
Citation: Udaya Mohanan, K.

Resistive Switching Devices for

Neuromorphic Computing: From

Foundations to Chip Level

Innovations. Nanomaterials 2024, 14,

527. https://doi.org/10.3390/

nano14060527

Academic Editor: Wei Wu

Received: 28 February 2024

Revised: 7 March 2024

Accepted: 13 March 2024

Published: 15 March 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Review

Resistive Switching Devices for Neuromorphic Computing:
From Foundations to Chip Level Innovations
Kannan Udaya Mohanan

Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
kannan_um@gachon.ac.kr

Abstract: Neuromorphic computing has emerged as an alternative computing paradigm to address
the increasing computing needs for data-intensive applications. In this context, resistive random
access memory (RRAM) devices have garnered immense interest among the neuromorphic research
community due to their capability to emulate intricate neuronal behaviors. RRAM devices excel
in terms of their compact size, fast switching capabilities, high ON/OFF ratio, and low energy
consumption, among other advantages. This review focuses on the multifaceted aspects of RRAM
devices and their application to brain-inspired computing. The review begins with a brief overview of
the essential biological concepts that inspire the development of bio-mimetic computing architectures.
It then discusses the various types of resistive switching behaviors observed in RRAM devices and the
detailed physical mechanisms underlying their operation. Next, a comprehensive discussion on the
diverse material choices adapted in recent literature has been carried out, with special emphasis on
the benchmark results from recent research literature. Further, the review provides a holistic analysis
of the emerging trends in neuromorphic applications, highlighting the state-of-the-art results utilizing
RRAM devices. Commercial chip-level applications are given special emphasis in identifying some
of the salient research results. Finally, the current challenges and future outlook of RRAM-based
devices for neuromorphic research have been summarized. Thus, this review provides valuable
understanding along with critical insights and up-to-date information on the latest findings from the
field of resistive switching devices towards brain-inspired computing.

Keywords: neuromorphic computing; resistive switching; neuromorphic chip; synapse; neuron; deep
learning; memristor

1. Introduction

In the modern technology landscape, advancements in diverse fields such as big data
analytics, internet-of-things (IOT), deep learning, self-driving autonomotive technology,
edge computing applications, etc. are accompanied by a pressing demand for higher
computational power at a lower energy budget. Present-day computer systems are almost
exclusively designed on the principle of von Neumann architecture, where the memory
and central processing units are physically separate. Due to the requirement of constant
data flow between these two units, conventional digital computers suffer from huge latency
and energy expenditure. This is often referred to as the “von Neumann bottleneck”, which
critically impedes the computing capabilities of these systems. The requirement for separate
memory and processing units also reduces the future scaling of these devices for increasing
data-centric applications. Neuromorphic computing, or bio-inspired computing [1], is a
promising alternative where the computing design is derived from the workings of the
human brain. A striking feature of the human brain is the large amount of parallelism
achieved through a complex network of neurons (∼1011) and synapses (∼1015). These
ultra-low-power computing elements (neurons and synapses) can perform much better
than the current computing systems in applications like pattern recognition, data classi-
fication, etc. Synapses, which are the junction between adjacent neurons, form the basic
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component of learning and memory, which is achieved through the modulation of synaptic
weights. Essentially, a biological synapse consists of the axon terminal of a pre-synapse, the
dendrite terminal of the post-synapse, and a synaptic cleft in between these two terminals.
Neurotransmitters are released between the pre- and post-synapses through the synaptic
cleft based on the modulation of the synaptic weights. Synaptic plasticity is the property
by which the synaptic weight changes based on the activity at its neurons. The human
brain exhibits a wide range of synaptic plasticity schemes like short-term potentiation
(STP), long-term potentiation (LTP), spike-timing-dependent plasticity (STDP), etc., which
helps in memory retention and computing capabilities. It is indeed necessary for any
neuromorphic system to faithfully emulate these plasticity responses of the human brain to
achieve a similar level of system efficiency in learning and processing domains.

Hardware realization of such a complex neural network was initially attempted with
the conventional complementary metal oxide semiconductor (CMOS) transistors. With im-
mense research effort, CMOS-based neuromorphic chip designs like the TrueNorth [2],
BrainScales [3], and Loihi 2 [4] have achieved break-through performance records. In 2023,
IBM released the NorthPole chip [5], which is reported to be 25 times more energy efficient
than corresponding graphical processing units (GPUs) in handling deep learning work-
loads. But the overall energy consumption and chip footprint still need to be considerably
lowered. As an alternative, several device architectures, including three terminal devices
like ferroelectric field effect transistors [6], electrochemical transistors [7], etc., have been at-
tempted for neuromorphic applications. However, emerging non-volatile memory (eNVM)
devices such as phase change memory (PCM) [8], magnetoresistive RAM (MRAM) [9],
ferroelectric RAM (FeRAM) [10] and resistive switching RAM (RRAM) [11] are particularly
attractive because of the promise of scalability and ease of fabrication. Unlike conventional
charge-based devices like static RAM (SRAM), dynamic RAM (DRAM), and flash memory,
these eNVM devices function based on the underlying physics of their constituent layers.
Table 1 shows a summary of the important performance metrics among the eNVM devices.
Overall, RRAM devices, with their minimal power consumption (∼0.1 pJ per write opera-
tion), rapid read time (∼1 ns), and compact size (∼4 F2, where F represents the minimum
feature size of the technology node), present a compelling option for both non-volatile data
storage and addressing current challenges in device scaling. They have the basic structure
of an insulating material sandwiched between two metallic electrodes. They work on the
basis of the formation and rupture of a conductive filament in the insulating layer between
the two electrodes. A memristor is a special kind of RRAM device with a pinched hysteresis
loop [12]. They have a continuous response to the variation of input voltage, which is
identical to the response of biological systems to an external stimulus. Hence, they are
ideally suited for handling the complexities of biological neural networks. RRAM devices
are looked upon as integral components not only for neuromorphic computing design
but also for addressing contemporary computational challenges through their enhanced
processing efficiency and storage density.

In the current article, we present a comprehensive review of the basic concepts and
various latest results in RRAM device research for neuromorphic applications. Figure 1
depicts a schematic overview of the various topics covered in this review article. First,
the biological background pertinent to neuromorphic device research is discussed. This in-
cludes the basic organization of the neuron and its inter-neuron communication modulated
through various synaptic plasticities like STDP, spike-rate-dependent plasticity (SRDP),
etc. In addition, advanced synaptic behaviors like heteroplasticity and metaplasticity are
also discussed. The physical realization of such synaptic functionalities requires a detailed
understanding of resistive switching working mechanism. Hence, the review presents
a detailed overview of the basic working principles of RRAM devices and their various
types of switching mechanisms. In addition to well-known switching mechanisms like ion
migration, oxygen vacancy-based, and trap assisted switching, other mechanisms like ion
intercalation, ferroelectric switching, and spin orbit torque-based switching mechanisms
would also be discussed. A wide variety of materials including oxides, chalcogenides,
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nitrides, organic polymers, and biomaterials, have been used for fabricating RRAM devices.
Recently, lower-dimensional systems like 2D materials, quantum dots, and nanowires have
also been used to mimic neuromorphic behaviors using RRAM devices. Herein, the review
also elaborates on the various material choices and related experimental results for RRAM
devices for neuromorphic applications. Next, a comprehensive overview of some of the
emerging trends in RRAM based neuromorphic applications is discussed, with a special
emphasis on some of the large-scale CMOS compatible chip-based implementations. Fi-
nally, the review summarizes the various challenges and future outlook for RRAM-based
neuromorphic research.
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Figure 1. Schematic overview of the various topics covered in this review article. Inset images
of figure reprinted with permission from [13–18]. Copyright © 2024 American Chemical Society.
Copyright © 2024 Springer Nature.

Table 1. Comparison of eNVM devices [11,19] based on performance attributes.

Performance
Metrics RRAM FeRAM MRAM PCM

Cell area 4 F2 22 F2 6–50 F2 4–20 F2

Write voltage (V) <2 <3 <2 <3
Read time (ns) ∼1 <5 ∼20 <10
Write energy ∼0.1 pJ ∼30 fJ ∼0.1 pJ ∼10 pJ
Retention (s) >106 >106 >106 >106

Endurance (cycles) >1012 >1014 >1015 106–109
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2. Biological Background

The primary components of the neural circuitry are the neurons (see Figure 2a), which
receive signals through the “dendrites”, which are connected to adjacent neurons. These
signals are processed at the “soma”, which plays the role of a ‘central processing unit’ in a
conventional computing architecture. The soma processes the received signals through a
non-linear transformation and generates an output signal if the accumulated input crosses
a threshold value. The generated output signal is then transmitted through the “axon”,
which acts as the output device. The axon transfers the electrical signals to adjacent neurons
through a narrow junction called the “synaptic junction” or the “synapse”. Such a synapse
is typically formed between the axon terminal of one neuron (the preneuron) and the
dendrite receptors of another (the postneuron [20,21]). The strength of such a synaptic
connection determines the “synaptic weight”, which controls the efficiency of information
transfer across adjacent neurons. The synaptic weights can be modulated using a property
called the “synaptic plasticity” [22]. Synaptic plasticity is responsible for the learning and
memory capabilities of the neural network. Depending upon the relative activities of the
pre- and post-neurons, several types of plasticities have been discovered [23], which include
potentiation & depression, spike-time-dependent plasticity (STDP), spike-rate-dependent
plasticity (SRDP), metaplasticity, heteroplasticity, etc. The increase or decrease in the post-
neuron activity as a result of the relative variation in preneuronal spike timing, rate, etc. is
called potentiation/depression. A prerequisite for the potentiation or depression action is
that the synaptic strength should be adjustable based on the external stimulus. Potentiation
and depression are broadly classified into four types—short-term potentiation (STP), short-
term depression (STD), long-term potentiation (LTP), and long-term depression (LTD). STP
& STD are characterized by the temporary potentiation/depression of the synaptic weight,
which lasts for only a few seconds or minutes and then decays to its initial value. STP/STD
are particularly relevant for short-term information processing within the neural circuitry.
LTP & LTD extend over several minutes, hours, or even days and are non-volatile in nature.
LTP/LTD plays a significant role in the learning and memory activities of the brain. The
Hebbian rule postulated in 1949 established that the synaptic connection strength between
a pre- and post-neuron depends on the simultaneous activity of both neurons [22]. The rule
forms the basis of the learning and memory capabilities of the neural network. STDP is
a form of Hebbian learning that works based on the relative timing of the application of
spikes. According to the rule, the change in synaptic weight ∆w depends on the time
difference ∆t between pre- and post-spikes. If a preneuron spikes before a postneuron
spike (∆t > 0), the synaptic weight ∆w increases or the synapse potentiates. Whereas if a
preneuron spikes after a postneuron spike (∆t < 0), ∆w decreases or the synapse depresses.

