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Abstract: Conventional hole transport layer (HTL) Spiro-OMeTAD requires the addition of hygro-
scopic dopants due to its low conductivity and hole mobility, resulting in a high preparation cost
and poor device stability. Cuprous thiocyanate (CuSCN) is a cost-effective alternative with a suitable
energy structure and high hole mobility. However, CuSCN-based perovskite solar cells (PSCs) are
affected by environmental factors, and the solvents of an HTL can potentially corrode the perovskite
layer. In this study, a Co3O4/CuSCN/Co3O4 sandwich structure was proposed as an HTL for inor-
ganic Cs2PbI2Cl2/CsPbI2.5Br0.5 PSCs to address these issues. The Co3O4 layers can serve as buffer
and encapsulation layers, protecting the perovskite layer from solvent-induced corrosion and enhanc-
ing hole mobility at the interface. Based on this sandwich structure, the photovoltaic performances of
the Cs2PbI2Cl2/CsPbI2.5Br0.5 PSCs are significantly improved, with the power conversion efficiency
(PCE) increasing from 9.87% (without Co3O4) to 11.06%. Furthermore, the thermal stability of the
devices is also significantly enhanced, retaining 80% of its initial PCE after 40 h of continuous aging
at 60 ◦C. These results indicate that the Co3O4/CuSCN/Co3O4 sandwich structure can effectively
mitigate the corrosion of the perovskite layer by solvents of an HTL and significantly improves the
photovoltaic performance and thermal stability of devices.

Keywords: CuSCN hole transport layer; sandwich structure; solvent resistance; thermal stability;
perovskite solar cell

1. Introduction

Perovskite solar cells have attracted significant attention in recent years due to their
high power conversion efficiency (PCE), low-cost fabrication, and tunable photovoltaic
properties [1–4]. Recently, organic–inorganic halide perovskite solar cells achieved the
highest certified PCE of 26.1% [5]. However, one of the main challenges facing the commer-
cialization of these devices is their limited stability under various environmental conditions,
such as high temperatures, humidity, and prolonged light exposure [6,7]. Organic–inorganic
halide perovskite materials used in perovskite solar cells are particularly susceptible to
irreversible degradation due to the presence of volatile organic components, such as
methylamine (MA+) and formamidine (FA+), which greatly reduces their photovoltaic
performance and lifetime [8,9]. To address this issue, researchers have explored various
strategies to improve the stability of perovskite solar cells [10,11]. One of the most effective
approaches is to replace the organic components in the perovskite materials with inorganic
cations, such as Cs+ [12,13]. Numerous studies have shown that all-inorganic perovskite
materials exhibit excellent thermal stability and are not susceptible to degradation under
harsh environmental conditions [14–17]. The rapid development in the field of all-inorganic
perovskite solar cells has attracted a great deal of attention from researchers all over the
world, and the PCE of these cells has now exceeded 21%, with the prospect of moving to
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even higher levels [18–22]. However, the commercialization of perovskite solar cells faces
several challenges that need to be addressed.

One of the challenges is that the all-inorganic perovskite material CsPbI3 is prone to
phase transition to a non-perovskite yellow phase at room temperature, which limits its
commercialization [23]. To overcome this issue, Cs2PbI2Cl2 has emerged as a highly stable
option with excellent thermal and environmental stability, making it a promising candidate
for practical applications [24,25]. Moreover, the stability of Cs2PbI2Cl2 can be further im-
proved by mixing it with other low-dimensional perovskite materials. For example, mixing
Cs2PbI2Cl2 with CsPbI2Br can form Cs2PbI2Cl2/CsPbI2Br mixed-dimensional perovskite,
which exhibits better stability and a higher PCE [26,27]. The Cs2PbI2Cl2/CsPbI2.5Br0.5
mixed-dimensional perovskite has been demonstrated as a very stable material system
with a high PCE, even under high temperatures and humid environments [28]. There-
fore, Cs2PbI2Cl2/CsPbI2.5Br0.5-based mixed-dimensional perovskite materials hold great
promise for the commercialization of all-inorganic perovskite solar cells.

