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Abstract: Thermoelectric power can convert heat and electricity directly and reversibly. Low-
dimensional thermoelectric materials, particularly thin films, have been considered a breakthrough
for separating electronic and thermal transport relationships. In this study, a series of Bi0.5Sb1.5Te3

thin films with thicknesses of 0.125, 0.25, 0.5, and 1 µm have been fabricated by RF sputtering for
the study of thickness effects on thermoelectric properties. We demonstrated that microstructure
(texture) changes highly correlate with the growth thickness in the films, and equilibrium annealing
significantly improves the thermoelectric performance, resulting in a remarkable enhancement in
the thermoelectric performance. Consequently, the 0.5 µm thin films achieve an exceptional power
factor of 18.1 µWcm−1K−2 at 400 K. Furthermore, we utilize a novel method that involves exfoliating
a nanosized film and cutting with a focused ion beam, enabling precise in-plane thermal conductivity
measurements through the 3ω method. We obtain the in-plane thermal conductivity as low as
0.3 Wm−1K−1, leading to a maximum ZT of 1.86, nearing room temperature. Our results provide
significant insights into advanced thin-film thermoelectric design and fabrication, boosting high-
performance systems.

Keywords: thermoelectric; thin films; energy efficiency; sustainable manufacturing; annealing

1. Introduction

Thermoelectric power generators (TEGs) offer a promising sustainable energy solu-
tion, particularly in situations where a heat source is readily available. Their portability,
scalability, and ability to operate based on temperature differentials distinguish them from
conventional heat engines. TEGs provide uninterrupted energy for various applications,
including self-powered wearable electronics [1–4], autonomous devices, thermal sensing,
and energy harvesting. In the quest to improve thin-film thermoelectric generators (TEGs)
for energy harvesting, selecting materials with high energy conversion efficiency is crucial.
Evaluation typically relies on the figure of merit, ZT = σS2T/κ, where S, T, σ, and κ rep-
resent the Seebeck coefficient, absolute temperature, electrical conductivity, and thermal
conductivity, respectively. Maximizing the power factor (PF = σS2) and minimizing thermal
conductivity are essential for achieving high ZT values [5–7].

Bi2Te3-based alloy materials have long been considered promising for power genera-
tion and cooling applications due to their high ZT values near room temperature. Among
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these materials, Bi0.5Sb1.5Te3 (BST) stands out as the most superior p-type thermoelectric
material with exceptional performance [8,9]. In BixSb2-xTe3 compounds, variations mainly
arise from anti-site defects like SbTe and BiTe [10,11]. These defects introduce holes, with
their prevalence increasing with higher Sb content due to lower formation energy. Using
a significant amount of tellurium (Te) effectively reduces the occurrence of these defects,
allowing precise modulation of carrier concentration and enhancing material functionality.

An alternative approach to alleviate the impact of the initial material composition on
annealing outcomes involves the utilization of an equilibrium annealing technique [10,12].
This process revolves around establishing a balance between the solid sample and tel-
lurium vapor sourced independently within a sealed system. This strategy has already
been effectively implemented with thermally evaporated thin film and electrochemically
deposited samples, resulting in a notable decrease in carrier concentration and a subse-
quent enhancement of the Seebeck coefficient [12,13]. The same concept might also apply to
sputter-deposited BST thin film samples afflicted with antisite defects, as mentioned above.

In recent years, BST has been extensively developed and applied in wearable TEGs,
employing various novel single-chain or double-chain configurations to achieve sustainable
energy harvesting and multifunctional sensing simultaneously. While the applications are
diverse, there is a significant lack of exploration into the actual thermoelectric performance
and material properties of these thin-film materials in the in-plane direction.

This study systematically investigates the structural evolution of BST thin films during
the sputter deposition process as a function of varying deposition thicknesses. Through
controlled Te vapor annealing, we effectively mitigate intrinsic defects arising during
fabrication, leading to a pronounced enhancement in both the Seebeck coefficient and
electrical conductivity of the films. For instance, we achieve a notable enhancement of
the Seebeck coefficient within the range of 170−220 µVK−1, optimizing the PF to a peak
value of approximately 18.1 µWcm−1K−2. Moreover, we introduce an innovative technique
for measuring the in-plane thermal conductivity of these films using a 3ω measurement
technique. This approach enables precise characterization of the exact thermoelectric
performance across varying film thicknesses. The insights gleaned from these findings offer
valuable guidance for designing and implementing thermoelectric thin films in wearable
module applications.