SRDP is a form of synaptic plasticity where the synaptic weight change is determined
by the frequency change of the spiking rate between the pre- and post-synapses. Metaplas-
ticity is another kind of learning behavior that shows the effect of stimulus history on the
synapse response. The activation of metaplasticity requires the application of a priming
stimulus, which does not cause any major change in synaptic conductance. However, such
a pre-stimulus spike causes a change in the behavior of synapses during further stimulus
application. Heterosynaptic plasticity originates from the action of an extra interneuron,
which modulates the synaptic plasticity behavior between the pre- and post-neurons. Un-
like the homosynaptic responses discussed before, where the same set of neurons are used
for sourcing the spikes and sensing the synaptic weight change, heterosynaptic plasticity
depends on the influence of a third neuron, which acts as a modulatory terminal. Such a
synaptic behavior is biologically significant for associative learning, sensory perception,
long-term memory, etc. The various plasticity mechanisms discussed here provide defini-
tive test cases that RRAM devices need to emulate effectively for their practical use in
brain-inspired computing.
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Figure 2. (a) Schematic of the major components of a biological neuron. (b) Illustration of the various
types of switching mechanisms observed in RRAM devices. (c) Schematic description of the different
RRAM device types based on their operation mechanism. Reprinted with permission from [24].
Copyright © 2024, American Chemical Society.
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3. Resistive Switching
3.1. Types of Resistive Switching

Resistive switching phenomenon can be broadly classified into digital and analog
switching based on the nature of current-voltage characteristics observed in the device.

Figure 2b shows a schematic description of the various types of switching mechanisms
commonly observed in RRAM devices. Digital switching denotes the sudden jump in
current flowing through the device at a particular voltage applied to the device, called
the set voltage. Here, the switching process is sudden and abrupt resulting in sharply
differentiated high-resistance (HRS) and low-resistance states (LRS). Digital switching is
extremely critical for developing memory devices with a clear distinction between ON and
OFF states. This type of switching is further divided into bipolar, unipolar, and threshold
resistive switching. In bipolar resistive switching, the set and reset switching occur at
the opposite polarity of applied voltages. Conversely, in unipolar switching, both the set
and reset switches occur at the same polarity. Unipolar switching is independent of the
polarity of the applied voltage, and it occurs mainly due to the Joule-heating-induced
rupture of the conductive filaments formed inside the resistive switching medium. Both
bipolar and unipolar resistive switching devices retain their memory states even after the
applied voltage is removed, and hence they are referred to as non-volatile memory devices.
Threshold switching is a type of volatile resistive switching where the device resets to the
HRS state when the applied voltage drops below a certain threshold value. Hence, this type
of resistive switching device cannot retain its LRS state once the applied voltage is removed.
Analog resistive switching is the second type of switching where the change in resistance
states is a gradual and continuous process. Such a type of continuous state change is
similar to the responses observed in biological systems and, hence, is ideally suited for
neuromorphic applications. Analog resistive switching is experimentally equivalent to the
circuit element referred to as memristor [12], where the device has an inherent memory
of its resistance state. RRAM devices exhibiting analog switching characteristics are often
interchangeably referred to as memristors as well [25].

3.2. Resistive Switching Mechanisms

The resistive switching effect in memristors could arise from several possible mecha-
nisms. Figure 2c shows a general schematic depicting the wide range of RRAM devices
based on their physical mechanisms. Here, we discuss some of the prominent switching
mechanisms like ion migration, trap assisted switching, ferroelectric & magnetic tunnel
junction-based switching, metal-insulator transition based switching, ion intercalation, etc.

3.2.1. Ion Migration Based Switching

Ion-migration-based systems are the most prevalent switching mechanism observed
in resistive switching devices. Ion migration can be based on both cation and anion
migration to their respective opposite electrodes under the influence of an external field.
Cation migration promoted switching is based on the phenomenon of electrochemical
metallization (ECM), where the positive bias voltage applied to an electrochemically active
metal electrode like Ag [26,27] or Cu [28] causes the movement of metal ions towards the
counter electrode, which then leads to a redox reaction (see Figure 3a).
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(a)
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Figure 3. (a) Schematic showing the various steps involved in the SET and RESET processes of
an ECM cell. Reprinted with permission from [29]. Copyright © 2024 IOP Publishing. (b) TEM
image showing fully and partially formed Ag-conducting filaments inside a Ag/SiO2/Pt ECM cell.
Reprinted with permission from [27]. Copyright © 2024 Springer Nature. (c) Typical bipolar switching
characteristics observed in an ECM device. Here, the device configuration is Cu/GeOx/W. Reprinted
under a Creative Commons License from [30]. (d) High-resolution TEM image of an oxygen rich
conductive filament formed due to the formation of a Ti4O7 phase in a Pt/TiO2/Pt VCM device.
(e) TEM diffraction pattern confirms the Ti4O7 phase formation. Reprinted with permission from [31].
Copyright © 2024 Springer Nature. (f) TEM image showing nanofilament formation by the oxygen
vacancies in a Au/Ta2O5/Au VCM cell. Reprinted with permission from [32]. Copyright © 2024 John
Wiley and Sons.
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As the reduced metal atoms nucleate at the inert electrode, a metallic filament is
slowly formed within the intermediate dielectric layer, which connects both the top and
bottom electrodes. Once the filamentary connection is established, the device is set into a
low-resistance state (LRS). On applying a reverse voltage, the rupture of the conductive
filament leads to the device regaining its original high-resistance state (HRS). Factors
like cation mobility, crystal structure of the dielectric [33], and the rate of redox reaction
play an important role in determining the nature of filament formation and density of
filaments, respectively. ECM-based devices have the advantages of low operation voltages,
a large ON/OFF ratio, and scope for large-scale integration, but they also suffer from
low-retention time [34]. Yang et al. [27] used an SiO2/Ag device to reveal nanoscale
metallic filaments inside the SiO2 dielectric using a transmission electron microscopy (TEM)
system (see Figure 3b). They could verify the theoretical ECM predictions of metallic
dendrites formed from the inert electrode to the active electrode. In order to further confirm
the role of cation mobility in the filament formation, the group also fabricated a similar
device based on amorphous silicon (a-Si) instead of SiO2 as the switching layer. Due
to the lower cation mobility, it was found that the a-Si films required a higher electric
field for the forming process. T. Tsuruoka et al. [35] studied the cation migration in a
resistive switching device having the composition Cu/Ta2O5/Pt. On application of a
positive bias voltage, Cu2+ ions migrated towards the Pt electrode. Due to the anodic
reduction reaction at the counter electrode, the Cu2+ ions nucleate inhomogeneously at the
Pt electrode and form a conductive bridge towards the Cu electrode, achieving the LRS or
SET state. When a negative bias is applied to the Cu electrode, due to the Joule heating at
the filament, the Cu filament is disconnected, and hence the HRS or RESET state is achieved.
S.Z. Rahaman et al. [30] compared the performance of Cu and Al electrodes on the switching
performance of GeOx/W crosspoint RRAM devices and confirmed that the Cu electrode
can produce low current switching varying from 1 nA to 50 µA and at lower operation
voltages as compared to the Al-based system (see Figure 3c). Recently, J.H. Yoon et al. [36]
used a Ruthenium-based resistive switching device to show the mechanism of Ru cation
migration during the filament formation process. In situ TEM and ex situ EDS mapping
were used to image the Ru-conductive filament formed due to the diffusion of Ru ions
from the bottom electrode to the oxide medium. The device exhibited excellent switching
characteristics, including low switching current (<1 µA), fast switching speed, and long
retention. By using a temperature-dependent current-voltage (I–V) measurement analysis,
hopping, and tunneling conduction were revealed in HRS and LRS states. Similarly,
M.Luben et al. [37] compared various active electrode materials like Au, Ag, Al, Cu, Ni,
Fe, Ti, Ta, V, and Zr for their electrode behavior in resistive switching applications. It was
found that the electrochemical behavior of the active metal plays the most important role
in determining the switching efficiency, filament stability, and longevity of the device. They
quantified the best-performing electrode material using the Gibbs free energy of formation
which was found to have an optimal value slightly above 0 kJ mol−1. Other factors like
alloyed metal electrodes [38] and the effect of electromigration [39] have also been reported
in recent literature.

