
Citation: Tikhonov, B.B.; Lisichkin,

D.R.; Sulman, A.M.; Sidorov, A.I.;

Bykov, A.V.; Lugovoy, Y.V.;

Karpenkov, A.Y.; Bronstein, L.M.;

Matveeva, V.G. Magnetic

Nanoparticle Support with an

Ultra-Thin Chitosan Layer Preserves

the Catalytic Activity of the

Immobilized Glucose Oxidase.

Nanomaterials 2024, 14, 700.

https://doi.org/10.3390/

nano14080700

Academic Editor: Meiwen Cao

Received: 27 March 2024

Revised: 12 April 2024

Accepted: 16 April 2024

Published: 17 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Magnetic Nanoparticle Support with an Ultra-Thin Chitosan
Layer Preserves the Catalytic Activity of the Immobilized
Glucose Oxidase
Boris B. Tikhonov 1 , Daniil R. Lisichkin 1, Alexandrina M. Sulman 1, Alexander I. Sidorov 1, Alexey V. Bykov 1,
Yury V. Lugovoy 1, Alexey Y. Karpenkov 2, Lyudmila M. Bronstein 1,3,* and Valentina G. Matveeva 1,*

1 Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina
Str., 170026 Tver, Russia; tiboris@yandex.ru (B.B.T.); danok9900@gmail.com (D.R.L.);
alexsulman@mail.ru (A.M.S.); sidorov_science@mail.ru (A.I.S.); bykovav@yandex.ru (A.V.B.);
pn-just@yandex.ru (Y.V.L.)

2 Department of Condensed Matter Physics, Tver State University, Zhelyabova St., 33, 170100 Tver, Russia;
karpenkov_alex@mail.ru

3 Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA
* Correspondence: lybronst@indiana.edu (L.M.B.); matveeva@science.tver.ru (V.G.M.)

Abstract: Here, we developed magnetically recoverable biocatalysts based on magnetite nanoparticles
coated with an ultra-thin layer (about 0.9 nm) of chitosan (CS) ionically cross-linked by sodium
tripolyphosphate (TPP). Excessive CS amounts were removed by multiple washings combined with
magnetic separation. Glucose oxidase (GOx) was attached to the magnetic support via the interaction
with N-hydroxysuccinimide (NHS) in the presence of carbodiimide (EDC) leading to a covalent amide
bond. These steps result in the formation of the biocatalyst for D-glucose oxidation to D-gluconic
acid to be used in the preparation of pharmaceuticals due to the benign character of the biocatalyst
components. To choose the catalyst with the best catalytic performance, the amounts of CS, TPP,
NHS, EDC, and GOx were varied. The optimal biocatalyst allowed for 100% relative catalytic activity.
The immobilization of GOx and the magnetic character of the support prevents GOx and biocatalyst
loss and allows for repeated use.

Keywords: biocatalyst; magnetite; nanoparticle; chitosan; glucose oxidase; magnetic nanoparticle
aggregates

1. Introduction

Magnetically recoverable biocatalysts, i.e., enzymes immobilized on magnetic sup-
ports, receive considerable attention due to the important advantages of such catalysts
compared to native enzymes or enzymes immobilized on nonmagnetic supports (see recent
reviews [1–14]). Like all immobilized enzymes, they allow for higher stability during
catalytic reactions and broader temperature and pH stability ranges [15–19]. In addition,
magnetic supports grant easy magnetic separation during both the catalyst synthesis and
the catalytic reaction as well as magnetic control for continued processes [20–25]. It is note-
worthy that magnetic nanoparticle (NP) morphology is crucial for magnetic properties. For
example, cubic [26] or rod-shape [27] NPs could exhibit different saturation magnetization
than that of spherical NPs of the same size [28–30]. In several studies, cubic NPs showed
the highest saturation magnetization [29,30]. However, when magnetic NP aggregates
are formed, the shape influence is secondary compared to the combined properties of an
NP ensemble.