2. Materials and Methods
2.1. Preparation of the Bulk BST Sputtering Target

Elements Bi, Sb, and Te, all of a purity of 99.999%, were weighed according to the
stoichiometric ratio of 0.5:1.5:3, and then evacuated within a quartz tube. The tube was
subjected to a temperature of 1023 K for 24 h, followed by rapid cooling in cold water.
Subsequently, the resulting ingots were subjected to additional annealing at 723 K for 48 h.
The ingots were then ground into powders using an agate mortar. These powders were then
compacted using the spark plasma sintering (SPS-515S, SPS SYNTEX INC, Tokyo, Japan)
technique under vacuum conditions at temperatures of 673 K and pressures of 50 MPa.
The sintering process lasted for 5 min and resulted in forming a dense pellet measuring
50.8 mm in diameter and 20 mm in height. The bulk material was used as a target in the
sputtering process.

2.2. Film Deposition and Annealing

BST films were prepared using the RF magnetron sputtering method. The Corning
1737F glass, measuring 20 × 20 mm2, was used as a substrate in this experiment. Its surface
roughness is in the range of 0.5–1.0 nm. The substrate was thoroughly cleaned with acetone,
isopropyl alcohol, and deionized water, in sequence, several times in an ultrasonic bath.
The distance between the target and the substrates was kept at 45 mm. The base pressure
of the deposition chamber was lower than 7 × 10−7 torr, and the working pressure of
sputtering gas was controlled at 7 × 10−3 torr with an Argon flow rate of 20 sccm. The
sputtering power was set at 30 W, and the deposition rate was about 20 nm per min. It
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is proven that the film composition of V–VI semiconductors can be turned into almost
perfect stoichiometry by postdeposition annealing under the Te atmosphere. The film was
deposited at 453 K and subsequently postannealed in an evacuated quartz ampoule that
contains powdered tellurium. The postannealing temperature was set to 473 K for 3 days.

2.3. Film Characterizations

The crystal structure of the films was determined by X-ray diffraction, carried out with
a diffractometer (XRD, PANalytical X’Pert Pro, Worcestershire, UK) equipped with Cu Kα

radiation (0.154 nm). Our thin film exhibits textured features, meaning that the thin film
structure has a preferred orientation. The preferred orientation is typically described in
terms of pole figures, and data regarding this aspect must be obtained through a four-circle
diffractometer (Malvern Panalytical’s Materials Research Diffractometers, MRD, Worces-
tershire, UK). The microstructures of the films were analyzed by field emission scanning
electron microscopy (FESEM, Inspect F FEI, Hillsboro, OR, USA), and the composition was
determined with energy-dispersive X-ray spectroscopy (EDX) attached to the SEM. The
transmission electron micrographs (TEM) and selected area electron diffraction (SAED)
patterns of films were investigated by a field emission transmission electron microscope
operated at an accelerating voltage of 200 kV (JEOL JEM-2100, Tokyo, Japan). Before TEM
observations, the TEM specimen of the cross-sectional thin film was fabricated by a focused
ion beam (FEI Versa 3D, Hillsboro, OR, USA). The Seebeck coefficient and electrical conduc-
tivity of films were carried out by a commercial system (ZEM-3, ULVAC-RIKO, Yokohama,
Japan). The uncertainty of the Seebeck coefficient and electrical conductivity measurements
is about 2~4%. The repetitive measurement under thermal cycling confirmed the films’
thermal stability during the measurement. The uncertainty of the thermal conductivity was
estimated to be ~5%. Considering the uncertainties for the Seebeck coefficient, electrical con-
ductivity, and thermal conductivity, the combined uncertainty of ZT is less than 15%. The
Hall effect was measured using the Van der Pauw method in a magnetic field up to ±2 T by
a Physical Property Measurement System (PPMS, Quantum Design, San Diego, CA, USA).
The thermal conductivity κ of bulk samples was determined using the formula κ = DρCp,
where D represents the thermal diffusivity, ρ denotes the mass density determined via
the Archimedes method, and Cp signifies the specific heat measured using a differential
scanning calorimeter (DSC, Q100, TA Instruments, New Castle, DE, USA). The thermal
diffusivity was assessed using the laser flash method (LFA-457, NETZSCH, Tannesstein,
Germany). The uncertainty associated with the thermal conductivity measurement is ±5%.

