety/tumour response study
in advanced HNSCC

Safe and demonstrated promising
anti-tumour activity in previously

treated patients

TPST-1120 PPAR-a 1/1b 38 NCT03829436 [139]
TPST-1120 in combination with

Nivolumab vs. TPST-1120
alone for advanced HNSCC

Combination therapy superior to
monotherapy with predominately
acceptable adverse event profile

AZD9150 STAT3 1b/2 30 NCT02499328 [140]

ASD9150 with Duravalumab
vs. Duravalumab alone; in

recurrent or metastatic HNSCC
refractory to platinum-based

chemotherapy

Combination therapy superior to
Duravalumab alone with an

acceptable adverse event profile

MK-1454 STING 1 157 NCT03010176 [141]

MK-1454 (ulveostinag) with
concurrent pembrolizumab vs.
MK-1454 alone for advanced

stage HNSCC

Concurrent therapy superior to
monotherapy alone with an

acceptable adverse event profile
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Table 2. Potential NET-Based Therapies.

Target Drug Intended Mechanism of
Action

Potential Impact on Tumour
Metastasis

Histones
STC3141 [142],
Unfractionated
Heparin [143]

Small/large polyanions that
interact electrostatically with
histones, thereby neutralising

their pathological effects

Inhibition of histone-dependent
pro-tumorigenic pathways such as

TLR4/histone-dependent
immunosuppression in TME,

histone-dependent endothelial or
platelet activation/thrombosis that

help confer tumour survival and
metastatic ability

Neutrophil Elastase (NE) Sivelestat [144]
Competitive inhibitor of the

NET-expressed
serine protease

NE is integral to NETosis and has
been shown to attenuate hepatic

metastasis in a preclinical model of
colorectal cancer

CXCR1/2:IL-8
SX-682/Avarixin [145,146],

NCT03161431,
NCT03473925

Neutrophil chemotaxis and
NETosis inhibition

Suppressing myeloid
cell recruitment

PKC Metformin [147–151] Attenuates NETosis by
inhibiting PKC

Studies show metformin-mediated
reduction in circulating NET

markers and abrogation of NET
promoted carcinogenesis in

preclinical models

COX-1 Aspirin [152–154]

Inhibition of
platelet-dependent expression

of neutrophil chemokines
CXCL4 and CCL5

Studies have demonstrated the
anti-metastatic effects of

ameliorating NET production via
COX-1 inhibition.

DNA Dornase alfa [155,156] Cleaves extracellular DNA

rhDNase 1 has been shown to
attenuate metastasis in preclinical

models of lung, breast, and
pancreatic cancer

18. Concluding Remarks

Overall survival for advanced HNC has improved little over the past 30 years; the
financial burden for health systems is high, and intervention commonly exacerbates tissue
destruction. Antibody-based immunotherapies have provided a new therapeutic approach
for this unmet clinical need. However, response rates in HNC patients are low and resis-
tance to therapy can develop. The emerging field of SMIs may represent a complementary
or even an alternative approach. Recent developments in nanomaterial technology, no-
tably the growing use of electrospun nanofiber scaffolds in conjunction with SMIs and
other anti-tumour agents, are poised to provide a paradigm shift for targeted therapeutic
strategies in HNC, overcoming issues associated with systemic adverse reactions, cost, and
drug concentrations.
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