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Abstract: Silver ions (Ag+) are crucial in various fields, but pose environmental and health risks at
high concentrations. This study presents a straightforward approach for the ultra-trace detection
of Ag+, utilizing a composite of a cytosine-rich oligonucleotide (CRO) and an electrochemically
reduced graphene oxide (ERGO). Initially, ERGO was synthesized on a glassy carbon electrode (GCE)
through the reduction of graphene oxide (GO) via cyclic voltammetry. A methylene blue-tagged
CRO (MB-CRO) was then anchored to the ERGO surface through π–π interactions, resulting in the
formation of an MB-CRO-modified ERGO electrode (MB-CRO/ERGO-GCE). The interaction with
Ag+ ions induced the formation of silver-mediated C-Ag+-C coordination, prompting the MB-CRO
to adopt a hairpin structure. This conformational change led to the desorption of the MB-CRO
from the ERGO-GCE, causing a variation in the redox current of the methylene blue associated
with the MB-CRO. Electrochemical assays revealed that the sensor exhibits extraordinary sensitivity
to Ag+ ions, with a linear detection range from 1 femtomolar (fM) to 100 nanomolars (nM) and a
detection limit of 0.83 fM. Moreover, the sensor demonstrated high selectivity for Ag+ ions and several
other benefits, including stability, reproducibility, and straightforward fabrication and operational
procedures. Additionally, real sample analyses were performed using the modified electrode to detect
Ag+ in tap and pond water samples, yielding satisfactory recovery rates.

Keywords: reduced graphene oxide; DNA hairpin; silver ion; electrochemical aptasensor

1. Introduction

Silver ion (Ag+) is a precious metal ion valued for its rarity and applications in
biomedicine [1], electronics [2], and various other fields [3–6]. At low concentrations, Ag+

exhibits beneficial properties such as anti-inflammatory [7], sterilizing [8], deodorizing [9],
and wound-healing effects [10], and it is also known to inhibit certain bacteria [11], fungi,
and viruses [12,13]. However, Ag+ can also pose environmental and health risks [14,15].
Silver is often found as an impurity in ores and can enter the environment through in-
dustrial waste [16–18]. Additionally, the widespread use of silver in industrial processes,
including chemistry [19,20], medicine [21], photography [22], and electronics [23], leads to
its discharge into the environment through industrial waste, often contaminating water and
soil [24]. This environmental infiltration poses significant risks to plant growth [15] and
ecological balance. Accumulation of Ag+ in animals and plants, coupled with its potential
entry into the human body through the food chain, presents health hazards such as elevated
urine silver excretion, argyria (a skin condition), cardiac enlargement, growth retardation,
and liver damage [1,25,26]. Thus, the U.S Environmental Protection Agency (USEPA) and
the World Health Organization (WHO) have set the toxic concentration standard for Ag+ at
1.6 nM. Additionally, the maximum permissible concentration of Ag+ in drinking water is
specified as 0.93 µM and 0.36 µM, respectively. Furthermore, WHO limited the threshold for

Nanomaterials 2024, 14, 775. https://doi.org/10.3390/nano14090775 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano14090775
https://doi.org/10.3390/nano14090775
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0001-5314-4751
https://orcid.org/0000-0002-0154-518X
https://doi.org/10.3390/nano14090775
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano14090775?type=check_update&version=1


Nanomaterials 2024, 14, 775 2 of 11

exposure of silver in water for fish and microorganisms to lower than 1.6 nmol L−1 [27,28].
Consequently, the detection of trace amounts of Ag+ is crucial for environmental protection
and public health [29–33].

Conventional methods like atomic absorption spectrometry (AAS) [34–36], fluores-
cence [37,38], colorimetric [39], and inductively coupled plasma mass spectrometry (ICP-
MS) offer high accuracy for Ag+ detection [40,41], but are often expensive and require
complex instrumentation. These techniques typically require specialized equipment, high
sample volumes, and lengthy processing times. While researchers have developed sensors
for Ag+ detection using various spectroscopic techniques, these often involve complex
design and synthesis procedures.

In recent years, electrochemical analysis technology has gained widespread adoption
for detecting heavy metal ions [4,28], biomolecules [42], and food additives due to its
high sensitivity and cost-effectiveness [43–45]. Consequently, numerous researchers have
studied graphene composites to enhance sensor performance. Among these composites,
reduced graphene oxide (RGO) has been considered as a promising material for improving
the performance of electrochemical biosensors. RGO offers a large surface area, good
biocompatibility, and excellent electrocatalytic activity, which are attributed to its abundant
edge-plane-like defects and large surface area, facilitating rapid heterogeneous electron
transfer [46–49]. Furthermore, RGO can readily bind with single-stranded DNA through
π–π stacking. DNA aptamer-based electrochemical biosensors have emerged as particularly
promising due to their advantages: enhanced sensitivity [50], rapid analysis [51], cost-
effectiveness [52], straightforward fabrication [53], miniaturization potential [52], and
suitability for on-site detection [54–56].