Anion migration [40] is another kind of ion migration mechanism in resistive switching
devices, where typically filaments are formed due to the increased concentration of oxygen
vacancies within the oxide switching medium. This type of switching mechanism is
generally referred to as the valence change mechanism (VCM). In general, these devices
do not require significant electrochemical differences between the two electrodes, and
hence, mostly inert electrodes of the same nature are generally preferred as the top and
bottom electrodes. An essential requirement for the initiation of anion migration is the
formation process, which switches the device to the LRS state. During the forming process,
the high electric field applied to the device pushes the oxygen ions from the oxide layer
towards the anode, creating localized oxygen vacancies inside the switching layer. These
oxygen vacancies create a conductive filament joining the anode and the cathode, thereby
resulting in the resistive switching process (see Figure 3d,e). On applying a negative
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voltage, the oxygen anions migrate back to the switching medium, thereby annihilating
with the oxygen vacancies. This leads to a rupture of the filament, leading to the attainment
of the HRS state. J.Y. Chen et al. [32] studied the oxygen vacancy rich filament growth
inside a Au/Ta2O5/Au VCM cell and was successful in visualizing the filament evolution
at various switching stages (see Figure 3f). In VCM devices, filament formation requires a
high initial voltage, which results in the electroforming process. The high voltage required
for the electroforming process has been observed to be disadvantageous for practical
computing applications. Hence, a bilayer architecture [41] has been suggested, which has
an oxygen-deficient layer and an oxygen-rich layer. Recently, R. Zhang et al. [42] used a
flexible RRAM device based on a bilayer architecture of TiO2/HfO2 to study the oxygen
vacancy distribution inside the system. By using XPS measurements, they were able to
reveal the asymmetric hour-glass-shaped oxygen vacancy distribution at the interface
between TiO2 and HfO2, which plays a major role in the filament formation and rupture
processes. The coexistence of both metallic and anion-migration-based filaments was
reported by Sun et al. [43] on a perovskite-based RRAM device having the structure
Ag/CH3NH3PbI3/Pt. They observed that as the perovskite thickness is close to 300 nm,
the switching is dominated by the iodide-vacancy-based VCM mechanism because of the
incomplete formation of Ag conductive filament between the top and bottom electrodes.
As the thickness of CH3NH3PbI3 film was reduced below 90 nm, the switching mechanism
was dominated by ECM due to the improved conductivity of the fully formed Ag filaments.
An additional variation in the VCM/ECM mechanism is observed in some devices, where
the rupture of the filament occurs due to the Joule heating of the filament. These are called
thermochemical mechanism (TCM) [44] based RRAM devices. Recently, X. Zhang et al. [45]
studied the effect of Joule heating on the switching mechanism in a Pt/Al/AlOx/ITO-based
device showing both unipolar and bipolar characteristics. It was observed that for unipolar
switching, the high current flow through the filament increases the temperature of the
filament beyond its critical temperature, thereby rupturing it. This effect switches the
system to the RESET state. For the bipolar switching, the high reverse current causes the
oxygen anions to migrate back to the AlOx layer in addition to the Joule heating effect,
thereby causing the filaments to melt down and pushing the system towards the RESET
state. Y. Wang et al. [46] reported an electroforming free VCM cell with the configuration of
W/ZnO/LTO/TiN with a lanthanum titanium oxide (LTO) switching layer. The addition
of an oxygen-deficient ZnO layer provided additional oxygen ion migration pathways as
well as an oxygen reservoir, resulting in an increased ON/OFF ratio as well. Theoretical
modeling attempts to understand the switching mechanism in VCM devices have been
reported recently by M. Kaniselvan et al. [47]. They used a combination of stochastic kinetic
Monte Carlo methods in combination with quantum transport models with inputs from
density functional theory calculations to investigate the effect of interface interactions
between the oxide layer and the metal atom. In conclusion, continued research on the
deeper understanding of ion migration is vital for the development of RRAM devices
that are both high-performing and durable, aligning with the evolving demands of next-
generation computing technologies

3.2.2. Trap Assisted Switching

The charge trapping-detrapping mechanism is an electronic switching mechanism that
is based on the trapping and deptrapping of electrons in the trap states inside the dielectric
film. Since this is a purely electronic process, there are no microstructural changes [48] in-
side the dielectric film during the resistive switching process. This is highly advantageous
compared to the ion migration mechanism, where the changes in crystalline morphol-
ogy induce unwanted performance variations during device-to-device characterization.
X.F. Cheng et al. [49] reported the trapping/detrapping mechanism in a 1D d-π conju-
gated coordination polymer chain-based resistive switching device exhibiting a multilevel
switching behavior. It was found that the traps originating from impurities or structural
defects within the polymer material gave rise to a trap-assisted conduction region in the
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logarithmic I–V plots, where the current I was found to be proportional to the voltage
squared. S. Seo et al. [50] used a h-BN/WSe2 vanderwaals heterostructure device to
modulate the synaptic weight of the neuromorphic device using an additional weight
control layer (WCL) formed over the h-BN layer by O2 plasma treatment (see Figure 4a–c).
The trap states in the WCL layer were found to determine the conductance of the synaptic
weights. Charge trapping-detrapping-based conduction switching was demonstrated in
graphene quantum dots (GQD) by H.Y. Choi et al. [51] using a PEDOT:PSS:GQD/Al de-
vice. Using a UV-photoelectron spectroscopy study and band structure analysis, the group
could identify the space charge-limited conduction (SCLC) mechanism due to the trap
states in the GQDs which were responsible for the switching behavior. Recently, S. Gane-
shan et al. [52] reported the charge trapping/detrapping mechanism in a water-soluble
MoS2 quantum dot (QD)/PVA-based device with copper electrodes. By analyzing the
log I–log V characteristics and the band diagram of the device, they could clearly identify
the charge trapping behavior of MoS2 QDs, which were responsible for the switching
characteristics. In summary, the charge trapping-detrapping mechanism, by avoiding
microstructural changes unlike ion migration, provides a stable and efficient switching
mechanism for resistive switching memories, as evidenced by recent advancements in
materials and device engineering.

3.2.3. Other Prominent Mechanisms

Apart from the above mechanisms, several other mechanisms can indirectly result in
resistive switching. These include ferroelectric polarization switching, spin-torque-based
switching, ion intercalation, etc. Table 2 summarizes the comparison of performance
metrics of various resistive switching mechanisms. Resistive switching devices based on
ferroelectric polarization switching have received extensive attention due to their long
retention times [53,54] and forming free switching behaviours [55]. Ferroelectric tunnel
junction (FTJ)-based memristors [56] consist of a thin ferroelectric barrier layer inserted in
between two metal electrodes. The device exhibits resistance states depending upon the
direction of electric polarization and domain configurations. C. Wang et al. [57] reported the
ferroelectric resistive switching in an epitaxially grown BiFeO3(BFO) thin film sandwiched
between SrRuO3 and Pt electrodes. The switchable diode effect exhibited by the device was
found to be due to the Schottky-like barriers, which were modulated by the ferroelectric
polarization direction and oxygen vacancies. Recently, Z. Luo et al. [58] demonstrated a FTJ-
based RRAM device based on the Ag/PZT/Nb0.7:SrTiO3 heterostructure (see Figure 4d–f).
By utilizing an ultrathin (∼1.2 nm) layer of (111)-oriented PZT ferroelectric ferroelectric bar-
rier layer, the device exhibited 150 reproducible conductance states, with a high switching
endurance of 109 cycles.

The manipulation of the magnetization of a material using spin transfer torques [59],
current injection [60], etc. has been found to be useful for resistive switching applications.
Although the underlying mechanism behind such resistance switching mechanisms might
be magnetic in origin, the effect of such magnetic property manifestation can result in a
change in the resistance state of the device. Hence, magnetic property-based switching
phenomena can also be considered as an underlying mechanism responsible for resistive
switching. P. Krzysteczko et al. [61] demonstrated various synaptic plasticities like LTP,
LTD, and STDP using a magnetic tunnel junction (MTJ)-based resistive switching device.
By using a MgO tunnel barrier for the device, they found that the MTJ resistance changed
with continuous application of voltage pulses.
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Figure 4. (a) Schematic of a WSe2/WCL/h-BN memristor device, along with the biological synapse
comparison. (b) Cross-sectional TEM image of the WSe2/WCL/h-BN device structure. Lower insets
show the magnified images for the WSe2/WCL and WCL/h-BN interfaces. (c) Energy band diagram
for carriers in trap states demonstrated in a WSe2/WCL/h-BN device. Reprinted with permission
under a Creative Commons CCBY License from [50]. (d) Opposing atomic displacements of the
ferroelectric PZT/NSTO device recorded using the cross-sectional HAADF-STEM images. Inset shows
the schematic of the Pb (orange spheres) and Zr/Ti ions (green spheres) with opposing polarisation
directions. (e) Resistive switching observed in the FTJ device Ag/PZT/NSTO with respect to the
applied pulse voltage at various maximum negative voltages. (f) Endurance characteristics of the
FTJ device for different pulse voltage, and a pulse duration of 10 ns. Reprinted with permission
under a Creative Commons CCBY License from [58]. (g) Device structure of the MTJ device and its
(h) cross-sectional TEM image showing the various device layers. (i) Analog switching behavior of
the MTJ device for an applied pulse width of 200 ns. Reprinted with permission under a Creative
Commons CCBY License from [62].
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Table 2. Comparison of performance metrics of various switching mechanisms.