2.4. Thermal Conductivity Measurements Using the 3ω Technique

The 3ω technique is a commonly used method for measuring the thermal conductivity
of materials [14,15]. The measurements were conducted under high vacuum conditions
(1 × 10−6 torr) to minimize thermal losses caused by air. In the measurements, we utilized
an AC and DC source (Keithley 6221, Cleveland, OH, USA), and the Signal Recovery 7265
DSP lock-in amplifier is equipped to conduct a comprehensive range of measurements
typically associated with a dual-phase lock-in amplifier. These measurements encompass
assessing the in-phase and quadrature components of the input signal, determining the
vector magnitude, quantifying the phase angle, and evaluating the noise level present in
the input signal.

3. Results and Discussion
3.1. Film Growth Process and Structural Characterization

Figure 1a illustrates the XRD patterns of the postannealed deposited films. All the
observed diffraction peaks can be ascribed to the rhombohedral Bi0.5Sb1.5Te3 structural
phase (JCPDS #49-1713), with no impurity phases detectable within the detection limits. No-
tably, for films with thicknesses exceeding 1 µm, a pronounced peak observed at 2θ = 28.0◦

corresponds to the 0 1 5 crystal plane, whereas other peaks appear negligibly weak. This
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indicates that an enhanced preferred 0 1 5 crystal plane lays on the substrate and increases
with increasing film thickness.
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Figure 1b–e shows the SEM images of BST films with different thicknesses, including
surface and cross-sectional views. The surfaces of the films appear flat, with particle sizes
ranging from approximately 20 to 50 nm. Remarkably, in the cross-sectional morphology
of the 1 µm-thick film, a stacking layer without a distinct growth direction is observed near
the substrate. Subsequently, the grains predominantly grow along their preferred growth
direction, forming characteristic tilt-platelet-shaped crystallite structures. These images
support the proposed Stranski−Krastanov-like growth model [16] for film growth, aligning
with the structural evolution patterns observed in the XRD results. During the initial stages
of film growth, the BST adatoms progressively cover the substrate surface, forming nuclei.
As the substrate temperature reaches 453 K, the adatoms gain enough energy to diffuse
on the substrate surface until complete coverage is achieved. The nuclei grow and tend to
adopt a plate-like morphology with a 0 0 1-oriented structure [17]. Simultaneously, newly
arriving adatoms continuously fill the gaps between these plates. The sputter deposition
process, characterized by relatively low substrate temperature, a high nucleation rate,
and a slow crystal growth rate, results in preferential growth along the 0 1 5 and 1 0 10
orientations as the film deposition progresses. Figure 1d illustrates that the 0 1 5 and 1 0
10-oriented films, still exhibit a densely packed structure, which should not adversely affect
the electrical conductivity pathway. EDX analysis confirms that the films predominantly
consist of Bi, Sb, and Te elements in a ratio of 0.5:1.5:3, corresponding to Bi0.5Sb1.5Te3.
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Figure 2a concisely illustrates this process. To visualize the distribution of crystallite
orientations within the film, a pole figure was constructed by rotating the sample along two
axes while keeping the diffraction angle corresponding to the desired Bragg reflection fixed.
For the thinner film of 0.25 µm, the 0 0 1 pole figure at 17.8 degrees and the 1 0 10 pole figure
at 38.1 degrees exhibit a combination of a dot and a ring pattern, which suggests a polycrys-
talline sample with uniaxial texture (Figure 2b). In contrast, the thicker film of 1 µm displays
a concentrated intensity at the center of the 0 1 5 pole figure 28 degrees, demonstrating a
highly textured structure (Figure 2c). In the crystal structure of Bi0.5Sb1.5Te3, the tilt angles
of the 0 1 5 and 1 0 10 planes with respect to the ab-plane are 54◦ and 33◦, respectively.
These results indicate that the initial stage of film deposition is characterized by a relatively
random film orientation and texture development is closely associated with a selective film
growth process. Typically, the crystal orientation of a deposited film is strongly influenced
by the substrate; this study employed an amorphous glass substrate, which is expected
to have little impact on the crystal orientation of the deposited films. Instead, during the
initial stages of film deposition, certain oriented grains may have preferential growth.
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The growth of films typically goes through several stages: nucleation, island formation,
coalescence of islands, development of a continuous structure, and thickness growth. A
combination of thermodynamic and kinetic factors influences this process. Traditionally,
the growth behavior of films is explained by the thermodynamic growth model, which
considers the relative surface energies of the substrate (εs), interface (εi), and heteroepitaxial
layer (εf) [18]. The change in surface energy, ∆ε = εf + εi − εs, plays a crucial role in
determining the growth model. It indicates the wetting behavior of the substrate during
film deposition. When ∆ε > 0, the substrate experiences incomplete wetting, resulting in
the growth of disconnected three-dimensional (3D) islands (Volmer−Weber mode). On
the other hand, when ∆ε ≤ 0 and lattice misfit is negligible, the deposited materials wet
the substrate and exhibit a layer-by-layer two-dimensional (2D) growth (Frank−van der
Merwe mode). In cases where ∆ε < 0 and lattice misfit is significant, the growth begins
with forming a wetting layer consisting of a layer-by-layer 2D structure. However, as
the film thickness increases, accumulated thermal stress and strain energy become more
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pronounced, affecting εi and resulting in the development of 3D islands during the later
stages of growth.