When magnetic supports are based on magnetic NPs, the latter require functionaliza-
tion for the further covalent attachment of enzymes. A typical approach is coating magnetic
NPs with silica functionalized with amino groups [31–34]. Amino groups allow for the
chemical attachment of enzymes via suitable linkers. Unlike silica-NH2 treatment, coating
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magnetic NPs with functional polymers (i.e., polymers containing functional groups) can
provide a much higher functional group density in one step via polymer deposition on the
NP surface. Among functional polymers, significant attention has been paid to chitosan
(CS)—a natural polymer obtained from chitin (biomass) [8,35–39]. It was reported that
the CS coating of maghemite NPs can be carried out by different methods. The authors
of ref. [38] explored a microemulsion process, a suspension cross-linking process, and
a covalent binding method. They discovered that the suspension cross-linking process
provides the most efficient biocatalyst, which was assigned to the preferable orientation of
amino groups for enzyme immobilization. Gracida et al. reported the deposition of CS on
magnetite NPs by the simple dispersion of both components in an ultrasound processor
which demonstrates a simpler method than those described above, yet it allows for an
efficient biocatalyst after cross-linking with genipin and the immobilization of xylanase [36].
An even more robust method was reported by Salehi et al. when magnetite NPs were dis-
persed in the CS solution and separated from the suspension after polymer adsorption [39].
We used a similar method in our work reported here.

It is worth noting that the stabilization of CS on the support can be improved via CS
cross-linking. As cross-linking agents, a number of compounds have been utilized including
glutaraldehyde [40–42], genipin [36,43,44], and sodium tripolyphosphate (TPP) [45–47].
Glutaraldehyde is a popular cross-linking agent because its aldehyde groups immediately
form covalent bonds with amino groups. The use of this cross-linker is often warranted if
the material application is not sensitive to glutaraldehyde shortcomings [40]. In genipin,
an aldehyde group is formed upon interaction with an amino group via the opening of
the dihydropyran ring followed by the reaction of an aldehyde with a secondary amino
group, resulting in covalent bonding [36,43,44]. Genipin is often preferred in biomedical
applications when its high cost is not an issue [43]. Chandra et al. demonstrated the
formation of ionic cross-linking between CS-protonated amino groups (−NH3

+) and tri-
polyphosphate anionic groups of TPP on the surface of magnetite NPs for the removal
of heavy metals from wastewater [45]. Chitosan-TPP composites have been also used as
nanofertilizers to deliver nutrients to plants [46]. Considering that glutaraldehyde is toxic
and cannot be used for pharmaceutical applications [48] while genipin is too expensive,
TPP is a compound of choice for CS cross-linking. It provides ionic interactions with
protonated CS amino groups in mild conditions.

The other avenue to stabilize a CS layer was demonstrated for porous supports. An
uneven surface (porosity) improves CS adsorption, thus stabilizing the composite [49].
Moreover, enzyme adsorption was also governed by the pore sizes and total porosity. In
general, enhanced porosity is beneficial for biocatalysts due to a possible higher degree of
enzyme attachment [50,51].

Among numerous enzymes, glucose oxidase (GOx) belonging to the oxidoreductase
family plays an important role in biological processes. In the presence of oxygen, GOx
catalyzes the oxidation of D-glucose to D-glucono-δ-lactone and hydrogen peroxide. In
turn, D-glucono-δ-lactone is further spontaneously hydrolyzed to D-gluconic acid [52–54].
D-gluconic acid and its derivatives are widely utilized in the food, pharmaceutical, textile,
and construction industries [55,56].

In this paper, we developed magnetically responsive biocatalysts for the oxidation
of D-glucose to D-gluconic acid by first forming magnetite (Fe3O4) NP aggregates via a
precipitation route at ambient temperature [57,58]. This method uses the least expensive
chemicals and allows for the conservation of energy compared to the thermal decomposition
methods of metal compounds frequently used for syntheses of magnetic NPs [59–61]. Here,
the magnetic NP aggregates (MNAs) were then coated with an ultrathin layer of CS
cross-linked with a most benign compound—TPP—which is allowed for use in the food
and pharmaceuticals industries [62]. In addition, the attachment of GOx was carried out
with benign 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and
N-hydroxysuccinimide (NHS) [63,64]. The optimization of the biocatalyst composition
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allowed us to achieve 100% relative activity, paving the way for commercial applications of
such catalysts.

2. Materials and Methods

Materials, synthesis of MNAs, biocatalyst activity assays, reusability of biocatalysts,
and characterization are presented in the Supplementary Materials.