Switching
Mechanism

Device
Structure

ROFF/
RON

Endurance
(Cycles)

Retention
(s)

Operating
Voltage (V)

Electrochemical Metallization (ECM) Ag/a ZnO/Pt [63] >107 >102 >106 <1
Valence Change Mechanism (VCM) Ti/HfO2/TiN [64] 105 1010 104 3

Trap Assisted Switching Nb/NbOx/Al2O3/HfO2/Au [65] 102 >102 >105 3.7
Ferroelectric Polarization Ag/PZT/Nb:SrTiO3 [58] >102 109 104 1.35–2
Magnetization Reversal W/CoFeB/MgO/CoFeB/IrMn [66] ∼102 1012 >106 −

Metal Insulator Transition Pt/Al/PCMO/Pt [67] >102 106 >106 3
Ion Intercalation Ni/LiCoO2/a Si/Ti [68] ∼10 − ∼104 8

X. Zhang et al. [62] reported a nanoscale spin-torque memristor with the configuration
Ta/MgO/CoFeB/W/CoFeB/MgO/CoFeB/W (see Figure 4g,h). Here, the CoFeB/W/CoFeB
composite layer is a perpendicular anisotropy MTJ with the free W layer. The analog switch-
ing characteristics in this MTJ device (see Figure 4i) originates from the strong magnetic
domain wall pinning phenomenon in the W layer. Similarly, Y. Wei et al. [69] integrated
a Hf0.5Zr0.5O2 (HZO) tunnel barrier between two ferromagnetic electrodes to form a mul-
tiferroic tunnel junction (MFTJs) device, which was able to demonstrate four non-volatile
resistance states. The stable resistance states were obtained by external electric and magnetic
fields by using a combination of tunnel electroresistance (TER) and tunnel magnetoresistance
(TMR). Recently, magnetic memristors based on the concept of spin torque oscillators have
been widely reported for their high efficiency in spoken digit recognition [70]. Similarly,
analog memristors based on magnetic domain walls [71] and skyrmion dynamics [72] have
also been found to be efficient neuromorphic devices. Metal-insulator transition has been ex-
tensively studied in many novel materials, like VOx [73], NbOx [74], etc. Mott insulators [75]
are of special interest among materials exhibiting MIT transition due to their sharp ON/OFF
transition, which can be electrically modulated. Recently, X. Zhang et al. [76] demonstrated
an artificial afferent spiking neuron device using a NbOx mott memristor. They could control
the spiking frequency of the afferent neuron device in proportion to the input stimuli intensity.
This spiking behavior was reversed to lower frequencies when encountering abnormally high
input stimuli. These neuronal responses are similar to the nervous responses in biological
systems, paving the way for developing future neurorobotic devices.

Ion intercalation is another type of mechanism responsible for the switching behavior
in electrolyte-based synaptic devices. The mobile ions in the liquid electrolyte alter the
band structure of the dielectric switching layer, which changes the conductance of the
system. E. J. Fuller et al. [77] employed a three-terminal electrochemical resistive switching
device based on LiCoO2 switching layer. The conductance of the LiCoO2 layer was found
to depend on the amount of Li intercalation. C. S. Yang et al. [78] used an Ag/MoOx/FTO
based resistive switching device to study the interfacial electrochemical reaction occurring
in the MoOx films adsorbed with water. They identified that the application of an electric
field generates protons due to the decomposition of the adsorbed water molecules. These
protons are intercalated into the MoOx lattice, which gives rise to different synaptic behav-
iors under various applied bias voltages, pulse numbers, pulse frequency, etc. Recently,
X. Yao et al. [79] demonstrated proton intercalation in a WO3-based three-terminal resis-
tive switching device exhibiting long retention characteristics and good reproducibility.
By utilizing XPS measurements and density functional theory (DFT) analysis, they could
assess the role of mobility and carrier density in modulating the conductance of protonated
WO3. A gate-controlled iontronic memtransistor device based on a bilayer thin film of
poly(ethylene)oxide(PEO), and rubidium silver iodide (RbAg4I5) was recently reported
by A. Mukherjee et al. [80], where the Ag+ ionic movement inside the RbAg4I5 layer was
found responsible for the resistive switching mechanism. Interestingly, the device exhibited
rich physics, like colossal hysteresis and negative differential transconductance, revealing
interesting research possibilities in these devices. In summary, indirect mechanisms, like
ferroelectric polarization switching, MTJ-based switching, domain wall dynamics, ion inter-
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calation, etc., need to be studied further and can also be responsible for resistive switching
in neuromorphic devices.

4. Resistive Switching Materials & Applications

The material selection for a resistive switching device plays an important role in determin-
ing the various performance parameters like switching voltage, ON state resistance, ON/OFF
ratio, retention, and endurance characteristics of the device. Traditionally, all-inorganic sys-
tems were identified as the preferred choice of the switching layer in resistive switching
devices due to their reproducible switching behavior, and ease of fabrication. Inorganic oxides,
including binary oxides, complex oxides, and oxide heterojunctions, have been among the
most widely used materials for RRAM applications. Apart from oxide materials, various other
inorganic compounds, like chalcogenides and nitrides, have also been studied. Later, organic
materials, including small molecules, polymers, and biomaterials, have been used for their
flexibility and biodegradability. Currently, lower-dimensional structures, including nanoparti-
cles, nanowires, 2D materials, quantum dots, and van der Waals (vdW) heterostuctures, are
finding huge interest due to their atomic-level sizes and tunable electronic properties, which
are both advantageous for neuromorphic emulation. Here, we discuss the various material
choices for RRAM devices and their neuromorphic capabilities.

4.1. Inorganic Materials
4.1.1. Oxide Materials

Oxide materials have been the default choice of resistive switching material for neuro-
morphic applications. Among the various advantages of these oxides, their CMOS technology
compatibility and inexpensive fabrication techniques have made these materials ideal choices.
T. W. Hickmott et al. [81] reported the first resistive switching characteristics using a binary
oxide of Al2O3 sandwiched between two aluminum electrodes. Later, several different groups
explored the synaptic capabilities of binary oxide-based memristor devices. M. Cavallini
et al. [82] reported a CMOS-compatible Si/SiO2/Al RRAM device with a high ON/OFF ratio
of 105. The SiO2 layer in this device has been fabricated in situ by using a local oxidation
lithography process. The device offered several advantages, like a fully regenerable junction,
spatially controllable dielectric layer patterning, and a novel in situ fabrication procedure
that prevented the chances of cross-talk through the dielectric thin film. S. Yu et al. [83] used
a multilayer memristor device based on HfOx/AlOx to demonstrate the synapse capabilities.
The device recorded sub-picojoule energy consumption with high endurance and retention
characteristics. By using a time domain multiplexing (TDM) approach to convert the dif-
ference in spike timing to the pulse amplitude difference, the STDP synapse behavior was
achieved in this device. Y. Zhang et al. [84] designed a Ag/MgO/Pt resistive switching device
(see Figure 5a,b) which exhibits a volatile switching behavior. By varying the input pulse
parameters like pulse amplitude, pulse interval, etc., they were successful in demonstrating
various synaptic functionalities like paired pulse facilitation (PPF), LTP, and a reversible
transition from STP to LTP. It was found that the formation and sudden breakage of the silver
filaments due to varying applied pulse stimuli was the underlying mechanism responsible
for the various synaptic responses. Recently, M. Rao et al. [85] reported a bilayer device
with HfO2/Al2O3 as the switching layer and Ti/Ta, Pt as the top and bottom electrodes,
respectively. The device reported a record number of 2048 reproducible conductance states
with remarkable linearity and CMOS integration capability. At the time of publication of this
report, this device has reported the highest number of conductance levels from an RRAM
device. S. Kim et al. [86] used a second-order memristor (see Figure 5c) based on a resistive
switching layer Ta2O5−x along with a conductive TaOy film that acts as the oxygen vacancy
reservoir. The device functions based on the modulation of the internal state variables to
encode information on spike timing and synapse activities. The study could reveal that
the second-order state variable temperature played an identical role to the Ca2+ dynamics
in biological synapses. By carefully designing a spike signal composed of a programming
signal and a heat pulse, they were able to demonstrate the STDP behavior in the system.
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R. Yuan et al. [87] reported a calibratable neuron device (see Figure 5d–g) based on a planar
structure of Au/Ti/VO2/Ti/Au fabricated on Al2O3 substrate. They could reproduce the
leaky integrate-and-fire (LIF) response of a sensory neuron using the threshold switching
characteristics of the VO2 device. Metaplasticity was demonstrated on a WO3-based memris-
tor by Z. H. Tan et al. [88]. They could clearly establish the effect of the stimulus history and
time interval on the STDP behavior of the memristor device.

(a)

(d)

(k) (m)

(e) (g)

(f)

(b) (c)

(h) (i) (j)

(l)

Figure 5. (a) Optical image & device schematic of Ag/MgO/Pt RRAM device. (b) Paired pulse
facilitation (PPF) achieved using the Ag/MgO/Pt-based RRAM device. Reprinted with permission
from [84]. Copyright © 2024 AIP Publishing. (c) Experimental and simulated STDP curves obtained in
a second-order memristor device. Reprinted with permission from [86]. Copyright © 2024 American
Chemical Society. (d) Schematic of the epitaxial VO2-based RRAM device stack. (e) Threshold
switching characteristics of the RRAM device. (f) Electrical circuit & (g) LIF response observed
using a threshold switching RRAM device. Reprinted with permission under a Creative Commons
CCBY License from [87]. (h) Compliance current controlled analog switching characteristics of a
Ni/SiNx/AlOy/TiN RRAM device. (i) Conductance change during LTP & LTD while applying
identical pulse voltages. (j) STDP response of the device. Reprinted with permission from [89].
Copyright © 2024 American Chemical Society. (k) Schematic of a pV3D3-based flexible memristor
array. (l) Cross-sectional TEM image showing the device stack of CU/pV3D3/Al configuration.
(m) Potentiation/Depression characteristics of the flexible RRAM device. Reprinted with permission
from [13]. Copyright © 2024 American Chemical Society.
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Recently, H.G. Hwang et al. [90] demonstrated metaplasticity effects using a Ta2O5
memristor device. Using a preliminary spike in addition to the pre- and post-synaptic
spikes, the device was successful in emulating the metaplasticity of STDP behavior. In addi-
tion, the same device was also able to exhibit other plasticities like the STP-to-LTP transition
and SRDP. Similarly, heterosynaptic plasticity was demonstrated using a four-terminal
TiO2−x [91] memristor device. By employing oppositely arranged pairs of electrodes for
read/write and gate operations, the device exhibited the gate tuning of potentiation and de-
pression behaviors of a synapse junction. In addition to binary oxides, complex oxides like
InGaZnO [92], LaAlO3 [93], BiFeO3 [94], SrTiO3 [95], KNbO3 [96], HfZrOx [97], SiOxNy [98]
etc. have also been extensively studied for their neuromorphic applications.