Based on the XRD analysis and pole figures, the growth behavior of sputter-deposited
BST films appears to follow the principles of the Stranski−Krastanov-like model. Addition-
ally, certain preferential orientations, such as 1 0 10 and 0 1 5, are observed in these films.
These orientations are believed to be related to the planes with the lowest surface energy,
which experiences less ion damage during deposition. The presence of these preferential
orientations is significant as they contribute to the enhancement of the thermoelectric
properties of the films. The specific crystallographic alignment achieved through these
orientations likely facilitates improved electrical and thermal transport properties, making
the films more favorable for thermoelectric applications.

3.2. Electrical Conductivity and Seebeck Coefficient Measurements

Figure 3a presents the measured conductivity values (σ) of both BST thin films and
the bulk material within the temperature range of 300–400 K. Except for the gradual
conductivity increase with temperature for the 0.125 µm-thick thin film, the remaining
thin film samples, as well as the bulk material, exhibit a consistent monotonic decrease
in conductivity as the temperature rises. This behavior can be attributed to the fact that
BST belongs to the category of semiconductors with relatively small band gaps, resulting
in a conductivity trend similar to that of metallic materials. Furthermore, the thinnest
sample, at 0.125 µm, displays the lowest conductivity. This observation could be attributed
to numerous interfaces in the early stages of film growth. As the film thickness increases,
particle size grows, and grain boundaries decrease, leading to enhanced conductivity.
The 0.5 µm-thick sample demonstrates the highest conductivity. However, when the film
thickness further increases to 1 µm, the conductivity notably drops. Hall measurement
results indicate that the decline in conductivity primarily stems from a reduction in the
film’s carrier mobility. XRD analysis reveals that thinner films predominantly exhibit the 0
0 1 and 1 0 10 crystallographic orientations, suggesting facile carrier transport along the
ab plane without surmounting van der Waals gaps. Nevertheless, at a film thickness of
approximately 1 µm, despite the textured structure of the thin film, the principal preferred
orientation shifts to 0 1 5. This shift implies that carriers encounter van der Waals gaps
when propagating in the in-plane direction, consequently reducing carrier mobility.