However, another key challenge to enhance the performance of Cs2PbI2Cl2/CsPbI2.5Br0.5
perovskite solar cells lies in the choice of hole transport materials [29–32]. The commonly
used organic hole transport material, Spiro-OMeTAD, is not only expensive but also
prone to degradation, limiting the long-term stability of perovskite solar cells [33–35].
To overcome these limitations, researchers have turned their attention to the develop-
ment of novel dopant-free, low-cost hole transport layers that can improve the stability
of perovskite solar cells and reduce production costs [36–39]. Bhandari et al. reported
innovative carbon perovskite solar cells based on two different hole transport layers, with
the structures of double mesoscopic CsFAMAPbI3−xBrx/CuSCN and triple mesoscopic
CH3NH3PbI3−xClx/NiO [40]. By analyzing the effect of temperature on the charge trans-
port ability and its influence on the photovoltaic performance of perovskite solar cells, they
found that both hole transport materials are able to maintain excellent photovoltaic per-
formance of the devices under thermal stresses, which provides a new perspective for the
development of hole transport layers. Maleki et al. recently proposed a PbS-TBAI/MoSe2-
grating structure as a hole transport layer of perovskite solar cells for the first time [41].
This hole transport layer strongly enhanced the light-absorbing capacity of the device,
which significantly increased the power conversion efficiency of the perovskite solar cells
from 13.82% to 19.45% while exhibiting excellent stability of the devices. In addition,
some inorganic semiconductor materials, such as NiO [42], Cu2O [43], CuSCN [44], and
CuGaO2 [45], have been reported to possess a number of advantages and conveniences
when used as substitutes for the conventional hole transport layer of perovskite solar
cells, and these materials have been vigorously developed and applied by a number of re-
searchers at th present stage. Especially as a potential alternative to Spiro-OMeTAD [46,47],
CuSCN possesses a desirable energy level structure, strong hole extraction capability, and
high hole mobility, making it an attractive candidate for efficient hole transport in per-
ovskite solar cells. However, despite these advantages, CuSCN-based perovskite solar cells
still face challenges, such as limited thermal stability and susceptibility to environmental
degradation [48].

In this study, we proposed a Co3O4/CuSCN/Co3O4 sandwich structure as a hole
transport layer in CuSCN-based Cs2PbI2Cl2/CsPbI2.5Br0.5 perovskite solar cells. The Co3O4
layers served a dual purpose, working as a buffer layer and an encapsulation layer. The
buffer layer can help to mitigate the solvent-induced corrosion on the perovskite layer
during the spin-coating process of the hole transport layer, while the encapsulation layer
can provide a protective barrier to prevent further degradation. Additionally, the Co3O4
layers effectively enhanced the hole transport capability at the interface, improving the
charge extraction efficiency. The photovoltaic performance and thermal stability of the
perovskite solar cells based on this Co3O4/CuSCN/Co3O4 sandwich structure were further
investigated. The results show a significant improvement in the photovoltaic performance,
with a higher PCE of 11.06% compared to 9.87% for the device without Co3O4 layers.
Moreover, the thermal stability of the devices is significantly enhanced, maintaining 80% of
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its initial PCE after 40 h of aging at 60 ◦C. Overall, the Co3O4/CuSCN/Co3O4 sandwich
structure presents a promising approach to address the challenges faced by CuSCN-based
perovskite solar cells. By mitigating solvent-induced corrosion and enhancing stability,
this structure can contribute to the development of more efficient and durable perovskite
solar cells.

2. Materials and Methods
2.1. Materials and Solar Cell Preparation

The FTO glass was cleaned using a sequential ultrasonic cleaning process with a
detergent solution, deionized water, and ethanol for 30 min, respectively. After cleaning,
the FTO glass was subjected to a heat treatment at 500 ◦C and kept for further use. The
FTO substrate was heated to 460 ◦C, and a uniform coating of TiO2 precursor solution was
sprayed onto the substrate. The coated substrate was then annealed at 460 ◦C for 30 min,
resulting in the compact TiO2 layer.