Previously, Prof. Han’s group suggested that aptasensors detect silver ions via probe
packing density [57]. Their approach involved the use of cytosine-rich oligonucleotides
(CRO) tagged with methylene blue, which were self-assembled onto the gold electrode
surface via thiol groups from the aptamer’s 5′-terminal. In contrast, we propose methylene
blue (MB)-tagged CRO modified on the electrochemically reduced graphene oxide (ERGO)
deposition glassy carbon electrode (GCE) surface; this method does not require additional
preparation of DNA such as thiolate. Additionally, single-stranded DNA can be reversibly
absorbed simply by dipping the electrode in a DNA solution. To elaborate, Scheme 1
illustrates the fabrication process of the sensor and its Ag+ detection mechanism, demon-
strating its simplicity, speed, and effectiveness. Briefly, ERGO is prepared and deposited
onto a glassy carbon electrode through the direct reduction of GO using cyclic voltammetry
(CV), following established protocols [58,59]. Subsequently, MB-CRO is immobilized onto
the ERGO-modified GCE (ERGO-GCE) via π–π stacking [60,61]. The introduction of Ag+

prompts the MB-CRO on the ERGO-GCE, leading it to adopt a hairpin structure facilitated
by a specific C-Ag+-C coordination [62–64]. This structural shift triggers the detachment of
the MB-CRO from the ERGO surface, resulting in a marked alteration in the electrochem-
ical signal of the MB tag. The sensor is characterized by its straightforward fabrication,
ease of analysis, ultra-sensitivity, and high selectivity, making it a practical tool for Ag+

ion detection.
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Scheme 1. Fabrication and Ag+ detection mechanism of the MB-CRO/ERGO-GCE aptasensor.

2. Materials and Methods
2.1. Materials

The cytosine-rich oligonucleotide aptamer (MB-CRO), with the sequence 5′-Methylene
Blue-CCCCCCCCCCCCCCCCCCCCCCCC-3′ (24C) [65], was sourced from BIONEER
Corporation (Daejeon, Republic of Korea). Graphite powder, phosphate buffer saline (PBS),
Tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), and potassium hexacyano-
ferrate (III) (K3[Fe(CN)6]) were procured from Sigma-Aldrich, Inc. (St. Louis, MO, USA).
All chemicals employed were of analytical grade and utilized as received, without any
further purification. The aqueous solutions were prepared using deionized water with
a resistivity greater than 18 MΩcm, produced by a Millipore water purification system
(MilliQ, Millipore Korea, Co., Ltd., Seoul, Republic of Korea).

2.2. Electrochemical Measurements

Electrochemical measurements were performed using a Model 660D electrochemical
workstation (CH Instruments, Austin, TX, USA) with a conventional three-electrode cell at
room temperature (25 ◦C). GCE, ERGO-GCE, and MB-CRO/ERGO-GCE served as working
electrodes, with Ag/AgCl (3 M NaCl) as the reference electrode and a Pt wire as the
counter electrode. All measurements, including cyclic voltammetry (CV), differential pulse
voltammetry (DPV), and electrochemical impedance spectroscopy (EIS), were conducted
in 10 mM phosphate-buffered saline (PBS) or 7.4 pH Tris buffer solution. CV experiments
employed a potential scan from −0.2 to 0.6 V (vs. Ag/AgCl) at 10 mV/s with a 1 mV
sampling interval. DPV utilized a scan range of 0.1 to −0.6 V (vs. Ag/AgCl), a pulse
amplitude of 0.04 V, a pulse width of 0.2 s, and a pulse time of 0.5 s. EIS measurements were
carried out in 10 mM Tris solution containing 5 mM [Fe(CN)6]4− at the formal potential of
0.222 V (vs. Ag/AgCl), with an AC voltage amplitude of 10 mV and a frequency range of
106 to 10−1 Hz. ZSimpWin 3.21 software (AMETEK. Inc., Oak Ridge, TN, USA) was used
for EIS data fitting.



Nanomaterials 2024, 14, 775 4 of 11

2.3. Fabrication of MB-CRO/ERGO-GCE

GO was produced via a modified Hummers method [66]. The resultant GO was
ultrasonicated in 10 mM PBS buffer (pH 7.4) for 1 h, yielding a uniform yellow-brown
solution (0.3 mg/mL in 10 mM PBS buffer, pH 7.4). Before constructing the ERGO-GCE,
the GCE was polished to a mirror finish with alumina powders of 0.1, 0.3, and 0.05 µm,
respectively, sonicated for 10 min in water and ethanol solution, and then rinsed with
deionized water. The ERGO-GCE was fabricated by applying CV from 0.8 to −1.5 V vs.
Ag/AgCl at a scan rate of 10 mV/s for three cycles in the GO solution (0.3 mg/mL in
10 mM PBS buffer, pH 7.4), using GCE as the working electrode. Finally, MB-CRO was
immobilized onto the ERGO-GCE. The ERGO/GCE was incubated in 1 µM MB-CRO
solution (10 mM Tris buffer, pH 7.4) for varying (10, 20, 30, 40, 50, 60, 70, and 80 min)
incubation times. After incubation, the MB-CRO/ERGO-GCE was washed with buffer
solution and dried at room temperature before use.

