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Abstract: InAs doping superlattice-based solar cells have great advantages in terms of the ability
to generate clean energy in space or harsh environments. In this paper, multi-period InAs doping
superlattice solar cells have been prepared.. Current density–voltage measurements were taken both
in the dark and light, and the short-circuit current was estimated to be 19.06 mA/cm2. Efficiency
improvements were achieved with a maximum one sun AM 1.5 G efficiency of 4.14%. Additionally,
external quantum efficiency and photoluminescence with different temperature-dependent test
results were taken experimentally. The corresponding absorption mechanisms were also investigated.

Keywords: InAs; nipi superlattice; subband absorption; mechanism

1. Introduction

Solar energy, as a new type of renewable energy, has become an important way to
solve the global energy crisis and one of the primary choices for people to obtain clean
energy [1]. Usually, there are two ways to utilize solar energy: photothermal conversion
and photoelectric conversion. Among them, photoelectric conversion plays a major role in
the utilization of solar energy. For photoelectric conversion of the solar cell, photoelectric
conversion efficiency is an important technical indicator for judging applications. The
efficiency of a solar cell is defined as the percentage of power converted from sunlight
to electrical energy under standard test conditions. In 1961, the semi-empirical efforts
developed by Walter Shockley and Hans Quesisser detailed the balance model to calculate
the efficiency of solar cells, which depicted that a crystalline Si solar cell has the maxi-
mum theoretical efficiency of ~30% [2]. In order to obtain high conversion efficiency and
low-cost solar cells, some alternative designs have been introduced, including the use of
low-cost substrates, novel material systems, or the inclusion of nanostructures, such as
dye-sensitized cells [3–6], perovskite cells [7,8], group III-V multi-junction cells [9], quan-
tum wells [10], and superlattice cells [11]. Dye-sensitized and perovskite cells have been
proposed due to their high conversion efficiency and low-cost applications.

However, the difficulties in fabrication and long-term durability are still the biggest
obstacles for practical demands. By contrast, group III-V semiconductor thin film or multi-
heterojunction solar cells are more mature technologies, especially for quantum well and
superlattice structures. Since 1970, when Esaki proposed to develop artificial semicon-
ductors [12], n-type/intrinsic/p-type/intrinsic (nipi) superlattice structures have gained
great attention in solar cell production. In the initial solar cell application, nipi is a doping
superlattice (DSL) formed by repeating intrinsically doped epitaxial GaAs layers, which are
stacked vertically in a parallel connected multi-period solar cell [13]. So far, this format has
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been widely applied and has found great success in detectors, lasers, and other photonic
structures [14,15]. On the other hand, in solar cell structures, III–V multijunction tandem
solar cells have been developed for application in space satellites because of their superior
radiation tolerance. For applications in space, the solar cells work in a very harsh environ-
ment, which features, for example, temperature variations ranging hundreds of degrees,
electromagnetic interference, high-energy cosmic radiation particles, etc. Traditional solar
absorb materials and device structure are not fit for these applications. So, it is widely
believed that a p-i-n-type device design can effectively extend the carrier lifetimes as well
as improve radiation tolerance and the formation of subband gap energy states [16,17].
These proposed advantages are beneficial for reducing thermalization and transmission
losses, especially in an external harsh environment. Due to the short diffusion length
requirements of the absorbing layer, normally, the use of multiple repeated periods of thin
nipi layers is recognized as an alternative way to absorb the incoming light; moreover, it
is also recognized as a way of minimizing loss in carrier collection. This means smaller
losses in a short-circuit current, even with high levels of radiation, so it is ideal for space
applications. The nipi superlattice structures based on GaAs have been studied more
widely than other materials systems. The absorption edge of the traditional GaAs solar
cell is limited to 0.89 µm, and generally, InAs is introduced to expand the light absorption
and spectral response (due to the absorption spectrum expanding to infrared region and
improving subband collection). However, it should be noted that its conversion efficiency
is low, and the device structure leads to higher costs. With the above in mind, the goal
is to propose improvement plans based on experimental results in order to optimize the
performance of the InAs solar cell.

In this work, we focus on a new role of the InAs nipi superlattice layer as the absorption
unit in solar cell structures, with the intended aim for applications in space at very low
temperatures. Meanwhile, the introduction of an InAs absorption layer is hoped to expand
the whole absorption edge in order to be comparable with conventional GaAs solar cells or
InAs quantum-dot-embedded GaAs solar cells. We also analyze and discuss the spectrum
from external quantum efficiency (EQE) and photoluminescence (PL) results of the InAs
nipi superlattice, whose corresponding absorption mechanism is investigated.