4.1.2. Other Inorganic Materials

Apart from oxide materials, various other inorganic materials, including nitrides [89],
sulphides [99], phosphides [100], tellurides [101], and chalcogenides [102], have also been
studied for their synaptic functionalities. S. Kim et al. [89] demonstrated various synaptic
responses, including LTP, LTD, and STDP, by adjusting the pulse amplitudes and timing
sequence of the pre- and post-spikes applied to a silicon nitride (SiNx)-based memristor
device (see Figure 5h–j). Unlike some of the oxide materials, SiNx has the added advan-
tage that it is fully compatible with the CMOS technology, and hence it is easily scalable
for industrial production. Recently, Y. Guo et al. [103] fabricated an aluminum nitride
(AlN)-based memristor device using a reactive magnetron sputtering technique. Pt and
TiN were used as the bottom and top electrodes, respectively. LTP and LTD plasticities
were successfully demonstrated by varying the compliance current levels, stop voltages,
and pulse modes applied to the memristor device. Similarly, H. Cho et al. [104] utilized an
AlN memristor to emulate LTP-to-STP transition and PPF by modulating the pulse interval
time and pulse number. L. Hu et al. [99] reported memristors based on lightly oxidised ZnS
films, which were found to have ultra-low SET voltage and stable resistive switching char-
acteristics. In addition to the LTP and STP responses, the device could successfully replicate
dynamic neural functions like memorizing and forgetting. M. Chen et al. [100] reported
a cuprous phosphide (Cu3P) based RRAM device with a high ON/OFF ratio of 2.1×104

using a nickel top electrode. The switching mechanism was reported to be due to the redox
reactions involving Cu2+ and P3− ions at the electrode interfaces. Y. Sun et al. [105] used
a memristor system based on Ag/GeSe/TiN for mimicking electronic synapses. Spiking
pulses of a few hundred millivolts were used to reproduce various synapse responses
like STP, LTP, PPF, and STDP. Y. Li et al. reported chalcogenide memristors based on
Ge2Sb2Te5 [102] and AgInSbTe [106], which were capable of achieving four different types
of STDP behaviour depending on the spiking protocol of input pulses. Another important
class of materials relevant to memristor applications are inorganic halides like iodides [107]
and bromides [108], which have also been extensively studied for neuromorphic emulation.

4.2. Organic Materials
4.2.1. Polymer Materials

The ecological problems arising from the excessive use of inorganic switching materials
and newer requirements for biodegradable devices have pushed the research towards devel-
oping alternate organic-based devices for several conventional devices like transistors [109],
batteries [110], solar cells [111], LEDs [112], etc. A number of RRAM devices have also
been reported based on unique organic-material-based device designs [113]. Polymers are
a class of organic materials which have the advantages of low toxicity, high flexibility, low
power consumption, and excellent biocompatibility. S. Li et al. [114] reported the first two
terminal polymer memristor device capable of emulating synaptic responses. They used an
Ag/poly(3,4-ethylenedioxythiophene):poly(styrenesulphonate)(PEDOT:PSS)/Ta stacked
device. Various synaptic plasticities like STP, LTP, STP to LTP, STDP, and SRDP were suc-
cessfully demonstrated using this simple and low-cost device configuration. The device ex-
hibited a rectification effect, which was found useful in emulating the direction-dependent
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information flow across biological synapses. By using a combination of cross-sectional TEM
and energy-dispersive X-ray spectroscopy, the movement of the Ag interface due to the
redox reaction induced by the applied electric field and the elastic effect of the PEDOT:PSS
medium were identified as the physical mechanisms responsible for the synapse response.
Similarly, Y.V. de Burgt et al. [115] reported an electrochemical neuromorphic organic device
composed of a PEDOT:PSS presynaptic electrode and PEDOT:PSS/poly(ethylenimine) (PEI)
composite post-synapse electrode. The device could switch its conductance at very low
voltages (∼10 pJ) comparable to their commercial inorganic counterparts. In addition to
their learning capabilities and image recognition features, these organic memristors were
capable of producing LTP and LTD plasticities with over 500 distinct conductance states
over their operating voltage range. Recently, B. C. Jang et al. [13] fabricated a flexible mem-
ristor based on poly(1,3,5-trivinyl-1,3,5-trimethyl cyclotrisiloxane) (pV3D3) sandwiched
between Cu and Al electrodes (see Figure 5k–m). The switching behavior of the memristor
was found to change from binary switching to analog synaptic switching based on the
dimensions of the conducting filament. The device was found to be capable of imitating
several synapse behaviors like potentiation/depression, PPF, and STDP. By examining the
ex situ TEM images, it was revealed that the analog switching and quantized conductance
observed in the device was a result of the atomically thin part of the Cu filament formed
inside the memristor device. T.F. Yu et al. [116] developed a field effect transistor based
memristor device with a p-type donor-acceptor conjugated polymer, poly-(thienothiophene-
co-1,4-diketopyrrolo[3,4-c]pyrrole)(PDBT-co-TT) doped with an ionic additive tetrabuty-
lammonium perchlorate (TBAP) as the active material. TBAP was used as the dopant
mainly due to the high electron affinity of its constituent anions, which are expected to
enhance the dopant-polymer interaction. The TBAP-doped devices exhibited a high mem-
ory window and an ON/OFF ratio of over 103. The device was successful in emulating
synaptic behaviors like EPSC, IPSC, and SRDP. A particularly notable feature of these de-
vices is the high PPF index (204%) achieved using pulses of width 10 ms and pulse interval
10 ms. Lately, several other polymers like poly(11-(9H-carbazol-9-yl)undecyl methacry-
late) (PUMA) [117], poly(3-(4′,4′′′-dimethyl-[2′,2′′:5′′,2′′′-terthiophene]-3′′-yl)acrylic acid)
(PMTAA) [118], poly-para-xylylene(parlyene) [119], poly(3-hexylthiophene) (P3HT) [7] etc.
have also been studied for synaptic emulation.

4.2.2. Biomaterials

Biocompatibility and flexibility are increasingly being looked upon as favorable traits
for bio-integrated neuromorphic devices like medical implants and wearable electronics.
Conventional RRAM materials based on inorganic oxides are not suited for such appli-
cations due to their toxicity. Biomaterials based on naturally available materials such as
proteins [120], carbohydrates [121], DNA [122], RNA [123], virus [124], etc. are highly
suited for bio-integrated applications and have been extensively studied as resistive switch-
ing materials. Recently, G. Wu et al. [125] used chitosan-based biopolysaccharide proton
conductors as gate dielectrics for developing synaptic transistors on top of paper-based
substrates. Chitosan is a linear polysaccharide whose proton conductivity can be greatly
improved by acid doping. In this study, the high proton conductivity of chitosan achieved
using acid doping was modulated with pulse voltages to emulate various synaptic re-
sponses. The fabricated devices could imitate EPSC, PPF, dynamic filtering, etc. Similarly,
Yu et al. [126] fabricated a chitosan-gated oxide neuromorphic transistor that reproduces
four types of STDP learning behaviors: Hebbian STDP, anti-Hebbian STDP, symmetrical
STDP, and visual STDP. The device works on the basis of protonic doping and dedoping
processes at the interface between the ITO gate and the Chitosan layer. Y. Park et al. [127]
fabricated an artificial synapse device based on a natural polymer called Lignin, which
is a common organic component found in natural wood. Lignin was spin coated on an
ITO-coated flexible polyethylene terephthalate (PET) substrate along with an inert Au top
electrode for the device fabrication. By applying predesigned pulse sequences of varying
amplitudes and time scales, the memristor device could successfully emulate synaptic
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functions like EPSC, potentiation/depression, SRDP, and STP-to-LTP transition. It was
concluded that the device operation in a lignin-based memristor was based on the behavior
of carbon atoms in the lignin matrix. By varying the thermal energy applied using different
pulse signals, the conductance of the lignin layer can be modulated due to the formation
of amorphous carbon matrix- or graphitic-like structures in the active layer. Similarly,
G. Wu et al. [128] used a naturally occurring protein in the form of chicken albumen to
fabricate memristive devices with high proton conductivity. The chicken albumen was
used as the electrolyte dielectric in indium-zinc oxide synaptic transistors. Various synaptic
functionalities, including PPF, dynamic filtering, and STP-to-LTP transition, were also
successfully mimicked using the fabricated devices. The synaptic behavior of the device is
attributed to the modulation of the proton conductivity of the albumen film by the applied
pulse voltages.

