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Abstract: This paper reports a high-performance humidity sensor made using a novel cellulose
nanofiber (CNF)–silver nanoparticle (AgNP) sensing material. The interdigital electrode pattern
was printed via reverse-offset printing using Ag nano-ink, and the sensing layer on the printed
interdigitated electrode (IDE) was formed by depositing the CNF-AgNP composite via inkjet printing.
The structure and morphology of the CNF-AgNP layer are characterized using ultraviolet–visible
spectroscopy, an X-ray diffractometer, field emission scanning electron microscopy, energy-dispersive
X-ray analysis, and transmission electron microscopy. The humidity-sensing performance of the
prepared sensors is evaluated by measuring the impedance changes under the relative humidity
variation between 10 and 90% relative humidity. The CNF-AgNP sensor exhibited very sensitive
and fast humidity-sensing responses compared to the CNF sensor. The electrode distance effect and
the response and recovery times are investigated. The enhanced humidity-sensing performance
is reflected in the increased conductivity of the Ag nanoparticles and the adsorption of free water
molecules associated with the porous characteristics of the CNF layer. The CNF-AgNP composite
enables the development of highly sensitive, fast-responding, reproducible, flexible, and inexpensive
humidity sensors.

Keywords: humidity sensor; cellulose nanofiber; silver nanoparticles; printing

1. Introduction

Humidity sensors play a critical role in our lives, with applications in various fields
such as living environment monitoring, smart agriculture, smart logistics, packaging, and
storage. The wide range of humidity sensor applications requires highly sensitive and
fast-responding humidity sensors, and such demand has led to numerous efforts to develop
new humidity sensors. Humidity sensors can be classified into different types based on
the detection mechanism, including acoustic wave, capacitive, resistive, electrochemical,
and quartz crystal microbalance humidity sensors [1–5]. Resistance- and impedance-type
sensors belong to resistive types. Among these, the thin-film resistance humidity sensor
has been widely researched owing to its ease of manufacture, low cost, and facile circuit
integration [2,6,7]. This type of humidity sensor displays a signal associated with a change
in impedance due to the interaction between the sensing material and water molecules.

Various functional materials such as cellulose, metal oxides, metal nanowires, porous
ceramics, polymers, organic semiconductors, nanoclays, graphene, and carbon nanotubes
have been used as humidity-sensing elements [8–13]. Cellulose has received significant
attention because it is renewable and the most abundant raw material on earth, making
its use environmentally sustainable. Cellulose is a colorless, odorless, and non-toxic solid
polymer with desirable properties such as high mechanical strength, hydrophilicity, relative
thermal stability, biocompatibility, low cost, and eco-friendliness [14]. In recent years,
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cellulose-based composites have been researched for coatings, pharmaceuticals, laminates,
fibers, optical films, smart materials, and flexible sensing devices [15–19]. Recently, an
all-cellulose-derived humidity sensor was made by using the direct laser writing of elec-
trodes onto TEMPO-oxidized cellulose paper [18]. The TEMPO-oxidized cellulose paper
with sodium carboxylate groups provides a satisfactory humidity-sensing performance
and is converted to conductive and moisture-stable electrodes directly via laser-induced
carbonization, demonstrating high sensitivity and linearity over a wide range of relative
humidity.

This study investigated a highly sensitive and fast-responding humidity sensor using
a 100% printing method by applying silver nanoparticles (AgNPs) to cellulose nanofiber
(CNF). An interdigitated electrode (IDE) pattern was fabricated via the reverse-offset
printing process, and the CNF-AgNP was used as the sensing material synthesized by
formulating an ink with uniformly dispersed AgNPs from the reduction of CNF. Owing to
the high conductivity of AgNPs and the porous properties of CNF, the CNF-AgNP sensing
layer is innovated for high-performance humidity sensors. The sensing performance
was tested between a 10% and 90% relative humidity (RH) range. The preparation and
characterization of the humidity sensor are explained.

2. Experimental Methods
2.1. Materials

A 1.1 mm thick glass substrate was used as the substrate of the sensing material. The
CNF solution was received from the Creative Research Center for Nanocellulose Future
Composites, Inha University, where the CNF was isolated from hardwood pulp using
TEMPO-oxidation and aqueous counter-collision methods [20]. AgNO3 (0.02 mol/L) and
NaBH4 were purchased from Samchun Chemicals Co., Ltd. (Daegu, Korea) and Sigma-
Aldrich (St. Louis, MO, USA), respectively. The Ag nano-ink (DGH 55-HTG) for reverse
offset during electrode pattern printing was purchased from ANP Co., Ltd. (Sejong, Korea)
All listed materials were used without additional purification steps.