A total of 594.69 mg of PbI2, 156 mg of CsI, 127.8 mg of CsBr, and 30.33 mg of CsCl
was dissolved in 1 mL of dimethyl sulfoxide (DMSO) and heated and stirred at 60 ◦C
for 2 h to prepare the Cs2PbI2Cl2/CsPbI2.5Br0.5 mixed perovskite precursor solution. The
precursor solution was then spin-coated at 3000 rpm for 35 s. The sample was transferred
to a hotplate at 325 ◦C to anneal for 10 min. Then, the precursor solution of the CuSCN
layer was prepared by dissolving 35 mg of CuSCN powder in 1 mL of diethyl sulfide (DES)
and stirring at room temperature for 1 h. The CuSCN solution was then spin-coated at
3000 rpm for 40 s and annealed on a hotplate at 80 ◦C for 3 min. The precursor solutions of
the Co3O4 layers were prepared by dissolving 0.5 mg to 2 mg and 5 mg of Co3O4 powder in
1 mL of isopropanol, separately. Especially, the Co3O4 solution with concentrations ranging
from 0.5 mg/mL to 2 mg/mL was used for the preparation of the Co3O4 buffer layer, while
the 5 mg/mL Co3O4 solution was used for the Co3O4 encapsulation layer. The Co3O4
solution was spin-coated at 3000 rpm for 30 s and annealed on a hotplate at 100 ◦C for
10 min. Finally, the electrodes were deposited onto the substrate by vacuum evaporation
under a pressure of 4 × 10−4 Pa, resulting in a 70 nm thick electrode.

2.2. Measurement Techniques

Scanning electron microscope (SEM) characterization was conducted using an Hitachi
SU8010 model from Hitachi, Japan, with an accelerating voltage of 5.0 kV, a working
current of 10.5 mA, and a working distance of 7.6 mm. Atomic force microscope (AFM)
measurements were conducted on an Agilent Technologies 5500 model in air conditions.
Steady-State Photoluminescence (PL) spectra were measured using an FLS980 spectrome-
ter (Edinburgh Instruments Ltd, Edinburgh, UK), and time-resolved photoluminescence
(TRPL) spectra were measured with a PicoQuant FluoQuant 300 (Edinburgh Instruments
Ltd, Edinburgh, UK). The J-V curves were measured using a Keithley 2400 source meter
with a sunlight simulator (XES-300T1, SANEI Electric, AM 1.5G 100 mW cm−2, Osaka,
Japan). The active area of the perovskite solar cells prepared in this study for photovoltaics
measurement was 0.09 cm2, and the light source was calibrated using a standard silicon
cell. The external quantum efficiency (EQE) was measured in air conditions using a QE-R
measurement system (QE-R, Enli Technology, Shanghai, China), and the instrument was
calibrated using a standard silicon cell. The electrochemical impedance spectroscopy (EIS)
for the Nyquist plot was measured under dark conditions using an electrochemical work-
station (Zennium, Zahner MESSSYSTEME PP211, Kronach, Germany) with a step width of
0.01 and a delay of 1 s.

3. Results and Discussion

This study aimed to investigate the potential of a Co3O4/CuSCN/Co3O4 sandwich
structure as the hole transport layer of perovskite solar cells. The device structure was
assembled as FTO/TiO2/perovskite/Co3O4/CuSCN/Co3O4/Au, and the energy band
alignment is shown in Figure 1a. Notably, Co3O4 and CuSCN exhibited similar energy
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levels, with the conduction band (CB) minimum at −1.8 eV and the valence band (VB)
maximum at −5.3 eV [49]. This result suggests that the sandwich structure can effectively
extract and transport holes in the device, which is crucial for achieving high photovoltaic
performance of perovskite solar cells.
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To gain a better understanding of the morphology of the perovskite and CuSCN layers,
a cross-view scanning electron microscope (SEM) image was captured and is depicted
in Figure 1b. The Cs2PbI2Cl2/CsPbI2.5Br0.5 perovskite film displayed well-grown crystal
grains with a thickness of 610 nm. The uniformity and thickness of the perovskite layer
suggest a well-controlled deposition process, which is essential for achieving high-quality
films [50,51]. In addition, the morphology of the Cs2PbI2Cl2/CsPbI2.5Br0.5 perovskite
film was also investigated by top-view SEM, and the image is shown in Figure S1. The
Cs2PbI2Cl2/CsPbI2.5Br0.5 film exhibited closely grouped larger grains and uniformly dense
surface morphology. The CuSCN layer in Figure 1b, with a thickness of approximately
70 nm, was uniformly and densely covered on the surface of the perovskite layer, indicating
good adhesion and coverage. The uniform and dense hole transport layer can ensure
efficient hole extraction from the perovskite layer and facilitate the transfer of holes to
subsequent layers. The strong adhesion between the CuSCN and perovskite layers can
prevent the formation of voids or discontinuous interfacial contacts, which is more favorable
for charge transmission [24]. However, it should be noted that the Co3O4 layer, which was
positioned between the perovskite and CuSCN layers, was not visible in the SEM image
due to its low concentration. Although its existence was not visible, the Co3O4 layer played
a crucial role in promoting hole transport and enhancing device performance [52].