2. Materials and Methods

The samples were prepared by Riber C21T solid source molecular beam epitaxy (MBE)
system (Bezons, France). Figure 1a illustrates the growth process. The structures were
grown on GaAs substrates, first a 500 nm thick p-type GaAs buffer and a 200 nm thick
p-type InAs contact layer, followed by the nipi InAs superlattice-doped active region and
capped with a 100 nm thick n-type InAs layer. Each repeating nipi doping region in the
superlattice design was 50 nm thick. The n- or p-type layers were doped with Si or Be,
respectively, with doping carrier concentration of 1 × 1018 cm−3. The light and dark current–
voltage curves were measured every 48 h or 12 cycles under the solar simulator system. The
light source of the solar simulator was an OSRAM 1000 W short-arc xenon lamp (Munich,
Germany), which can simulate the spectrum of AM 1.5 G standard irradiance.

The layers showed a sinusoidal-like band alignment due to the alternating n- and
p-type layers for this structure (as shown in Figure 1b). It results in high carrier extraction
efficiency and minimal sensitivity to minority carrier diffusion length, providing a good fit
for high-temperature or high-radiation applications. Furthermore, the device was produced
by employing traditional photolithography followed by etching. The structures were etched
down to the p-type GaAs buffer layer. The n-type and p-type metallization of Ti/Pt/Au
contacts were deposited followed by a metal lift-off. All samples were passivated with
hydrochloric acid-isopropanol solution (HCl-IPA), which eliminates any remains from
etching and preserves the atomic smoothness of the surface.
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ever, the crystalline quality also improves with increasing superlattice periods to some 
extent, which could be helpful in reducing the dark current. When the number of periods 
is smaller than 50, the relatively low dark current can be attributed to the improved uni-
formity and stain-free quality of the epitaxial layers. As the number of periods is high (up 
to 50), the dark current strongly increases, which can be attributed to the increase in lattice 
stress and defects with the increase in repeated period thickness. 
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Figure 1. (a) Depiction of nipi cross-section and (b) the corresponding band diagram of the nipi
active region.

3. Results and Discussion

Current density–voltage curves measured under dark and bright conditions are shown
in Figure 2. The results indicate that the number of periods in the nipi superlattice has a
significant influence on the dark current. A suitable number of superlattice cycles would
help to achieve a balance between a lower dark current and higher efficiency. As seen
in Figure 2a, as the number of periods increases, the dark current attains a relatively low
value. When the number of periods is 75, the corresponding dark current is higher than
that for other values, and this increase in dark current is mainly due to the multiple parallel
connected junctions (as shown in Figure 1a).
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Figure 2. (a) Current–voltage characteristic of solar cells with different numbers of nipi periods under
1 sun AM 1.5 illumination. (b) the open-circuit voltage under different efficiency.

Generally, the repeated connected junctions all contribute to the dark current; however,
the crystalline quality also improves with increasing superlattice periods to some extent,
which could be helpful in reducing the dark current. When the number of periods is smaller
than 50, the relatively low dark current can be attributed to the improved uniformity and
stain-free quality of the epitaxial layers. As the number of periods is high (up to 50), the
dark current strongly increases, which can be attributed to the increase in lattice stress and
defects with the increase in repeated period thickness.

In order to present the device performance clearly, the relevant dark current was
extracted by fitting the curves with the dual diode dark current equation [18]:

Jdark(V) = J01

(
e

qV
kT − 1

)
+ J02

(
e

qV
2kT − 1

)
(1)

where q is the electron charge, k is the Boltzmann constant, and T is the temperature. J01 and J02
are the dark current saturation currents. The factor J01 is related to the Shockley–Reed–Hall
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(SRH) generation/recombination rate—this process occurs more rapidly in the depletion
region. The J02 term is described in detail by the following proportionality:

J02 ∝
qvthW

2
σNt (2)

where W is the depletion width, νth is the carrier thermal velocity, σ is the carrier capture
cross-section, and the Nt is the number of traps.

From the preceding two equations, the dark currents J01 and J02 can be calculated as
well as the corresponding short-circuit current. The open-circuit voltage is also shown in
Figure 2. The samples were numbered 1 to 4 (with number of periods N1 to N4 given in
Figure 2a), and their corresponding efficiencies reached 2.089%, 2.548%, 4.139%, and 3.410%,
respectively. As can be concluded from the above, these solar cells all have higher dark
saturation currents and the ideality factors are higher than expected, partly due to a shunt at
the superlattice interface. Additionally, there is an increase in cumulative depletion region
thickness, which also contributes to the increased dark current component [19]. Thus, there
is also an efficiency improvement in sample N3 over prior results from 3.42% [12].

Compared with a typical GaAs single junction VOC of 1.05 V, the open-circuit voltage
(~0.4 V) is significantly reduced. Such a loss in VOC is mainly due to the nipi design, which
can be primarily explained by a bigger dark current than that of the GaAs single junction
due to there being more parallel junctions in nipi superlattices, or put another way, it is
believed to be due to the epitaxial layers of the junctions forming interface traps. From
these results, it can be speculated that the voltage and efficiency will increase significantly
with decreasing interface traps and increasing doping concentration, and this idea can be
investigated in the future.