4.3. Lower Dimensional Materials

Lower-dimensional materials, including nanoparticles [98], quantum dots (QD’s) [129],
nanowires [130], nanorods [131], carbon nanotubes (CNT) [132], and 2D materials [133]
have been extensively studied for both resistive switching and neuromorphic applications.
Z. Wang et al. [98] fabricated a new class of memristors for synaptic emulation based on
the diffusion dynamics of Ag nanoparticles embedded inside the switching layer (SiOxNy).
Using in situ HRTEM imaging, the microscopic mechanism responsible for the threshold
switching mechanism was identified as the interfacial energy-driven diffusion mechanism
of Ag nanoparticles inside the dielectric host lattice. The Ag nanoparticle dynamics inside
the device were functionally similar to the Ca2+ dynamics inside the synapse and could
faithfully emulate various synaptic responses like PPF, PPD, STDP, and SRDP. Recently,
B. Salonikidou et al. [134] developed a fully printed memristor device based on a TiO2
nanoparticle ink formulation. These devices were fabricated using an inkjet printing tech-
nique and were found to be highly uniform and crack-free. The low electroforming voltage
observed in the device might be attributed to the ease of conductive bridge formation
within the TiO2 nanoparticle ink matrix. In addition, the device could successfully emu-
late the LTP and STP characteristics of a synapse system by controlling the trigger pulse
rate and duration between pulse-interpulse at the input. T. Ishibe et al. [135] reported a
Fe3O4/GeOx/Ge nanocrystal (NC)-based RRAM device exhibiting high switching probabil-
ity (∼90%) and a high ON/FF ratio of ∼58. The device was composed of high-density and
ultra-small Fe3O4 NCs grown on Ge nuclei deposited over a Si substrate. An interesting
polymer-metal nanoparticle hybrid memristor was fabricated by S. R. Zhang [136] and team.
They used a solution processed hybrid memristor with polyvinylpyrrolidone(PVPy)-Au
nanoparticle (NP) composite as the active layer and Al and ITO as the top and bottom
electrodes, respectively. The device exhibited good resistive switching properties and excel-
lent artificial synapse responses. Various synaptic plasticities like SRDP, PPF, post-tetanic
potentiation (PTP), STP-to-LTP transition, and learning- forgetting-relearning processes
were achieved using this device. The trapping and de-trapping of charge carriers in the
polymer-nanoparticle switching layer due to opposite-polarity input pulses was identified
as the mechanism favoring the synapse response in these devices.

Recently, core-shell nanoparticles based on Au@Al2O3 [137] were also used to develop
memristor devices with high stability and reliability. These devices were fabricated us-
ing atomic layer deposition (ALD) technique, where the Au@Al2O3 nanoparticles were
grown in situ over the ITO substrate. Potentiation and depression responses of the device
were attributed to the Fowler-Nordheim(FN)-tunnelling-mediated internal electric field
developed in the Au@Al2O3 switching media. In addition to the dimensional reduction
in nanoparticles, the confinement of electric field in Quantum-dot(QD)-based memristors
was identified as a favorable attribute for synapse emulation. QD-based memristors for
artificial synapse applications were first reported by X. Yan et al. [129], who used graphene
oxide quantum dots (GOQD) as a composite with Zr0.5Hf0.5O2 (ZHO). The device used
Ag as both the bottom and top electrodes, resulting in a Ag/ZHO:GOQD/Ag structure.
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The device possesses bidirectional control of resistance, which is a very important factor
for the demonstration of synapse response. The device could demonstrate various synapse
responses like STDP, PPF, and learning-experience behavior using very low pulse voltages
(∼0.6 V) and pulse widths (∼30 ns).

The action of electochemical metallization of Ag+ ions at lower electric fields and the
combination of FN tunneling and direct tunneling at higher electric fields were found to
dominate the memristive behavior of the system. The same group has also reported a
similar study [138] based on lead sulfide (PbS) QD-based memristors capable of emulating
similar synapse functionalities. Recently, MoS2 QDs were used as the active layer for
memrstive synapse emulation by A. Thomas et al. [139] (see Figure 6a–c). They used a
liquid-phase exfoliation method to synthesize MoS2 QDs in order to fabricate a memristor
with the configuration of Au/MoS2 QD/FTO. The device was successful in demonstrating
STP behaviors like PPF and PPD due to the trapping/detrapping of charge carriers in the
QD defect sites as a result of the applied pulse polarities. As compared to nanoparticles and
QDs, nanowires have the additional advantage that they are highly confined, and hence
straight conduction paths are easily established, which would improve the carrier transport
properties of the device.

Nanowire-based memristive devices for synaptic applications were first reported
by Hong et al. [130] in a TiOx nanowire-based device. They fabricated TiOx nanowires
using an electrospinning method and transferred a single nanowire to an SrTiO3 substrate
with the same SrRuO3 (SRO) electrode acting as the anode and cathode in a planar archi-
tecture. Although the device requires a very high switching voltage of 70 V, the device
could exhibit various synaptic plasticities like STDP, anti-STDP, and Hebbian learning
rules. The redistribution of the oxygen vacancies in the TiOx nanowire due to the polarity
of the applied electric field was identified as the mechanism responsible for the synapse
response. Similarly, B. Zhao et al. [140] fabricated a TiO2 nanowire-based memristor device
(see Figure 6d–f), which could switch the conductance at considerably lower voltages. They
used a technique called dielectrophoresis for the device fabrication. SRDP and learning-
forgetting-relearning behavior were demonstrated in the nanowire-based device using
programmed pulse voltages. The synaptic learning response originated due to the oxygen
vacancy migration caused by the applied electric fields. As the pulses are removed, reverse
diffusion of the oxygen vacancies and electron trapping leads to metastable oxygen lattices,
which can be easily separated by applying lower voltages during the relearning process.
K. Nagashima et al. [141] reported multistate bipolar resistive switching in a single core/shell
nanowire of MgO/Co3O4. The device exhibited a remarkable endurance of ∼108 mediated
by a voltage controlled switching mechanism. A ZnO nanowire device [142] with an
unltrathin TiOx interfacial layer was also reported recently, which could emulate several
short-term plasticity behaviors such as PPF, PPD, etc. The interfacial layer minimized the
effects of surface defects in the ZnO nanowire and assisted in electron hopping at lower
electric fields and barrier tunneling at higher electric fields. Recently, Y. Choi et al. [132]
fabricated a carbon-nanotube(CNT)-based memristor device capable of simulating various
synaptic plasticities. The device has a transistor structure, where a ferroelectric polymer is
capacitively connected to a gate dielectric (SiO2) through a single-walled carbon nanotube
(SWCNT). The electric field permeability of the SWCNT enabled the remote control of the
ferroelectric polarization, which controlled the synaptic weights. By adjusting the synaptic
weight updates, various synaptic responses like STP, LTP, LTD, etc. were observed. Simi-
larly, CNTs were used in several recent studies [143] to emulate similar synaptic behaviors.
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Figure 6. (a) Band diagram of a quantum-dotMoS2-based RRAM device showing the Schottky barrier
at the Au/MoS2 interface and trap states in the MoS2 layer. (b) Electron trapping in the defect
sites under a positive bias voltage. (c) Electron detrapping due to negative bias voltage. Reprinted
with permission under a Creative Commons CCBY License from [139]. (d) SEM image of TiO2
nanowires in an Au/TiO2/Au RRAM device. (e) Potentiation observed in the TiO2 nanowire RRAM
for different pulse amplitudes & widths. (f) Sequence of learning-forgetting-relearning process ob-
served in the same device. Reprinted with permission from [140]. Copyright © 2024 IOP Publishing.
(g) Schematic of the two-terminal MoS2-based device. (h) Analog switching characteristics exhibited
by the same device for 100 I–V cycles. (i) Low pass filtering behavior achieved in the device using
−10 V, 20 ms width pulses of different pulse intervals. Reprinted with permission from [133]. Copy-
right © 2024 IOP Publishing. Cross-sectional TEM image of vdW heterostructure h-BN devices with
(j) Au/Ti/5–7 layer h-BN/Cu (k) Au/15–18-layer h-BN/Au configurations. (l) Potentiation achieved
in a 5 µm × 5 µm, Au/Ti/5–7-layer h-BN/Au device by applying two sequences of pulsed voltages
of amplitude (Vup) −0.8 V (blue) and 0.9 V (red) with pulse period 20 µs. Reprinted with permission
from [144]. Copyright © 2024 Springer Nature.

Currently, two-dimensional (2D) materials have gained a lot of interest in RRAM
based neuromorphic devices, mainly due to their atomically thin dimensions, low power
consumption, and the possibility of fabricating sub-10 nm-channel-length devices. Further,
2D materials have tunable electronic properties like band structure, carrier mobility, etc.,
which depend on the number of layers of the material. Such adjustable electronic features
are highly suited for the emulation of neurological responses. Graphene [145] has been
the most widely studied 2D material, mainly due to its unique electronic and mechanical
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properties. H. Tian et al. [146] reported the first graphene-based synaptic device having
a standard FET configuration and an additional bottom gate electrode. The device used
twisted bilayer graphene channels with gold electrodes as the source and drain and Al
SiO2 as the top and bottom gate electrodes, respectively. The migration of the pulse-
generated oxygen anions in the oxidised Al electrode leads to changes in the current
through the graphene layer, which helps in mimicking the various plasticity behaviors.
In addition, the bottom gate acts as a control element to modulate the plasticity even further.
The device could reproduce several plasticity responses, like LTP, LTD, and STDP, with
very low excitation pulses. Recently, J Shen et al. [133] (see Figure 6g–i) demonstrated a
multi-state LTP response using a single-crystal-monolayerMoS2-based memristor device.
The device achieved a very low power consumption of 1.8 pJ after LTP, which is the lowest
among other reported MoS2 devices. The mechanism responsible for the synapse behavior
was identified as the sulfur vacancy migration under the applied voltage pulses, which
caused variations in the Schottky barrier height at the MoS2/metal interface, leading to
the synaptic weight modulation. 2D MoS2 was recently used by D. Devet al. [147] to
fabricate a volatile threshold switching RRAM device with a high ON/OFF ratio of 106.
The threshold switching RRAM device was used in parallel to a capacitor to implement
a leaky integrate-and-fire (LIF) neuron circuit. A similar LIF circuit based on threshold
switching 2D graphene memristor device was also recently reported [148].