To gain a better understanding of the formation state of the Co3O4 layers and their
impact on the surface roughness of the sandwich structure, an atomic force microscope
(AFM) was used to measure the root-mean-square (RMS) values of CuSCN, Co3O4/CuSCN,
and Co3O4/CuSCN/Co3O4 films, and the results are depicted in Figure 2. The RMS values
for the CuSCN, Co3O4/CuSCN, and Co3O4/CuSCN/Co3O4 films were 6.20 nm, 6.47 nm,
and 6.44 nm, respectively. These values indicate a slight increase in surface roughness
for the Co3O4/CuSCN and Co3O4/CuSCN/Co3O4 films compared to the CuSCN film.
The increase in surface roughness can be attributed to the formation of the Co3O4 layer,
which introduced additional surface features to the sandwich structure. The Co3O4 layer
exhibited a rougher surface than the CuSCN layer due to its larger crystal size and higher
surface energy [27,52]. The roughness of the Co3O4 layer can be transferred to the sub-
sequent layers, leading to an increase in the overall surface roughness of the sandwich
structure. However, it is noteworthy that the increase in surface roughness is relatively
small, indicating that the deposition of the Co3O4 layer did not significantly alter the
surface morphology of the sandwich structure. The slight increase in surface roughness
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was unlikely to have a significant impact on the performance of the perovskite solar
cells. Moreover, the uniformity of the surface roughness across the Co3O4/CuSCN and
Co3O4/CuSCN/Co3O4 films suggested a well-controlled deposition process, which is
crucial for achieving high-quality films.
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the device.

To explore the effects of the Co3O4 buffer layer on device performances, the photo-
voltaic performance of the Cs2PbI2Cl2/CsPbI2.5Br0.5 solar cells with and without a Co3O4
buffer layer was investigated by the current density–voltage (J-V) curves of the devices
and by analyzing the specific photovoltaic parameters. The results shown in Figure 3a
and Table S1 indicate that the CuSCN-based device without the introduced Co3O4 buffer
layer only achieved a PCE of 9.87%, whereas when the spin-coating concentration of the
introduced Co3O4 was increased to 1 mg/mL, the PCE of the device was significantly
increased to 11.13%. The short-circuit current density (JSC), open-circuit voltage (VOC), and
fill factor (FF) increased from 13.93 mA cm−2, 1.07 V, and 66.28% to 14.05 mA cm−2, 1.11 V,
and 71.26%, respectively. The improvements of the JSC, VOC, and FF parameters suggest
that the Co3O4 buffer layer effectively enhanced the charge carrier separation efficiency in
the device, which can be attributed to the Co3O4 buffer layer preventing the DES solvent
from damaging the perovskite layer, thus reducing the defect density on the surface of
the perovskite layer. The reduction in defect density is expected to improve the charge
carrier separation efficiency, leading to an increase in the JSC and VOC parameters [24]. The
increase in the FF parameter indicates that the Co3O4 buffer layer also improves the charge
carrier transport efficiency in the device [52]. To further verify the JSC values measured
from the J–V curves, the external quantum efficiency (EQE) of the Cs2PbI2Cl2/CsPbI2.5Br0.5
solar cells without the Co3O4 buffer layer and with the 1 mg/mL Co3O4 buffer layer
was measured, and the results are shown in Figure S3. The integral JSC values of the
Cs2PbI2Cl2/CsPbI2.5Br0.5 solar cells without the Co3O4 buffer layer and with the 1 mg/mL
Co3O4 buffer layer were 13.65 mA cm−2 and 13.87 mA cm−2, respectively, which matched
well with the JSC values measured from the J–V curves.