In order to identify the processes, EQE and PL results are shown in Figure 3. In Figure 3a,
the peaks were extracted from EQE measurements where the main emission peak can cover
the entire visible region, and the subband peak was at 938 nm. The absorption edge can be
extended to 1050 nm for EQE, which has a broadened absorption range compared with
the reference GaAs p-i-n solar cell, demonstrating substantial enhancement of the EQE
reaching over 30% in the wide range of 900–1000 nm. The results show that it is feasible
to expand the range of spectral response with doping nipi superlattice. Additionally, we
investigated the effects of temperature on optical properties. The temperature-dependent
PL emission spectra of samples are plotted in Figure 3b. It can be expected for the PL peak
position to shift monotonously to lower energy with increasing temperature due to optical
gap shrinkage. This can be analyzed using the Varshni formula [20], given as follows:

Eg(T) = E0 −
αT2

β + T
(3)

where E0 is the band gap at 0 K and T is the temperature. α (eV/K) and β (K) are Varshni
coefficients. The fitting parameter α was found to be 0.315 meV/K. The fitting parameter
β is equal to 101.7 K. Compared with the reported energy bandgap of the bulk InAs,
GaAs crystals, and other structures [21,22], it has been revealed that in this structure the
fitting parameters in the temperature range 4–300 K are very close to their values for InAs
quantum dot structures [19], differing slightly from the values in InAs. It is still, however,
in alignment with InAs-like bandgap shrinkage, as shown by the Varshiapproximation.
Furthermore, from these experimental results, we can see that there is some mismatch
between PL and EQE peak locations, due to Stokes shift [23].

The occurrence of this subband gap peak in EQE can be explained by the combination
of two different effects. The first effect is the confined states within the wells, which is
originated from minibands and was formed in the forbidden gap of the semiconductor. This
mechanism has the strong effect near the valence or conduction band edge, which requires
the least energy. It is the first absorption mechanism, which is depicted in a confined state,
as shown in Figure 4.
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through the confined state and the Franz–Keldysh effect. The red dotted in the figure means the
different energy band.

The second effect contributing to subband absorption can be recognized as the Franz–
Keldysh effect. Due to high electric fields through the SLs, the effect normally describes the
overlap of electron and hole wavefunctions within the forbidden gap. The existence of an
electric field-dependent absorption is explained as the photo-assisted tunneling of electrons
from the valence to the conduction band. The electric field is a function of position in the
growth axis z, which is described by the following equations [18,24]:

ε(z) =
1
ϵ

∫
ρ(z)dz =


− qNA

ϵ

(
d0

p
2 − |z|

)
if

d0
p

2 < |z| < dp
2

qNA
ϵ

dp−d0
p

2 if dp
2 < |z| < d−dn

2

qND
ϵ

(
|z| − d−d0

n
2

)
if d−dn

2 < |z| < d−d0
n

2

(4)

where dn
0 and dp

0 are the n- and p-type quasi-neutral region thickness, d is the entire nipi
period thickness, and ϵ is the relative permittivity. ND is the donor concentration, NA is
the acceptor concentration, and dn and dp are the n-type and p-type thickness, respectively.
The electric field within each of the doped and intrinsic layers results in rapid carrier
collection with minimal recombination, which is from the calculation in Equation (3).
As shown in the reported paper, if each layer thickness is about 50 nm with a doping
concentration of 1 × 1018 cm−3, the electric field would reach a maximum value exceeding
3.6 × 105 V/cm [12]; this effect leads to a significant overall contribution to absorption.
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As previous works [25] have showed, such an interband optical absorption should
include the effects of the Coulomb interaction of the electron and hole, and it results in
exciton resonances. Thus, it is known that the excitonic resonances in semiconductors are
strongly weakened by high electric fields. Therefore, the SL design mainly determines the
subband gap absorption that each effect contributes. To some extent it is also clear that the
total subband absorption cannot be entirely explained by one of these two effects, which
means that the Franz–Keldysh effect is not the only absorption mechanism. Based on the
above analysis, the subband absorption in EQE can be recognized as a combination of these
two different effects.

In the range above 900 nm, compared with traditional GaAs solar cells, this subband
absorption contribution is remarkable. Theoretical analysis of the subband collection
absorption in a GaAs DSL has been demonstrated elsewhere, and we expect that the
subband absorption of InAs nipi doping superlattice would be similar, with even more
subband absorption in the infrared region based on inherent material properties. Therefore,
in order to achieve an increase in subband absorption, it is necessary to introduce the
thin nipi layers with an appropriate number of cycles, and increase the doping levels to
maximize the built-in field at each junction. These measures will be beneficial for further
improving device performance and achieving efficiency of InAs nipi doping superlattice
solar cell solar cells.

4. Conclusions

In summary, the influence of the number of periods in InAs nipi doping superlattice
solar cells was investigated. The samples were measured under dark and light conditions to
obtain current density curves, and the corresponding electrical properties were presented.
The short-circuit current was estimated to be 19.06 mA/cm2, and the maximum one
sun AM 1.5 G efficiency achieved was 4.14%. The EQE and PL test results were taken
experimentally and the subband absorption mechanisms were also clearly investigated.
The results provide guidance on how to achieve the desired efficiency and increase subband
collection absorption in InAs nipi doping superlattice solar cells.
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