2.1. Magnetic Biocatalyst Synthesis

MNAs were synthesized following the procedure described elsewhere by forming
magnetite nanoparticle aggregates by co-precipitation of FeCl2 (ferrous chloride) and
FeCl3 (ferric chloride) in basic medium [57]. A typical experiment is described in the
Supplementary Materials.

To cover the MNAs with CS, in a typical experiment, 10 mL of CS solution (0.1 g in
10 mL of 2 M acetic acid) was added to the MNA reaction mixture (without separation
of MNAs) and stirred for 15 min. After that, MNA-CS was separated from the reaction
mixture using a rare earth magnet. For CS cross-linking on the MNA surface, the MNA-CS
was stirred for 1 h in a solution of TPP (0.05 g in 50 mL of distilled water), after which the
MNA-CS was washed five times, separated with a rare-earth magnet, and dried in air at
20 ◦C for 24 h. The resulting sample was designated as MNA-CSP where CS stands for
chitosan and P stands for TPP.

For the covalent attachment of GOx with the support, in this work we used EDC and
NHS [65–67]. When these reagents are added and kept in the reaction mixture for 12 h,
a stable NHS ester is formed on the surface of GOx. This resulted in the formation of a
durable amide bond after interaction with the NH2 groups on the support surface.

In a typical experiment, the dry MNA-CSP sample (0.25 g) was added to 0.1 g of
EDC, 0.04 g of NHS, and 50 mg of GOx in 20 mL of PBS buffer (pH 6) and stirred for 12 h.
Then, the biocatalyst (MNA-CSP-GOx) was magnetically separated, washed five times
with 50 mL of water each, and dried at 20 ◦C for 24 h.

2.2. The Catalytic Reaction

The catalytic reaction of choice for immobilized GOx is D-glucose oxidation to D-
gluconic acid with peroxidase (HRP) and 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid) diammonium salt (ABTS) to carry out analyses by spectrophotometry (Scheme S1) [68].
When O2 is present, the biocatalyst based on GOx allows for oxidation of D-glucose first to
D-glucono-1,5-lactone and H2O2. After that, the lactone is hydrolyzed to D-gluconic acid
(Scheme S1a). Because D-glucono-1,5-lactone and H2O2 are formed in equimolar amounts
(also equal to the D-glucose moles), we assessed the amount of H2O2 at specific times with
spectrophotometry (a colored compound is formed in the presence of ABTS and H2O2
(Scheme S1b) [69].

3. Results and Discussion
3.1. Characterization of MNAs

Figure 1 displays bright-field (BF) scanning transmission electron microscopy (STEM)
and high-resolution TEM (HRTEM) images of MNAs. The STEM image shows a large
aggregate consisting of smaller NPs attached to each other (Figure 1a). The formation of
NP aggregates is typical for the precipitation method which is carried out in the absence
of efficient stabilizing molecules such as surfactants or polymers [57,58]. We estimated
mean particle sizes using the grain intercept method. For this, we used about 30 NPs
of each sample. The aggregates are comparatively large (~up to several microns) and
polydisperse. The individual NP sizes vary between 5 nm and 30 nm with a mean diameter
of about 12 nm. However, because all NPs are glued to each other, these measurements are
not accurate.

The HRTEM image of MNAs (the [111] orientation) displays the interplanar distances
of d(220)Fe3O4 = 0.29 nm (Figure 1b) which are typical for the [111] projection of the mag-
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netite (Fe3O4) crystal structure [57]. Hysteresis loops obtained at two different temperatures
(Figure S1) show that the saturation magnetization of MNAs is 65.3 emu/g which provides
a high magnetic response—a clear advantage of MNAs vs. individual magnetic NPs.
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3.2. Biocatalyst Catalytic Activity

The biocatalyst synthesized (MNA-CSP-GOx) is a multicomponent system, containing
MNAs, CS ionically cross-linked by TPP, and GOx covalently attached to CS via interaction
with NHS in the presence of EDC. To discover the optimal contents of all components
producing the most efficient catalyst, we varied the amounts of CS, TPP, cross-linkers for
GOx (NHS and EDC), and GOx. The data obtained are presented in Table 1.

The CS amount was varied between 0.05 g and 0.125 g per 1 g of MNAs (Table 1). The
maximum relative activity (R), i.e., activity towards native GOx in the same conditions,
was obtained for 0.1 g of CS. A decrease in the CS amount leads to a decrease in the relative
activity which could be assigned to an insufficient number of CS amino groups. At the
same time, an increase in the CS amount leads to an even faster drop in activity which
could be tentatively assigned to a too thick CS layer which could bury GOx, changing its
native conformation.