From the Seebeck coefficient measurements, it is evident that all thin film samples
exhibit p-type conductivity. The variation in the Seebeck coefficient is roughly related to the
carrier concentration of the films. Despite identical sample processing conditions, the thin-
ner 0.125 µm film exhibits the lowest carrier concentration, approximately 3 × 1019 cm−3.
As the film thickness increases, the carrier concentration gradually rises, leading to a slight
decrease in the Seebeck coefficient, as shown in Figure 3b. BST is a semiconductor with
a narrow band gap. At higher temperatures, the bipolar effect becomes significant, po-
tentially causing a reduction in the Seebeck coefficient in the higher-temperature region.
We have plotted the relationship between S and nH (Pisarenko relation) at 300 K, using
the single parabolic band (SPB) model with the assumption of phonon scattering [19], as
depicted in Figure 3c. Equation (1) establishes that the Hall carrier density, denoted by nH,
is linked to the chemical carrier density, n, through the equation nH = n/rH. In Equation (4),
rH represents the Hall factor for acoustic phonon scattering. The function Fx(η), denoted in
Equations (2) and (3), represents the x-th order Fermi integral. The experimental data align
well with the calculated curve, assuming an effective mass of m* = 1.5 me. Our analysis
suggests that the thickness of the thin films has minimal impact on the band structure of
the BST alloy near the Fermi level.
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Figure 3d illustrates the PF variation with temperature. Due to the significant enhance-
ment in conductivity in the 0.25 µm and 0.5 µm samples, the corresponding PF shows
remarkable improvement across the entire measured temperature range. The 0.25 µm sam-
ple achieves a high PF of approximately 18.1 µWcm−1K−2 at 400 K, a value that, although
lower than bulk material, is comparable to the quality achieved with samples prepared
using a pulsed laser deposition method. Additionally, while the Seebeck coefficient of the
0.5 µm thin film is marginally lower than that of the 0.25 µm thin film, leading to a slightly
reduced PF, the PF at a temperature of 400 K remains almost unchanged.

3.3. Thermal Conductivity Measurements of Film

Measuring the thermal conductivity of thin films is challenging. In this work, we
first employed the established 3ω method for conducting horizontal thermal conductivity
measurements [20,21]. Before measurement, a crucial step involves suspending the test
sample to enable accurate determination of the thin film’s true thermal conductivity [22,23].
To achieve this, we devised an innovative approach, as illustrated in Figure 4. Initially,
thin films of approximately 100 × 100 µm2 are delicately peeled from the substrate using a
scalpel. Extremely thin films pose challenges; currently, the minimum thickness feasible is
approximately 0.5 µm. The detached thin film is then subjected to precise cutting using
a focused ion beam (FIB) to create a rectangular shape, with its length-to-cross-section
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ratio resembling that of a rod or a belt. This specific ratio ensures compliance with the
boundary conditions required for the 3ω measurement. The resulting elongated sample
is manipulated using a probe, utilizing van der Waals forces to suspend it, and is then
carefully transferred onto a measurement chip with prefabricated electrodes. Once the
sample is securely positioned, FIB is employed once again to weld the section of the sample
in contact with the electrodes, enabling subsequent 3ω thermal conductivity measurements.
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Figure 4. Sample preparation process for in-plane thermal conductivity measurements of films.
(a) The thin film is grown on the substrate. (b) Peeling off the thin film. (c) Using a probe to
transfer the peeled thin film onto the FIB cutting stage. (d) Precise cutting using the FIB. (e) Moving
the cut sample onto the measurement chip. (f) Adjusting the position on the measurement chip.
(g) Completion of electrode welding using FIB and preparation for measurement.

The 3ω method is a reliable thermal conductivity measurement technique for one-
dimensional materials. Figure 5a illustrates the actual suspended configuration of the
measured sample and the roles played by various contact electrodes, as indicated. This
method requires the sample to be a conductor, and its resistance must exhibit temperature
dependence. The sample serves as both the heater and the thermometer. An AC current
(DC current I0 sinωt) is applied to the sample, resulting in a 2ω temperature variation
(temperature fluctuation) and thus causing a corresponding 2ω resistance variation (re-
sistance fluctuation). This leads to a voltage fluctuation at the 3ω frequency, as shown in
the schematic in Figure 5b and the mathematical formula. During measurement, the AC
current is applied from both sides of the sample while the voltage signal is measured at the
center. To prevent heat loss through the substrate, the sample is suspended on a hollowed-
out chip. This arrangement allows simultaneous measurement of the one-dimensional
material’s thermal conductivity, electrical resistivity, and specific heat. Joule heating due
to current flow through the sample results in a distinct temperature difference between
its ends, necessitating a high vacuum environment during measurement to prevent heat
convection or radiation. Additionally, the heat generated by the sample and its diffusion
can be described by a differential equation with appropriate boundary conditions. Detailed
formula derivation and explanations can be obtained from the referenced literature [14]. In
other words, the mathematical relationship between a 3ω voltage (V3ω) signal and κ can be
understood through Equation (5):