Van der Waals (vdW) heterostructures [149] are a relatively new class of low-dimensional
materials where multiple 2D materials are stacked vertically on top of another and held
together by weak van der Waals interaction. Due to their reduced dimensions and dangling
bond-free surfaces, they are ideal candidates for large-scale integrated artificial synapses
for hardware neural networking. Recently, Y. Shi et al. [144] developed a vdW heterostruc-
ture RRAM device based on multi-layered hexagonal boron nitride (h-BN) as the synapse
medium. The device had a configuration of metal/h-BN/metal (see Figure 6j–l) with
various metals like Ag, Au, Ti, and Cu being used. Depending upon the nature of the pulse
voltage and the choice of electrode material, both volatile and non-volatile switching were
achieved in the device. In the volatile switching regime, the device exhibited a very low
power consumption of 0.1 fW in the standby mode and 600 pW for the SET transition, both
of which are highly suited for the commercial realization of these devices. Further, the de-
vice was capable of mimicking several synapse functionalities like PPF, PPD, and STDP.
The underlying mechanism for the device performance was identified as a combination of
both conductive bridge formation due to the metal ions and the boron vacancy migration
from the h-BN to the anode. Similarly, R. Xu et al. [150] fabricated a vertically stacked vdW
heterostructure device composed of two MoS2 monolayers sandwiched between a top Cu
electrode and bottom Au electrode. The device works on the basis of Cu ion diffusion
through the atomically thin MoS2 layers, thereby lowering the switching voltage to around
0.1∼0.2 V. The device also exhibits synaptic learning rules like STDP responses with high
consistency. Such a low-power synaptic device is ideal for practical neuromorphic comput-
ing applications. A vertical MoS2/graphene van der Waals heterojunction [151] was also
used for emulating LIF neuron response with properties like threshold firing and neuron
refractory period.

5. Emerging Neuromorphic Applications

In the previous section, we discussed several RRAM platforms with diverse material
compositions capable of emulating neuronal behaviors. In recent years, the field of neu-
romorphic computing has found novel applications in emerging applications like the
emulation of novel biological responses, computer vision, advanced computing architec-
tures, audio & speech processing, medical applications, sensors, etc. Table 3 summarizes
some of the recent neuromorphic applications implemented using RRAM devices.
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Table 3. Summary of emerging neuromorphic applications implemented using RRAM devices.

Neuromorphic
Applications

Device
Composition

Highlights Ref.

Biological
Emulation:
(a) Synapse Ti/Ta/HfO2/Al2O3/Pt LTP/LTD [85]
(b) Neuron Au/Ti/VO2/Al2O3/Au LIF [87]
(c) STDP W/Al/PCMO/Pt Asymmetric STDP [152]
(d) Metaplasticity Pt/WO3/Pt Metaplasticity effects

on STDP
[88]

(e) Heteroplasticity Pt/TiO2−x/Pt Gated modulation
of plasticity

[91]

(f) Associative
learning Pd/C QD/Ga2O3/Pt Pavlovian learning [153]

Computer Vision:
(a) Image
classification Ni/GeOx/p+Si 91.27% accuracy

on CIFAR10/VGG8
[154]

(b) Image
segmentation TiN/Ta/TaOx/TaN 97% accuracy on

DRIVE/U-Net
[155]

(c) Video edge
detection Pt/HfO2/Ta 3D RRAM circuit [156]

Temporal &
Audio Processing:
(a) Time series
prediction Pt/HfO2/TiN

0.04% error rate
on Mackey-Glass
time series data

[157]

(b) Spoken digit
classification

Ti/TiOx/TaOy/Pt
99.6% accuracy

on NIST
TI-46 database

[158]

(c) Speech
recognition TiN/TaOx/HfOx/TiN

84.7% accuracy on
Google speech

command/LSTM

[17]

Natural Language
Processing:

(a) Text generation Pt/TiOx/Ti
Antimicrobial peptide

(AMP) sequence
generation

[159]

Other Applications:

(a) Medical Diagnosis Pt/HfO2/TiN 80% accuracy
in ADHD analysis

[157]

(b) Security
Application Cu/HfO2−x/p++Si Physically

unclonable function
[160]

Emulation of biological learning behaviors using RRAM devices has been one of the
earliest research attempts in neuromorphic research. Apart from synapse and neuron
realization, several advanced learning behaviors were also demonstrated using RRAM
devices. Associative learning is a biological learning behavior that works by linking the
correlation between separate events or stimuli so that they form a connection inside the
brain. It has been extensively studied in neuromorphic computing systems, mainly due
to their correlated learning attributes. Recently, Y. Pei et al. [153] demonstrated Pavlovian
associative learning functions using a carbon-quantum-dot-based memristive device. TEM
images revealed that carbon filaments developed inside the device were responsible for the
conduction mechanism. In order to demonstrate the Pavlovian learning rule, the device
was subjected to stimuli corresponding to a bell and food in a real-life situation. Initially,
the device was in the HRS state when the bell stimulus was fed, which switched to LRS
when the food stimulus was given. After the combined application of both stimuli, the sys-



Nanomaterials 2024, 14, 527 22 of 33

tem responds to the bell stimulus alone afterwards, which indicates the associative learning
behavior of the device. The device was also found to exhibit digit recognition with a high
accuracy of more than 90%. Classical Pavlov learning was demonstrated using spike based
response signals (see Figure 7a–c) by C.Y. Han et al. [161]. They used a reconfigurable
memristor device based on NbOx switching layer as both the synapse and neuron to trig-
ger a threshold spiking behavior, as shown in Figure 7b,c. Pavlovian learning has also
been demonstrated in several recent RRAM-based reports [162,163]. Pattern recognition
is also another advanced learning behavior of the brain that enables the recognition and
distinction of patterns with repeated training. Image recognition based on handwritten
digit datasets has been reported using RRAM devices in several recent reports with a
high degree of accuracy [163,164]. K. Udaya Mohanan et al. [154] reported the inference
accuracy of a GeOx-based RRAM device on a simulated convolutional neural network
(CNN) architecture using the CIFAR-10 dataset (see Figure 7d–g). They reported a pattern
recognition accuracy of 91.27% using a system-level simulation incorporating a fully neuro-
morphic architecture. Image recognition based on 3D flexible crossbar memristor arrays
based on Pt/HfAlOx/TaN configuration was recently reported by T.Y. Wang et al. [16] (see
Figure 7h). With a very low-energy consumption of 4.28 aJ/spike, the device could recog-
nize standard database images with additional noise pixels with a high level of accuracy.
K. Wang et al. [165] also reported a low power 2D MoS2 based memristor device with a
pattern recognition accuracy of 90.37%.

Another important application is the sparse coding of input data, which allows for
a minimal representation of the input data, thereby developing a dictionary that helps
in identifying patterns in a future dataset. P. M. Sheridan et al. [166] reported a 32 × 32
crossbar memristor array based on tungsten oxide (WOx) capable of sparse representation
of an input image into a dictionary of 20 elements. The device was found to be capable of
reconstructing more complex input images with the dictionary elements already recorded.
Recently, D. H. Lim et al. [167] reported a 1 Gb PCM-based memristor array with a 39 nm
process technology. By studying the statistical parameters involved in resistance drift,
a neural network was designed to demonstrate a spontaneous sparse learning scheme.
P. Lin et al. [156] reported a 3D memristive circuit composed of 8 layers capable of both
pattern recognition and edge detection in videos (see Figure 7k). In spite of the device-to-
device variations, these 3D array circuits were capable of performance on par with purely
software implementations.

Lately, several RRAM-based chips have been reported for implementing deep neural
networks with minimal energy efficiency as compared to conventional CMOS chip designs.
The earliest demonstration of a fully on-chip trainable RRAM chip was reported in 2015
by M. Prezioso et al. [168] using a binary oxide Al2O3/TiO2−x switching stack. They
implemented the on-chip training of a 12×12 RRAM crossbar array (see Figure 8a,b) for
the classification of a 3×3 binary image using a modified delta training algorithm. They
also implemented a novel weight mapping scheme using differential conductance pairs of
memristors having opposite charge polarity (see Figure 8c). A 3D vertical integration-based
RRAM (VRRAM) chip was reported by Q. Huo et al. [169] for brain MRI edge detection
(see Figure 8d–f) with a high energy efficiency of 8.32 tera-operations per second per watt
(TOPS/W).
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Figure 7. (a) Schematic of the pavlov’s dog associative learning implemented using a reconfigurable
NbOx memristor device. Electrical voltage output (b) before the training process & (c) after the
training process. Reprinted with permission under a Creative Commons CCBY License from [161].
(d) Schematic of the VGG8 neural network architecture used for CIFAR-10 pattern recognition using
a GeOx-based RRAM cell. (e) CIFAR-10 image recognition accuracy as a function of the training
epochs for the GeOx-based RRAM cell in comparison with the purely software-based training. Inset
shows sample images of the CIFAR-10 dataset. Pie charts showing the system level (f) energy &
(g) latency distribution of the various hardware peripherals used for the image recognition simulation.
Reprinted with permission under a Creative Commons CCBY License from [154]. (h) Schematic of
the stacked 3D memristor array composed of Pt/HfAlOx/TaN devices. (i) Illustration of the fully
connected artificial neural network used for MNIST data pattern recognition. (j) MNIST pattern
recognition rate (%) as a function of the number of training epochs and the amount of noise (%) added
to input image. Reprinted with permission from [16]. Copyright © 2024 American Chemical Society.
(k) Comparison of software & hardware generated edge detection from input video frames based on
a 3D integrated Pt/HfO2/Ta memirstor array. Reprinted with permission from [156]. Copyright ©
2024 Springer Nature.
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(d)

(g) (h)

(i)

(j)

(e) (f)

(b) (c)

Figure 8. (a) SEM image of 12×12 crossbar array composed of Al2O3/TiO2 memristor devices.
(b) Analog switching characteristics of the memristor device. Inset shows the device schematic.
(c) Schematic of a crossbar array implementing a 10×6 fragment of a single-layer perceptron neu-
ral network. Reprinted with permission from [168]. Copyright © 2024 Springer Nature. (d) De-
vice structure of a 3D VRRAM architecture composed of TiN/HfOx/TaOx/TiN memristor devices.
(e) Specimen MRI image of the brain as the input data. (f) VRRAM based edge detection using 3D
Prewitt kernels for convolving the brain MRI image. Reprinted with permission under a Creative
Commons CCBY License from [169]. (g) Micrograph image of the NeurRRAM chip. (h) Cross-
sectional TEM image showing the different layers inside the VRRAM stack. (i) Illustration of the
LSTM model used for Google speech command recognition. (j) Bar plot showing the classification
error (%) for various dataset/model combinations. Side panel shows the noisy image recovery error
for the RBM model. Reprinted with permission under a Creative Commons CCBY License from [17].