Furthermore, the carrier lifetimes of the perovskite film, the perovskite/CuSCN film,
and the perovskite/Co3O4/CuSCN film were measured by time-resolved photolumines-
cence (TRPL) and fitted with a double-exponential decay function. The TRPL curves
are shown in Figure 3b, and the obtained carrier lifetime parameters are summarized
in Table S2. Here, τ1 and τ2 represent the fast and slow decay parameters, respectively,
while A1 and A2 denote the corresponding weight parameters. Based on these parameters,
we calculated the average carrier lifetime (τave). The pure perovskite film exhibited the
longest carrier lifetime, reaching 9.08 ns. When a CuSCN hole transport layer was coated
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on the surface of the perovskite layer, the carrier lifetime decreased to 4.27 ns, which is
attributed to the efficient hole extraction. Furthermore, the introduction of the Co3O4
buffer layer in the perovskite/CuSCN structure further reduced the carrier lifetime to
3.00 ns, which indicates that the Co3O4 buffer layer enhanced the hole extraction efficiency,
resulting in a decrease in the carrier lifetime. Additionally, photoluminescence (PL) mea-
surements were performed on the corresponding devices, as shown in Figure S2. The
strongest emission peak at around 680 nm can be observed in all three films. Notably,
the perovskite/Co3O4/CuSCN film exhibited the lowest emission intensity, indicating its
superior hole extraction and separation capability, consistent with the TRPL results. In
summary, the TRPL measurements show that the perovskite/Co3O4/CuSCN structure
exhibited the shortest carrier lifetime, indicating the enhanced hole extraction efficiency
with the introduction of the Co3O4 buffer layer. The PL measurements further confirm this
conclusion, providing additional evidence for the crucial role of the Co3O4 buffer layer in
improving the performance of perovskite solar cells.
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Co3O4/CuSCN film. (d) Dark I–V curves of devices based on the perovskite/CuSCN film and the
perovskite/Co3O4/CuSCN film.

However, it is worth noting that when the spin-coated concentration of Co3O4 ex-
ceeded 1 mg/mL, the excessively thick Co3O4 buffer layer at the interface hindered the
transport of charge carriers, resulting in a decrease in photovoltaic performance parameters.
This result suggests that the selection of appropriate Co3O4 spin-coating concentrations is
crucial for enhancing the performance of Cs2PbI2Cl2/CsPbI2.5Br0.5 perovskite solar cells.
To compare the internal defect density of devices with and without the introduction of
a Co3O4 buffer layer between the perovskite and CuSCN layers, double-hole transport
layer devices with the structure of FTO/NiOx/perovskite/Co3O4/CuSCN/Au were fab-
ricated and subjected to space-charge-limited current (SCLC) measurements. As shown
in Figure 3c, the trap-filled limit voltage (VTFL) of the Cs2PbI2Cl2/CsPbI2.5Br0.5 device
without the Co3O4 buffer layer was measured to be 98 mV. In contrast, the device with the
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Co3O4 buffer layer, prepared by spin-coating a 1 mg/mL Co3O4 solution, exhibited a lower
VTFL of 78 mV. As VTFL is linearly correlated with the defect density, this indicates that the
device with the 1 mg/mL Co3O4 buffer layer possessed the lowest defect density.