V3ω ≈ 4I3LRR′

π4κA
√

1 + (2ωγ)2
(5)

where L represents the length of the sample, R denotes resistance, R
′

signifies the rate of
resistance change with temperature, κ stands for thermal conductivity, A represents the
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cross-sectional area of the sample, ω is the frequency of the AC current, and γ indicates the
characteristic thermal time constant within the sample. Each data point shown in Figure 5c
is acquired by fitting the frequency dependence of V3ω using Equation (6).

V3ω ∝ 1/
√

1 + (2ωγ)2 (6)

Nanomaterials 2024, 14, x FOR PEER REVIEW 9 of 14 
 

 

measured sample and the roles played by various contact electrodes, as indicated. This 
method requires the sample to be a conductor, and its resistance must exhibit temperature 
dependence. The sample serves as both the heater and the thermometer. An AC current 
(DC current 𝐼0 sinωt) is applied to the sample, resulting in a 2ω temperature variation 
(temperature fluctuation) and thus causing a corresponding 2ω resistance variation 
(resistance fluctuation). This leads to a voltage fluctuation at the 3ω frequency, as shown 
in the schematic in Figure 5b and the mathematical formula. During measurement, the 
AC current is applied from both sides of the sample while the voltage signal is measured 
at the center. To prevent heat loss through the substrate, the sample is suspended on a 
hollowed-out chip. This arrangement allows simultaneous measurement of the one-
dimensional material’s thermal conductivity, electrical resistivity, and specific heat. Joule 
heating due to current flow through the sample results in a distinct temperature difference 
between its ends, necessitating a high vacuum environment during measurement to 
prevent heat convection or radiation. Additionally, the heat generated by the sample and 
its diffusion can be described by a differential equation with appropriate boundary 
conditions. Detailed formula derivation and explanations can be obtained from the 
referenced literature [14]. In other words, the mathematical relationship between a 3ω 
voltage (V3ω) signal and κ can be understood through Equation (5): 𝑉 ≈ 4𝐼 𝐿𝑅𝑅𝜋 𝜅𝐴 1 + (2𝜔𝛾)  (5)

where L represents the length of the sample, 𝑅 denotes resistance, 𝑅′ signifies the rate of 
resistance change with temperature, κ stands for thermal conductivity, A represents the 
cross-sectional area of the sample, ω is the frequency of the AC current, and γ indicates 
the characteristic thermal time constant within the sample. Each data point shown in 
Figure 5c is acquired by fitting the frequency dependence of V3ω using Equation (6). 𝑉 ∝ 1/ 1 + (2𝜔𝛾)  (6)

 
Figure 5. Thermal conductivity measurements. (a) The SEM image shows the sample suspended on 
the measurement platform and the application of four electrodes. (b) The illustration displays the 
four-probe configuration utilized to measure the thermal conductivity of a filament-like specimen. 
(c) Frequency dependence analysis of the third harmonic signal from the 0.5 µm thick film at 300 K 
is shown. (d) The relationship between tanϕ and frequency is illustrated. (e) Presents results from 
the 3ω method for 0.5 µm and 1 µm films, compared with results obtained using the 3ω method and 
LFA on the bulk material. 

Figure 5. Thermal conductivity measurements. (a) The SEM image shows the sample suspended on
the measurement platform and the application of four electrodes. (b) The illustration displays the
four-probe configuration utilized to measure the thermal conductivity of a filament-like specimen.
(c) Frequency dependence analysis of the third harmonic signal from the 0.5 µm thick film at 300 K is
shown. (d) The relationship between tanϕ and frequency is illustrated. (e) Presents results from the
3ω method for 0.5 µm and 1 µm films, compared with results obtained using the 3ω method and
LFA on the bulk material.

The result of fitting for the 0.5 µm film at 300 K. The κ can be determined from the
intercept of the fitting values at that temperature, as indicated by Equation (7).