In 2023, IBM reported a PCM-based neural inference chip “HERMES” [170], which
was based on the compute-in-memory architecture. The HERMES chip used a staggering
∼16 million PCM devices and achieved a high level of parallelism with a throughput of
63.1 TOPS and an energy efficiency of 9.76 TOPS/W. The compute capabilities of the chip
were evidenced by the high level of performance in generating text-based captions on the
Flickr8k dataset using a long short-term memory network (LSTM). The biggest performance
gain reported among RRAM-based deep learning chips (at the time of publication) has
been reported by the “NeuRRAM” chip [17] (see Figure 8g). The chip has 48 synaptic cores
composed of 65,536 RRAM devices and 256 CMOS-based neuron circuits. The NeuRRAM
chip is fully reconfigurable and can support both training and inference with full data &
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model parallelism capabilities. NeuRRAM consumes 2.3× less energy as compared to its
digital counterparts and records comparable performance across several deep learning
models. On the Google speech command recognition task, the NeuRRAM chip recorded
an impressive performance of 84.7% using an LSTM network.

6. Challenges & Future Outlook

RRAM devices have been extensively used for neuromorphic computing applications
over the past decade. However, several issues still remain unsolved, both at the device
level and at the array level. The stochastic nature of conductive filament growth and the
lack of a clear understanding of the conduction dynamics are the primary hindrances to
the future growth of RRAM device research and its eventual commercialization. In order
for RRAM devices to be practically useful for neuromorphic computing applications, de-
vice non-ideality [171] issues need to be addressed carefully. These include a variety of
issues like cycle-to-cycle conductance variations, device-to-device variations, conductance
drift, high ON current, etc. Both the device-to-device variability and the cycle-to-cycle
variability can be minimized with standardized device fabrication strategies, which have
been reported in several of the reports discussed here. Further optimizations have to
be focused both at the device architectural level and at the material selection choices to
minimise issues like the high ON current observed in RRAM devices. Device architectural
innovations like multi-terminal device design [172], 3D stacking [173], interface & filament
modulation [174], defect engineering [175], etc. have been effective in mitigating RRAM
device-level non-idealities. For neuromorphic emulation, the device level conductance
update linearity and symmetry have also proven very critical [176,177]. From a materi-
als perspective, new & innovative material choices need to be identified with inherent
properties adaptable to neuromorphic emulation. Although traditional metal oxide layers
are still the predominant choice in neuromorphic research, emerging material choices like
2D materials and vdW heterostructures can be a suitable alternative given their scope for
dimensional scaling and energy efficiency. At the crossbar array level, several issues like
IR drop, high read-out currents, and large peripheral circuits need to be addressed [178].
Another key issue is the algorithm-level innovations required for overcoming or minimiz-
ing the effect of device-level imperfections. Apart from attempts at compressing neural
network architectures [179], RRAM weight mapping algorithms [180], noise-aware training
algorithm [181,182] and fault mitigation algorithms [183] have been reported with much
success in recent literature. An alternative strategy is the hardware-software codesign
paradigm, where the inherent stochasticity of these devices is incorporated into neural
network training and/or inference algorithms [184,185]. Finally, the technological adapta-
tion of RRAM devices for neuromorphic computing requires major innovations in terms
of scaling capabilities. As the demand for computing power increases, so should the
scalability of RRAM-based crossbar array architectures. Novel architectural solutions like
horizontal stacked 3D structure & vertical 3D integration [18] can be possible candidate
solutions for addressing scaling issues. Finally, anomalies in the analysis & reporting
of device performance still exists, and detailed reports have been recently published on
strategies to mitigate such issues [186–188]. In conclusion, with further research focused on
the device-, circuit-, and algorithm-level architectures, RRAM devices can truly attain their
full potential in realizing practical neuromorphic-based computing systems.
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107. Wlaźlak, E.; Marzec, M.; Zawal, P.; Szaciłowski, K. Memristor in a Reservoir System—Experimental Evidence for High-Level
Computing and Neuromorphic Behavior of PbI2. ACS Appl. Mater. Interfaces 2019, 11, 17009–17018. [CrossRef]

108. Chen, D.; Zhi, X.; Xia, Y.; Li, S.; Xi, B.; Zhao, C.; Wang, X. A Digital-Analog Bimodal Memristor Based on CsPbBr3 for Tactile
Sensory Neuromorphic Computing. Small 2023, 19, 2301196. [CrossRef]

109. Katz, H.E.; Lovinger, A.J.; Johnson, J.; Kloc, C.; Siegrist, T.; Li, W.; Lin, Y.Y.; Dodabalapur, A. A soluble and air-stable organic
semiconductor with high electron mobility. Nature 2000, 404, 478–481. [CrossRef]

110. Scrosati, B. Progress in lithium polymer battery R&D. J. Power Sources 2001, 100, 93–100. [CrossRef]

http://dx.doi.org/10.1002/adma.201104301
http://dx.doi.org/10.1109/TED.2011.2147791
http://dx.doi.org/10.1063/1.5052556
http://dx.doi.org/10.1038/s41586-023-05759-5
http://dx.doi.org/10.1021/acs.nanolett.5b00697
http://www.ncbi.nlm.nih.gov/pubmed/25710872
http://dx.doi.org/10.1038/s41467-022-31747-w
http://dx.doi.org/10.1002/adma.201503575
http://dx.doi.org/10.1021/acsami.7b11191
http://www.ncbi.nlm.nih.gov/pubmed/29086551
http://dx.doi.org/10.1016/j.matdes.2019.108400
http://dx.doi.org/10.1038/s41598-019-46192-x
http://dx.doi.org/10.1016/j.jallcom.2019.153625
http://dx.doi.org/10.1016/j.sse.2017.10.032
http://dx.doi.org/10.1021/acsaelm.0c00094
http://dx.doi.org/10.1063/1.5093138
http://dx.doi.org/10.1021/acsami.8b04550
http://www.ncbi.nlm.nih.gov/pubmed/29985576
http://dx.doi.org/10.1109/LED.2017.2698083
http://dx.doi.org/10.1038/nmat4756
http://www.ncbi.nlm.nih.gov/pubmed/27669052
http://dx.doi.org/10.1002/adma.201606927
http://dx.doi.org/10.1016/j.jallcom.2023.172641
http://dx.doi.org/10.1007/s11664-022-10061-7
http://dx.doi.org/10.1038/srep01619
http://dx.doi.org/10.1088/1361-6463/ab7517
http://dx.doi.org/10.3390/nano10091709
http://www.ncbi.nlm.nih.gov/pubmed/32872514
http://dx.doi.org/10.1109/LED.2018.2809784
http://dx.doi.org/10.1038/srep04906
http://www.ncbi.nlm.nih.gov/pubmed/24809396
http://dx.doi.org/10.1021/acsami.9b01841
http://dx.doi.org/10.1002/smll.202370292
http://dx.doi.org/10.1038/35006603
http://dx.doi.org/10.1016/S0378-7753(01)00886-2


Nanomaterials 2024, 14, 527 30 of 33

111. Kannan, U.M.; Muddisetti, V.N.; Kotnana, G.; Kandhadi, J.; Giribabu, L.; Singh, S.P.; Jammalamadaka, S.N. Spin–orbit coupling
and Lorentz force enhanced efficiency of TiO2 -based dye sensitized solar cells. Phys. Status Solidi (A) Appl. Mater. Sci. 2017,
214, 1600691. [CrossRef]

112. Burroughes, J.H.; Bradley, D.D.C.; Brown, A.R.; Marks, R.N.; Mackay, K.; Friend, R.H.; Burns, P.L.; Holmes, A.B. Light-emitting
diodes based on conjugated polymers. Nature 1990, 347, 539–541. [CrossRef]

113. Valov, I.; Kozicki, M. Organic Memristors Come of Age. Nat. Mater. 2017, 16, 1170–1172. [CrossRef]
114. Li, S.; Zeng, F.; Chen, C.; Liu, H.; Tang, G.; Gao, S.; Song, C.; Lin, Y.; Pan, F.; Guo, D. Synaptic Plasticity and Learning Behaviours

Mimicked through Ag Interface Movement in an Ag/Conducting Polymer/Ta Memristive System. J. Mater. Chem. C 2013, 1, 5292.
[CrossRef]

115. Van De Burgt, Y.; Lubberman, E.; Fuller, E.J.; Keene, S.T.; Faria, G.C.; Agarwal, S.; Marinella, M.J.; Alec Talin, A.; Salleo, A. A
Non-Volatile Organic Electrochemical Device as a Low-Voltage Artificial Synapse for Neuromorphic Computing. Nat. Mater.
2017, 16, 414–418. [CrossRef]

116. Yu, T.F.; Chen, H.Y.; Liao, M.Y.; Tien, H.C.; Chang, T.T.; Chueh, C.C.; Lee, W.Y. Solution-Processable Anion-doped Conjugated
Polymer for Nonvolatile Organic Transistor Memory with Synaptic Behaviors. ACS Appl. Mater. Interfaces 2020, 12, 33968–33978.
[CrossRef]

117. McFarlane, T.; Bandera, Y.; Grant, B.; Zdyrko, B.; Foulger, S.H.; Vilčáková, J.; Sáha, P.; Pfleger, J. Carbazole Derivatized n-Alkyl
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