TPP, which is introduced after CS deposition, serves as cross-linker for CS stabilization
(Scheme 1). The TPP amount varied between 0.01 g and 0.1 g per 0.1 g of CS. It was
found that the best activity was observed for 0.05 g of TPP, which could be attributed to a
combination of sufficient stability of the CS layer during reaction and adequate access to
CS amino groups.

For immobilization of GOx, in this work we used a premade mixture of EDC and NHS
as a cross-linker instead of glutaraldehyde utilized by us earlier [70]. Glutaraldehyde is too
sensitive and too reactive for successful reaction control in addition to its toxicity. The EDC
and NHS mixture leads to the formation of the NHS ester on GOx which, in turn, forms a
stable amide group with the CS NH2 groups (Scheme 1).

The amounts of NHS and EDC varied from 0.02 g of EDC + 0.008 g of NHS to 0.125 g
of EDC + 0.05 g of NHS (Table 1). The optimal amount was 0.1 g of EDC + 0.04 g of NHS.
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Table 1. Relative activity of biocatalysts in D-glucose oxidation upon varying the amounts of the
biocatalyst constituents.

Sample m(CS), g m(TPP), g m(EDC), g–m(NHS), g m(GOx), g R, %

MNA-CSP-GOx-1 0.050 0.050 0.100–0.040 0.010 55.5

MNA-CSP-GOx-2 0.075 0.050 0.100–0.040 0.010 76.9

MNA-CSP-GOx-3 0.100 0.050 0.100–0.040 0.010 100

MNA-CSP-GOx-4 0.125 0.050 0.100–0.040 0.010 65.3

MNA-CSP-GOx-5 0.150 0.050 0.100–0.040 0.010 60.5

MNA-CSP-GOx-6 0.100 0.010 0.100–0.040 0.010 41.3

MNA-CSP-GOx-7 0.100 0.025 0.100–0.040 0.010 58.4

MNA-CSP-GOx-8 0.100 0.075 0.100–0.040 0.010 85.4

MNA-CSP-GOx-9 0.100 0.100 0.100–0.040 0.010 65.1

MNA-CSP-GOx-10 0.100 0.050 0.020–0.008 0.010 58.4

MNA-CSP-GOx-11 0.100 0.050 0.050–0.020 0.010 74.9

MNA-CSP-GOx-12 0.100 0.050 0.075–0.030 0.010 83.6

MNA-CSP-GOx-13 0.100 0.050 0.125–0.050 0.010 92.5

MNA-CSP-GOx-14 0.100 0.050 0.100–0.040 0.050 79.7

MNA-CSP-GOx-15 0.100 0.050 0.100–0.040 0.075 81.3

MNA-CSP-GOx-16 0.100 0.050 0.100–0.040 0.125 93.8

MNA-CSP-GOx-17 0.100 0.050 0.100–0.040 0.150 94.7

Thus, we identified the composition of the optimal catalyst, MNA-CSP-GOx-3, pro-
viding 100% relative activity in D-glucose oxidation. It is noteworthy that 100% relative
activity of an immobilized enzyme has been already reported by a few authors including
us [68,70,71], but in no case was it accomplished with a magnetically recoverable benign
biocatalyst suitable for the food and pharmaceutical industries.
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3.3. Characterization of MNA-CSP-3