V3ω ≈ 4I3LRR′

π4κA
(ωγ → 0) (7)

The frequency-dependent behavior of the phase angle tanϕ ≈ 2ωγ is presented in
Figure 5d. The relationship tanϕ ~ ω, where 0 < 2ωγ < 4, indicates the applicable frequency
range for the measurements dependent on frequency. Figure 5a depicts the measured
thermal conductivity (κ) of BST films within the temperature range of 300 to 400 K and
the thermal conductivity measurements of BST bulk along the same direction as the PF
measurements. The thermal conductivity measurements of the films were conducted using
the 3ω method, as illustrated in Figure 5a, with an uncertainty of <5% [14,24]. It is crucial
to emphasize that due to the extremely low thermal conductivity of the films, we initially
obtained the thermal conductivity value of the bulk material using the LFA measurement
method to verify the reliability of the measurement technique. Additionally, using the
same sample and ensuring consistent measurement directions, we employed the sample
preparation process depicted in Figure 5e to cut the bulk material into thin specimens
with a thickness of approximately 2 µm and an aspect ratio of around 14. This meticulous
procedure is essential to meet the rigorous requirements for measurements using the 3ω
method. As indicated by the solid deep green and hollow deep green points in Figure 5e,
both LFA and 3ω methods yield highly consistent results for thermal conductivity mea-
surements of the bulk material, affirming the reliability of the 3ω measurement approach.
However, due to limitations in detaching the film from the substrate, a thickness of 0.5 µm
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represents the current practical limit. Therefore, despite the significantly enhanced PF
observed in the 0.25 µm film sample, in-plane thermal conductivity measurements could
not be successfully conducted. Furthermore, whether it is a 0.5 µm or 1 µm film, the thermal
conductivity value is only around 0.3 Wm−1K−1, considerably lower than the bulk value
of 1.10 Wm−1K−1. As we know, at temperatures close to 300 K or lower, bipolar effects are
likely to be negligible, so the phonon thermal conductivity (κlat) can be obtained simply by
subtracting the electronic thermal conductivity (κele) from the total thermal conductivity (κ).
We employed the Wiedemann−Franz Law to estimate the κele, given by κele = LσT, where
L represents the Lorenz number, which can be determined by considering the scattering
parameter and the measured Seebeck coefficient [25]. Due to the nonlinear variation of
the sample’s R′, the error in thermal conductivity above 360 K is significant, highlight-
ing the limitations encountered in this measurement. In the temperature range of 300 to
360 K, the estimated κlat for the 0.5 µm sample and the 1 µm sample are approximately
0.14 and 0.18 Wm−1K−1, respectively. On the other hand, the κlat of the bulk material is
approximately 0.70 Wm−1K−1. Clearly, the κlat of the thin film samples is significantly
lower than that of the bulk material. In addition to being associated with well-known
defect structures, the phenomenon of ultralow in-plane thermal conductivity is highly
correlated with the layered structure of the thin film and its preferred 0 1 5 orientation.
Phonon propagation requires traversing the van der Waals gap between layers, although
not to the extent observed along the c-axis. However, this phonon-interface scattering
significantly reduces the average phonon mean free path. According to the molecular simu-
lation results conducted by Mizuno et al., it is evident that achieving a thermal conductivity
lower than that of an amorphous material is a viable possibility [26]. The fundamental
strategy to achieve this lies in effectively impeding the phonon propagation, specifically
the superlattice phonons. Mizuno et al. posited that introducing a substantial contrast in
mass between the two intercalated layers or inducing weakened interactions across the
interface between these layers leads to the development of materials characterized by ex-
ceedingly low thermal conductivity, surpassing the values observed in their corresponding
amorphous counterparts [26].

3.4. Microstructures and Thermoelectric ZT of Films

The representative microstructures of the film with a thickness of 0.25 µm were
examined using high-resolution transmission electron microscopy (HRTEM), as shown in
Figure 6. HRTEM analysis images reveal that the notable decrease in thermal conductivity
can be attributed to the effective scattering of phonons at the diverse and complex interfaces
within the nanostructures. These interfaces include the formation of nano-moiré fringes,
strain-induced distortions, planar defects, and mesoscale boundaries. In physics, moiré
patterns manifest as captivating interference fringes, materializing when a periodic template
is delicately overlaid upon another akin structure, yet with distinct displacements and twist
angles. The distribution of nanoscale moiré fringes might greatly help scatter heat carried
phonon and thus lead to ultralow thermal conductivity [27].