2.2. Synthesis of CNF-AgNP Composite

First, a dilute mixture was prepared by adding 2 g of distilled water to 1 g of CNF
and stirring for 1 h. Then, 0.5 g of AgNO3 (0.02 mol/L) was added to the diluted CNF
solution and mixed for 4 h, after which 1 mL of a mixture of 1 mL NaBH4 (0.1 M) and
9 mL distilled water was slowly added drop by drop and stirred for 24 h to prepare the
CNF-AgNP solution. The synthesis mechanism and route of the CNF-AgNP composite are
presented in Figure 1.
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2.3. Characterization of CNF-AgNPs

The CNF and CNF-AgNP composite were characterized using ultraviolet–visible
spectroscopy (UV–vis, Lambda 1050+, Perkin Elmer, Hong Kong, China), an X-ray diffrac-
tometer (XRD, XPERT-PRO, Bruker, Billerica, MA, USA), field emission scanning electron
microscopy (FE-SEM, S-4000, Hitachi, Tokyo, Japan), energy-dispersive X-ray analysis
(EDAX, Mahwah, NJ, USA), and transmission electron microscopy (TEM, CM200, Philips,
Amsterdam, The Netherlands).

2.4. Humidity Sensor Fabrication

Figure 2 illustrates the schematic of the humidity sensor fabrication process. First, the
IDE pattern was printed via reverse-offset printing using Ag nano-ink. The printed IDE
pattern was then sintered in an oven at 400 ◦C for 20 min. The sensing layer on the printed
IDE was formed by depositing the CNF-AgNP composite via inkjet printing, followed by
heat treatment in an oven at 150 ◦C for 5 min. The same process was repeated for the CNF
solution to prepare a CNF humidity sensor for comparison with the CNF-AgNP humidity
sensor. The fabrication process is shown in Figure 2.
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Figure 2. The fabrication process of the CNF-AgNP humidity sensor.

2.5. Performance Evaluation

To evaluate the performance of the fabricated CNF and CNF-AgNP humidity sensors,
the impedance change of the sensors under the humidity change was measured using
an impedance analyzer (Agilent 4192A, HP, Santa Clara, CA, USA) at 1 kHz and 1 V.
The internal temperature and humidity were controlled using an environmental chamber
(TEMP&HUMID CHAMBER, BSTECH Co., Ltd., Daejeon, Republic of Korea). To deter-
mine the accurate response characteristics of the sensors, the relative humidity (RH) was
increased by 10%RH step from 10 to 90%RH. In addition, a commercial thermo-hygrometer
(Sato, SK-110TRH type 4, Tokyo, Japan) was used to monitor the temperature and humidity
inside the chamber. A schematic diagram of the measurement procedure is shown in
Figure 3.
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Figure 3. Performance test of CNF-AgNP humidity sensor.

3. Results and Discussion
3.1. Characterization of the CNF-AgNP Composite

Figure 4a shows the UV–vis absorption spectra of the neat CNF film and the CNF-
AgNP composite film, reflecting the successful formation of a AgNP. AgNPs formed from
the redox reaction between the Ag+ ions of AgNO3 and NaBH4 were revealed from the
cellulose spectrum of the characteristic UV–vis absorption band generally in the 400–450 nm
range, as well as from the visible yellow color change [21–23]. This color persisted in the
CNF-AgNP compound for 3 months, indicating that the AgNPs synthesized on cellulose
exhibit excellent stability [24].

The presence of AgNPs was also confirmed using XRD. As shown in Figure 4b,
diffraction peaks corresponding to the (111), (200), (220), and (311) planes of AgNPs
appeared at 38◦, 44◦, 64◦, and 77◦, respectively [19]. In addition, the XRD peaks of CNF at
16◦, 22◦, and 34◦ were confirmed to be consistent with the (110), (200), and (004) planes of
cellulose I [25].
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As illustrated in Figure 1a, the formation of AgNPs on the CNF film was facilitated
by its large surface area with abundant hydroxyl groups, resulting in stable and uniform
dispersion of Ag+ charges. As the mobility of Ag+ decreases due to its interaction with the
hydroxyl groups of the CNF, the growth of AgNPs is prevented, and stable formation of
AgNPs on the surface of coarse CNF can be achieved [26]. To analyze the CNF-AgNPs, FE-
SEM, EDAX, and TEM were employed. The CNF suspension and CNF-AgNP solution were
diluted with distilled water and dropped onto a wafer substrate (Figure 5). Figure 5a,b show
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the SEM and EDX results of neat CNF and the CNF-AgNP composite, showing 17.46 wt%
of the Ag element is present. Figure 5c shows the TEM image of the CNF-AgNP composite.
AgNPs (white dots) attached to the surface of the CNF were shown to have a diameter of
10–20 nm, demonstrating the successful formation of the CNF-AgNP composite.
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3.2. Fabrication of CNF-AgNPs Sensor