The structure and properties of the optimal catalyst were investigated using a combi-
nation of physicochemical methods. As was expected, coating with CS and cross-linking
with TPP does not change the iron oxide morphology and phase composition (Figure 2).
The HRTEM image corresponds to [001] projection of magnetite with (220) crystal planes.
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To assess the presence of CS, the MNA-CSP-3 sample was evaluated by energy dis-
persive spectroscopy (EDS) (Figure 3), X-ray photoelectron spectroscopy (XPS) (Figure S2),
and thermal gravimetric analysis (TGA) (Figure 4).
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EDS and XPS spectra clearly demonstrate the presence of C and P, indicating the
cross-linked CS layer. Nitrogen is only detected by XPS, which is not surprising. XPS is
a surface method, while EDS is a volume method, so the latter is less sensitive to a small
amount of an element (nitrogen) on the surface of MNA-CSP. The TGA data (Figure 4) of
MNAs, MNA-CSP-3, and pure CS allowed us to calculate the thickness of the CS layer.
Taking into account the weight loss of 3.6% (due to volatiles) from initial MNAs, 9.3% of
the weight loss from MNA-CSP-3, and the fact that pure CS loses only 63% of its weight at
600 ◦C, we calculated that the sample contains 8.9% of CS, i.e., 0.089 g of CSP per 1 g of
MNA-CSP. Considering that chitosan density is 1g/cm3 [72] and the MNA surface area
(see data below) is 98 m2/g, the CS layer thickness is 0.9 nm. To the best of our knowledge,
this is one of a few examples of a well-documented ultra-thin CS layer deposited in such a
simple procedure [38,73,74].

Hysteresis loops presented in Figure S1 show that the saturation magnetization of
MNA-CSP-3 decreases only by 15% (to 55.4 emu/g) after the deposition of the cross-linked
CS layer, thus allowing for easy magnetic separation both during the biocatalyst synthesis
and after the catalytic reaction.

An important feature of the MNA support is its porosity with a surface area of 98 m2/g
and pore volume of 0.32 cm3/g (Table S1, Figure S3). The adsorption–desorption isotherms
of MNAs, MNA-CSP, and MNA-CSP-GOx (Figure S3a) belong to type IV, which is typical
for mesoporous materials [75]. The major porosity is provided by mesopores with an
average size of 16 nm (Figure S3b) most likely due to cavities formed within MNAs by
interconnecting magnetite NPs. Despite the ultra-thin CS layer (determined by the TGA
data) in the MNA-CSP sample, the surface area and pores sizes are somewhat lower than
those in MNAs, which could be assigned to the deposition of CS in some pore junctions.

3.4. Analysis of GOx Activity

We explored two kinetic parameters—the Michaelis constant (Km) and the maximum
reaction rate (Vmax)—to assess the activity of immobilized GOx. In particular, Km describes
the interaction between the enzyme and substrate, while the reaction rate is described by
Vmax [69].

We performed kinetic tests to assess the above parameters of free GOx and MNA-CSP-
GOx-3 (see Figure S4 and the adjacent text in the Supplementary Materials). Then, we
plotted the dependence of the reaction rates (V µM/s) on the concentration of D-glucose (S,
mM) followed by the Lineweaver–Burk graphs (Figure S5) to calculate kinetic parameters
(Km, Vmax) [76].

The data presented in Table 2 indicate that for MNC-CSP-GOx-3, Vmax is lower than
that for native GOx. This could be caused by diffusion at the interface between solid and
liquid because the immobilized enzyme is a heterogenous catalyst. At the same time, Km
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for the biocatalyst is also lower than that for native GOx. This is not always the case as is
illustrated in ref. [77]. The lower Km validates better affinity between GOx and the substrate
and higher GOx conformational stability when the reaction occurs with GOx immobilized
on the ultra-thin CS layer.

Table 2. Kinetic parameters of free and immobilized GOx.

Kinetic Parameter Free GOx MNC-CSP-GOx-3

Vmax, µM/s 6.32 2.92

Km, mM 7.69 3.08

It is well known that enzyme activity strongly depends on pH. Active centers of
GOx contain ionogenic groups, whose conformation and condition can change depending
on pH [78,79]. Figure 5a, showing the dependence of the relative activity of free and
immobilized GOx on pH (in the 3–12 pH range), demonstrates that for MNA-CSP-GOx-3,
the activity is approximately 10% higher in a wide pH range (standard deviations are 2–3%)
than that for native GOx. This could be attributed to the better conformational stability of
GOx in MNA-CSP-GOx-3 upon pH change (the optimal pH is 6).
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To evaluate the influence of the temperature on the relative activities of MNA-CSP-
GOx-3, we used the 20–80 ◦C temperature range at pH 6 for correlation with native GOx
(Figure 5b). For native GOx, the maximum activity is achieved at 35 ◦C, but then it drops at
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higher temperatures, most likely due to denaturation. MNA-CSP-GOx-3 displays better
tolerance to temperature variations. The GOx stabilization observed in this work is similar
to that in the data obtained by other authors [80,81].