Figure 7a depicts the estimated ZT values for 0.5 µm and 1 µm thin film samples and
bulk material. The maximum ZT value of 1.86 is achieved at a thin film thickness of 0.5 µm.
However, as the thickness continues to increase, the ZT values do not improve but rather
decrease. Although the thermal conductivity of the 1 µm thin film is similar to that of the
0.5 µm sample, its PF cannot match up, resulting in a decrease in ZT. This trend suggests
that beyond a certain optimal thickness, a further increase in thickness does not enhance
ZT values but instead leads to a decline. The inability of the PF to improve in proportion
to thermal conductivity at thinner thicknesses contributes to this decline in ZT. Achieving
such high ZT values is significantly attributed to its considerably low thermal conductivity.
In addition to the complex interface-enhanced phonon scattering observed in HRTEM in
Figure 6, the low thermal conductivity of these thin films is also attributed to their textured
structure, with a preferred crystal orientation of 0 1 5. Therefore, by using the schematic dia-
gram in Figure 7b, one can further understand the possible scattering scenarios of phonons
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within grains in addition to interface scattering. Considering these factors collectively
contribute to achieving a thermal conductivity of approximately 0.3 Wm−1K−1.
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Figure 6. HRTEM analysis of the Bi0.5Sb1.5Te3 film, with a thickness of 0.25 µm. (a) Nano-moiré
patterns extending across the area. (b) Enlarged view of the dotted white boxed region, where local
defects are distributed randomly, appearing as dark spots. (c) A depiction of the area between grain
boundaries. (d) Enlarged view of the dotted red boxed region in panel c. (e) Enlarged view of the
dotted yellow boxed region in panel c.
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Figure 7c illustrates the comprehensive ZT values achieved by the BST bulk [28],
film [29], BT/single-walled carbon nanotube (SWCNT) [7], and the superlattice (SL) film.
The BST film exhibited a maximum ZT of approximately 0.89 [29]. In contrast, the BT/BST
SL film [30] and BT/ZrB2 SL film [31] demonstrated superior performance with a maximum
ZT of around 1.44 and 1.54, respectively. This surpasses the outcomes reported in previously
conducted research on thin films based on the Bi–Sb–Te material system. Notably, the
maximum ZT value for the 0.5 µm BST film sample reaches 1.86 in our work, representing
an increase of approximately 64% compared to that of bulk material and an increase of about
24% compared to related SL films. This achievement is one of the leading records among
reports on Bi2Te3-based alloy thin films. Furthermore, we conducted thermal and electrical
performance cyclic tests on multiple batches of samples to evaluate the reproducibility of
the film fabrication process, confirming the excellent repeatability and thermal stability of
the film samples.

4. Conclusions

This study presents a groundbreaking exploration into the thermoelectric properties
of BST thin films, emphasizing the significance of film thickness and lattice orientation
management for enhancing thermoelectric performance. By employing RF sputtering and
postdeposition annealing, we successfully fabricated BST thin films of varying thicknesses
and systematically investigated their structural, electrical, and thermal characteristics. The
novel approach of equilibrium annealing led to an exceptional enhancement of the PF
by 450%, achieving a PF of 18.1 µWcm−1K−2 at 400 K for the 0.5 µm film. Moreover, the
study introduces a precise methodology for in-plane thermal conductivity measurement
using the 3ω method, revealing an ultralow thermal conductivity of 0.3 Wm−1K−1 and
achieving a maximum ZT of 1.86 near room temperature. These findings underscore
the profound impact of thickness and lattice orientation on the thermoelectric efficiency
of BST thin films, offering valuable insights for designing high-performance thin-film
thermoelectric generators. This research not only elucidates the mechanisms underlying
the enhanced thermoelectric properties of BST thin films but also sets a new benchmark
for thin-film thermoelectric materials, paving the way for their application in sustainable
energy solutions.
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