The CNF-AgNP sensor was fabricated using reverse-offset and inkjet printing, as
illustrated in Figure 4. Reverse-offset printing was used for the precise patterning of
IDEs to improve sensor accuracy. The IDEs patterned using reverse-offset printing had
a line width of 30 µm, and multiple sets of electrodes were printed. Figure 6 shows the
photographs and SEM images of the fabricated sensors. The number of electrodes was
100, 50, and 30, and the distance between electrodes was 40 µm, 120 µm, and 250 µm,
respectively. Each set of IDEs was printed on a 1.1 mm thick glass substrate using a silver
nano-ink via the reverse-offset process. Then, sensing layers were inkjet-printed using
CNF and the developed CNF-AgNP composite inks. Finally, the humidity sensors were
prepared by heat treatment of the printed sensing layers in an oven at 150 ◦C for 5 min
for moisture removal. The line width and gap of the IDEs of the fabricated sensors were
measured using an optical microscope.



Nanomaterials 2024, 14, 343 6 of 10Nanomaterials 2024, 14, 343 6 of 10 
 

 

 

Figure 6. (a,b) Photograph of neat CNF and CNF-AgNP humidity sensors. (c,d) Cross-sectional 

SEM images of neat CNF and CNF-AgNP humidity sensors. (e) Photographs and SEM images of 

IDT patterns with different electrode distances: 40, 120, and 250 mm. 

3.3. Humidity Response 

Figure 7a,b show the relative humidity–response curves of the CNF and CNF-AgNP 

humidity sensors concerning different electrode distances. As the RH level increases, the 

impedance values of the sensors hugely decrease. These huge impedance changes are 

promising for sensing humidity changes. The humidity-sensing performance enhanced 

as the number of electrodes varied from 30 to 50 to 100 (i.e., electrode spacing decreased 

from 250 µm to 120 µm to 40 µm). Figure 7c,d show the impedance response to a change 

in relative humidity. Linear fitting to the CNF and CNF-AgNP sensors yielded coeffi-

cients of determination of 0.9926 and 0.985, respectively; the normalized 

root-mean-square error of CNF and CNF-AgNPs was 2.51% and 3.16%, respectively. The 

CNF-AgNP sensors exhibit a superior sensing response than the CNF sensors, close to a 

linear response. The linear response is clear as the electrode distance decreased to 40 µm. 

The experimental results also demonstrate that the CNF-AgNP sensor can sense a broad 

range of humidity levels, between a low 10%RH and a high 90%RH. The sensitivity of the 

CNF-AgNP humidity sensor (electrode distance = 40 µm) is 0.0654 (log∆R/%RH). It is 

nearly twice as sensitive as the all-cellulose-derived humidity sensor made by using the 

direct laser writing of electrodes onto TEMPO-oxidized cellulose paper [18]. Table 1 

shows a comparison of their performance. 

Table 1. Performance comparison of CNF, CNF-AgNP, and TEMPO-cellulose humidity sensors. 

Name Humidity Range (%RH) Response (Ω) Sensitivity (
𝒍𝒐𝒈∆𝑹

%𝑹𝑯
) 

Response/Recovery 

Time (s) 
Reference 

CNF 10~90 1 × 107~3 × 102 0.0565 7/75 
This work 

CNF-AgNP 10~90 1.7 × 107~1 × 102 0.0654 4/34 

TEMPO-cellulose 11~98 9 × 108~8 × 105 0.0351 60/495 [18] 

Figure 6. (a,b) Photograph of neat CNF and CNF-AgNP humidity sensors. (c,d) Cross-sectional SEM
images of neat CNF and CNF-AgNP humidity sensors. (e) Photographs and SEM images of IDT
patterns with different electrode distances: 40, 120, and 250 mm.

3.3. Humidity Response

Figure 7a,b show the relative humidity–response curves of the CNF and CNF-AgNP
humidity sensors concerning different electrode distances. As the RH level increases, the
impedance values of the sensors hugely decrease. These huge impedance changes are
promising for sensing humidity changes. The humidity-sensing performance enhanced
as the number of electrodes varied from 30 to 50 to 100 (i.e., electrode spacing decreased
from 250 µm to 120 µm to 40 µm). Figure 7c,d show the impedance response to a change in
relative humidity. Linear fitting to the CNF and CNF-AgNP sensors yielded coefficients of
determination of 0.9926 and 0.985, respectively; the normalized root-mean-square error of
CNF and CNF-AgNPs was 2.51% and 3.16%, respectively. The CNF-AgNP sensors exhibit
a superior sensing response than the CNF sensors, close to a linear response. The linear
response is clear as the electrode distance decreased to 40 µm. The experimental results
also demonstrate that the CNF-AgNP sensor can sense a broad range of humidity levels,
between a low 10%RH and a high 90%RH. The sensitivity of the CNF-AgNP humidity
sensor (electrode distance = 40 µm) is 0.0654 (log∆R/%RH). It is nearly twice as sensitive
as the all-cellulose-derived humidity sensor made by using the direct laser writing of
electrodes onto TEMPO-oxidized cellulose paper [18]. Table 1 shows a comparison of
their performance.
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Table 1. Performance comparison of CNF, CNF-AgNP, and TEMPO-cellulose humidity sensors.