To elucidate the significantly improved FF of the perovskite/Co3O4/CuSCN-based
perovskite solar cells, dark current–voltage (I–V) measurements of the devices were mea-
sured, and the results are shown in Figure 3d. The device with the 1 mg/mL Co3O4 buffer
layer still exhibited the lowest dark current density, suggesting that the introduction of
Co3O4 effectively suppressed the generation of leakage currents at the interface between
the perovskite layer and the hole transport layer [53]. To further investigate the charge
complexation in optimized devices with a 1 mg/mL Co3O4 buffer layer, the charge transfer
and recombination dynamic processes were revealed using electrochemical impedance
spectroscopy (EIS) characterization, and the EIS spectra are shown in Figure S4. The
defects in the perovskite solar cells can be regarded as a barrier to charge transport, re-
sulting in a low recombination resistance (Rrec) of the device [54]. The Rrec values of the
Cs2PbI2Cl2/CsPbI2.5Br0.5 solar cells without the Co3O4 buffer layer and with the 1 mg/mL
Co3O4 buffer layer were 2315 and 10184 Ω, respectively, as shown in Table S3. The de-
vice with the 1 mg/mL Co3O4 buffer layer exhibited a significantly enhanced Rrec value,
indicating the effective suppression of carrier recombination within the device.

To enhance the stability of the devices, we further introduced a Co3O4 encapsulation
layer between the CuSCN hole transport layer and the Au electrode layer. The photovoltaic
performance of the Cs2PbI2Cl2/CsPbI2.5Br0.5 perovskite solar cells with and without the
Co3O4 encapsulation layer was tested, and the results are shown in Figure 4a. The relevant
photovoltaic performance parameters are summarized in Table 1. It can be clearly observed
that the introduction of the Co3O4 encapsulation layer between the CuSCN and Au layers
has not improved the photovoltaic performance of the Cs2PbI2Cl2/CsPbI2.5Br0.5 perovskite
solar cells. The device without the Co3O4 encapsulation layer exhibited a PCE of 11.13%,
while the device with the Co3O4 encapsulation layer showed a PCE of 11.06%. The intro-
duction of the Co3O4 encapsulation layer results in a slight decrease in the photovoltaic
performance of the devices. To further analyze the causes of the slight degradation in
device performance due to the introduction of the Co3O4 encapsulation layer, the VOC
dependence on light intensity was tested, and the results were logarithmically fitted, as
shown in Figure 4b,c. The ideality factor (a numerical value defined as n) of the VOC
dependence on light intensity is logarithmically related to the light power intensity (P),
which can be derived from the following equation [55]:

VOC =
nkBT

q
InP (1)
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Table 1. Photovoltaic performance parameters of the Cs2PbI2Cl2/CsPbI2.5Br0.5 devices with and
without Co3O4 encapsulation layer.

Device JSC (mA cm−2) VOC (V) FF (%) PCE (%)

CuSCN/Au 14.05 1.11 71.26 11.13
CuSCN/Co3O4/Au 14.04 1.11 70.96 11.06

The resulting value of the ideality factor (n) is an important parameter for evaluating
the intensity of the carrier non-radiative compositions in the device. The value of the
ideality factor (n) deviates more away from 1, which represents the higher non-radiative
compositions of the carriers that exist in the device. In this research, the ideality factor (n) of
the device without the Co3O4 encapsulation layer and with the Co3O4 encapsulation layer
were 1.78 and 1.81, respectively. Clearly, the device with the Co3O4 encapsulation layer
presented a higher ideality factor (n), which indicated that the carrier non-radiative com-
posite rate in the device is relatively high, resulting in a slight decrease in the photovoltaic
performance of the device with the introduction of the Co3O4 encapsulation layer.