3.5. Repeated Use and Stability of the Biocatalyst

The important advantage of magnetically recoverable biocatalysts is easy reuse with-
out catalyst loss, which opens opportunities for commercial applications. But such repeated
use of the biocatalysts is only justified if their catalytic performance is stable [68].

We carried out ten successive experiments with the same biocatalyst load in the D-
glucose oxidation at pH 6 and 35 ◦C (optimal conditions). At the end of each reaction, the
biocatalyst was magnetically separated for about 30 sec and then employed again. The
sequence was repeated three times for statistical analysis. The data (Figure 6, Table S2) show
that the relative activity of MNA-CSP-GOx-3 decreases by only 9% after five successive
experiments and by 20% after ten.
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In addition to reuse, we carried out long-term incubation stability experiments of
MNA-CSP-GOx-3 in comparison with native GOx. For this, the relative activity of GOx
and MNA-CSP-GOx-3 were determined at certain time intervals for 80 h at 25 ◦C and
90 days at 4 ◦C. Figure 7a shows that free GOx maintained only 25.6% of its activity after
40 h, while the relative activity of MNA-CSP-GOx-3 was 79%. After 80 h, the activity of
native GOx dropped to 5.3%, while MNA-CSP-GOx-3 retained 60.3% of its activity. It was
demonstrated that the decrease in the enzyme activity at room temperature can be assigned
to the protein decay due to bacterial growth [82,83]. For the 4 ◦C measurements (bacterial
growth is avoided (Figure 7b)), native GOx activity remains high for five days and then
drops to 55.1% after 90 days (probably due to denaturing). MNA-CSP-GOx-3 displayed a
decrease to only 78.9% after 90 days—an excellent stability. We think that the exceptional
storage stability of MNA-CSP-GOx-3 could be assigned to the preservation of optimal GOx
conformation in the CS layer due to limited denaturing.
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4. Conclusions

In this work, we developed magnetically responsive biocatalysts by the formation of
an ultra-thin cross-linked CS layer on the surface of MNAs. The immobilization of GOx
was carried out using benign NHS (a linker) in the presence of EDC. We believe that the
important avenue here is the optimization of the bioca0talyst composition by varying the
amounts of all biocatalyst components and testing the catalytic properties of the biocatalysts
synthesized in the oxidation of D-glucose to D-gluconic acid. The best biocatalyst, MNA-
CSP-GOx-3, was prepared with 0.1 g of CS, 0.05 g of TPP, 0.1 g of NHS, 0.04 g of EDC,
and 0.01 g of GOx per 1 g of MNAs. This biocatalyst provided 100% relative activity at
pH 6 and 35 ◦C in D-glucose oxidation. The data obtained allow us to suggest that an
ultra-thin CS layer and a suitable linker for GOx provide the preservation of the enzyme
conformation and the functioning of the immobilized GOx as native GOx. The kinetic
tests demonstrate better affinity between GOx and the substrate and higher GOx stability
when the reaction occurs with GOx immobilized on the ultra-thin CS layer than for native
GOx. Magnetic support (MNA) allows for easy magnetic separation and successful reuse.
The simplicity of the MNA formation and benign constituents utilized in the fabrication
of this biocatalyst make it suitable for the pharmaceutical industry. We believe that the
proposed approach is universal and can be utilized for the immobilization of other enzymes
to fabricate biocatalysts for many important enzymatic processes.

Supplementary Materials: The supporting information can be downloaded at https://www.mdpi.
com/article/10.3390/nano14080700/s1, Scheme S1: Schematic representation of D-glucose oxidation
to D-gluconic acid in the presence of HRP and ABTS; Figure S1: Hysteresis curves of MNA (1) and
MNA-CSP (2); Figure S2: XPS survey spectrum of MNA-CSP; Table S1: BET surface areas, pore
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volumes, and pores sizes for MNA, MNA-CSP, and MNA-CSP-Gox; Figure S3: Liquid nitrogen
adsorption-desorption isotherms (a) and pore size distributions (b) for MNA, MNA-CSP, and MNA-
CSP-Gox; Figure S4: The dependence of the initial reaction rates on D-glucose concentrations.
Figure S5: Lineweaver-Burk graphs of free GOx and MNC-CSP-Gox; Table S2: Relative activity of
MNA-CSP-GOx in recycling. References [84–87] are cited in Supplementary Materials.
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