Name Humidity Range
(%RH) Response (Ω) Sensitivity ( log∆R

%RH )
Response/Recovery

Time (s) Reference

CNF 10~90 1 × 107~3 × 102 0.0565 7/75
This work

CNF-AgNP 10~90 1.7 × 107~1 × 102 0.0654 4/34

TEMPO-cellulose 11~98 9 × 108~8 × 105 0.0351 60/495 [18]

It is postulated that increasing the number of electrodes reduces the sensors’ impedance
by increasing the ion mobility between the electrodes and the polymer matrix that forms
the humidity-sensing layer. As the humidity increases, the conductivity of the CNF layer is
affected because the CNF layer swells and absorbs free water molecules that can activate
ions and migrate inside the humidity-sensing layer [27,28]. Moreover, the sensitivity of
the CNF-AgNP sensor is superior to the CNF sensor, as demonstrated in Figure 7a,b. This
result is also consistent with the fact that, as relative humidity increases, water molecules
facilitate electron transfer via hydrophilic functional groups such as hydroxyl groups on
the CNF surface and AgNPs to reduce resistance. The Maxwell–Wagner–Sillars (MWS)
polarization process states that polymer–filler interfacial interactions induce changes in the
dielectric properties of composite materials. In the CNF-AgNP composite, the large interfa-
cial area serves as multiple sites for enhanced MWS effect [29]. The reduction in resistance
can be explained by the increase in charge at the interface under various relaxation times
(t = ε/σ, where ε is permittivity and σ is conductivity) when a current flows across the
interface of two dielectric materials. Thus, the superior humidity-sensing performance of
the CNF-AgNP sensor to that of the neat CNF sensor is valid according to the MWS effect.
Such enhanced humidity-sensing performance is associated with the increased conductivity
of the Ag nanoparticles and the adsorption of free water molecules due to the excellent
porous characteristics of the CNF layer.
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curves with RH levels of (c) the CNF humidity sensor and (d) the CNF-AgNP sensor.

Figure 8 shows the time responses of the CNF and CNF-AgNP printed sensors under
different %RH. The response time is the rising time from 35%RH to 65–70%RH, and the
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recovery time is the falling time from 65–70%RH to 35%RH. At varying 35–70%RH levels,
the response times of the CNF and CNF-AgNP sensors were 7 s and 4 s, and the recovery
times were 75 s and 34 s, respectively, indicating the fast humidity-sensing performance of
the sensor containing AgNPs. The longer recovery time than response time is attributed
to free water molecule accumulation in the CNF layer. The composite sensor showed a
fast response time of 4 s and a recovery time of 34 s. These times are much faster than the
all-cellulose-derived humidity sensor (60 s/495 s) [18].
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4. Conclusions

A highly sensitive and fast-responding humidity sensor was developed using a novel
CNF-AgNP sensing material with the reverse-offset and inkjet printing method. The struc-
ture and morphology of the CNF-AgNP layer were characterized using UV–vis, XRD, SEM,
EDX, and TEM, indicating the excellent dispersion of Ag nanoparticles in the CNF matrix.
The humidity-sensing performance of the prepared sensors was evaluated by measuring
the impedance changes under a relative humidity variation of between 10 and 90%RH.
The CNF-AgNP sensor exhibited a more sensitive humidity-sensing performance than
the CNF sensor. As the electrode distance decreased, the humidity-sensing performance
enhanced. In addition, in the 35–70%RH variation, the CNF-AgNP sensor showed fast
sensing responses: the response and recovery times were 4 s and 43 s, respectively. The
high-performance humidity sensing of the CNF-AgNP sensor is associated with the in-
creased conductivity of the Ag nanoparticles and the adsorption of free water molecules
due to the excellent porous characteristics of the CNF layer. The CNF-AgNP composite
offers advantages that enable the development of highly sensitive, fast-responding, repro-
ducible, flexible, and inexpensive humidity sensors. The developed humidity sensor is
expected to have various applications in flexible and wearable electronic devices.
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