However, in the stability testing of the devices, the results show that the addition of
the Co3O4 encapsulation layer significantly improved the thermal stability of the perovskite
devices. The films with and without the Co3O4 layer between the CuSCN and Au layers
were exposed to 60 ◦C for 10 h. As shown in Figure 5a–d, the surface morphology of these
two films before and after the 60 ◦C high-temperature aging was observed by an SEM test.
After the high-temperature aging, the film without the Co3O4 encapsulation layer exhibited
numerous grain holes, which can be attributed to the morphological changes caused by
the phase transition of the perovskite structure. In contrast, such surface morphology
changes were not observed in the film with the Co3O4 encapsulation layer, indicating an
improvement in the thermal stability of the film with the Co3O4 encapsulation layer.
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Figure 5. SEM images of the film without Co3O4 encapsulation layer (a) before thermal aging at 60 ◦C
and (b) after 10 h of thermal aging at 60 ◦C. SEM images of the film with Co3O4 encapsulation layer
(c) before thermal aging at 60 ◦C and (d) after 10 h of thermal aging at 60 ◦C. (e) Optical photograph
of the CuSCN/Au interface without the Co3O4 encapsulation layer and (f) optical photograph of the
CuSCN/Au interface with the Co3O4 encapsulation layer after 10 h of aging at 60 ◦C. (g) Thermal
stability tests of the solar cells in ambient conditions at a temperature of 60 ◦C.

The optical photographs of the devices under the same aging conditions are shown
in Figure 5e,f. It can be seen that after 10 h of aging, the device without the Co3O4
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encapsulation layer showed a significant yellow film, while the device with the Co3O4
encapsulation layer showed no visible formation of the yellow non-perovskite phase.
The results of the PCE decay test for these two device structures are shown in Figure 5g.
The results demonstrate that although introducing the Co3O4 buffer layer between the
perovskite and CuSCN layers partially avoided the damage caused by the DES solvent
to the perovskite surface and reduced the crystal defect density on the film surface, thus
improving the stability of the device to some extent, the improvement was not significant.
The PCE of the device decreased to approximately 50% of the initial PCE after 8 h of aging.
In contrast, the device with the Co3O4 encapsulation layer between the CuSCN and Au
layers exhibited a significant improvement in thermal stability, retaining 80% of its initial
PCE after 40 h of aging at 60 ◦C.

4. Conclusions

In conclusion, this study successfully addressed the issue of the environmental degra-
dation and corrosion of the perovskite layer caused by solvents during the spin-coating
process of the CuSCN hole transport layer. By introducing a Co3O4 buffer layer to form
the Co3O4/CuSCN/Co3O4 sandwich structure, the defect density in the perovskite layer
was significantly reduced, leading to improved charge carrier extraction efficiency and
enhanced thermal stability of the device. The power conversion efficiency of the device
based on this structure increased from 9.87% (without Co3O4) to 11.06%. Moreover, the
thermal stability of the device was greatly improved. After 40 h of aging at 60 ◦C, the
device still retained 80% of its initial efficiency. These findings demonstrate the effectiveness
of the Co3O4/CuSCN/Co3O4 sandwich structure in enhancing the thermal stability and
performance of all-inorganic perovskite solar cells.

Supplementary Materials: Experimental details can be found in the Supporting Information. The
following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/
nano14090742/s1, Figure S1: Top−view SEM image of the Cs2PbI2Cl2/CsPbI2.5Br0.5 perovskite film;
Figure S2: PL spectra of perovskite film, perovskite/CuSCN film and perovskite/Co3O4/CuSCN
film; Figure S3: The EQE and integrated JSC curves of Cs2PbI2Cl2/CsPbI2.5Br0.5 perovskite solar cells
without Co3O4 buffer layer and with 1 mg/mL Co3O4 buffer layer; Figure S4: Nyquist diagrams
for Cs2PbI2Cl2/CsPbI2.5Br0.5 perovskite solar cells without Co3O4 buffer layer and with 1 mg/mL
Co3O4 buffer layer; the inset depicts the equivalent circuit model of the devices in the EIS; Table S1:
Photoelectric performance parameters of Cs2PbI2Cl2/CsPbI2.5Br0.5 perovskite solar cells with dif-
ferent concentrations of Co3O4 between perovskite/CuSCN layers; Table S2: Carrier lifetimes of
perovskite, perovskite/CuSCN, and perovskite/Co3O4/CuSCN films obtained from curve-fitting
TRPL spectra using a double exponential function; Table S3: Performance parameters of the fitted
EIS maps for Cs2PbI2Cl2/CsPbI2.5Br0.5 perovskite solar cells without Co3O4 buffer layer and with
1 mg/mL Co3O4 buffer layer.
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