3. Results and Discussion

The fabrication process of MB-CRO/ERGO-GCE was characterized using CV and
electrochemical impedance spectroscopy (EIS), with [Fe(CN)6]3− as a redox probe. In
0.1 M KCl containing 10 mM K3[Fe(CN)6], CV revealed a well-defined redox peak pair on
the bare GCE (Figure 1A) with a peak-to-peak separation (∆Ep) of 84 mV. Modification
with ERGO significantly increased the peak current (Ip) and decreased ∆Ep (70 mV),
indicating enhanced electron transfer due to ERGO’s conductivity. Immobilization of
MB-CRO on ERGO-GCE resulted in a substantial decrease in Ip and a noticeable increase
in ∆Ep (205 mV). This suggests that the negatively charged MB-CRO acts as an insulator,
thereby impeding electron transfer. These observations confirm the successful construction
of the MB-CRO/ERGO-GCE. EIS further validated the modification process (Figure 1B).
The Nyquist plot shows the charge transfer resistance (Rct) represented by the semicircle
diameter at high frequencies. ERGO modification on the GCE resulted in a reduction in the
Rct value from 206 Ω (bare GCE) to 189.2 Ω (ERGO-GCE), attributed to the catalytic effect
of ERGO, which facilitates rapid electron transfer. Conversely, the attachment of MB-CRO
to the ERGO-GCE surface caused a significant rise in Rct to 2156 Ω, attributable to the DNA
structure’s low conductivity, which restricts electron movement. This further corroborates
the successful fabrication of the MB-CRO/ERGO-GCE.

Furthermore, as shown in Figure S2, we calculated the active surface areas of both
bare GCE and ERGO-GCE to validate the successful deposition of ERGO onto the electrode
surface. The active surface areas were determined to be 0.059 cm2 for bare GCE and
0.063 cm2 for ERGO-GCE, respectively.

The potential of MB-CRO/ERGO-GCE as an electrochemical sensor for Ag+ detec-
tion was demonstrated through an assessment of EIS and DPV measurements upon Ag+

introduction. Figure 1C shows that increasing Ag+ concentrations corresponded to a de-
crease in Rct, with more pronounced decreases at higher concentrations. This suggests
that Ag+ binding to MB-CRO on the electrode surface triggers a conformational change,
leading to MB-CRO detachment and a decrease in the barrier-to-electron transfer. To exploit
the MB tag for signal transduction, DPV measurements were performed in 10 mM Tris
buffer (pH 7.4). Figure 1D shows the DPV curves, with the MB reduction peak at −0.35 V
confirming MB-CRO immobilization. Upon Ag+ addition, a significant decrease in the
MB peak current was observed. This can be attributed to the increased distance between
the MB tag and the electrode surface due to Ag+-induced conformational changes and
subsequent MB-CRO detachment. This experimental observation provides compelling
evidence supporting the sensor’s capability to detect Ag+ ions.
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Figure 1. (A) CV curves for GCE, ERGO−GCE, and MB−CRO/ERGO−GCE obtained at a scan
rate of 10 mV/s in 0.1 M KCl containing 10 mM [Fe(CN)6]3−. (B) Nyquist plots representing the
electrochemical impedance of GCE, ERGO−GCE, and MB−CRO/ERGO−GCE in 10 mM Tris buffer
with 10 mM [Fe(CN)6]3−. (C) EIS Nyquist plots of MB−CRO/ERGO−GCE upon exposure to varying
Ag+ concentrations (0 M, 1 fM, 1 pM, 1 nM, and 1 µM) in 10 mM Tris buffer. (D) Differential pulse
voltammograms (DPV) of MB−CRO/ERGO−GCE in the absence and presence of 100 nM Ag+ in
10 mM Tris buffer (pH 7.4).

Accumulation time for MB−CRO (1 µM) was 60 min, and incubation time for Ag+

detection was 5 min. To optimize the sensor’s performance, we investigated the effects of
accumulation time, MB−CRO concentration for immobilization, and incubation time for
the Ag+ sensing reaction on the voltammetric response in 10 mM Tris buffer (Figure 2). The
sensor response increased with the MB−CRO immobilization time up to 60 min, indicating
a gradual increase in immobilized MB−CRO (Figure 2A). Beyond 60 min, the response
decreased, suggesting potential overcrowding or desorption. Therefore, 60 min was chosen
as the optimal immobilization time. Similarly, the sensor response displayed a maximum at
an MB−CRO concentration of 1 µM (Figure 2B). This suggests a balance between sufficient
aptamer coverage and potential steric hindrance at higher concentrations. Moreover, the
voltammetric response to Ag+ detection grew with longer incubation times, stabilizing
at 5 min (Figure 2C). Therefore, a 5 min incubation period was deemed sufficient for
the reaction.

The analytical performance of the MB-CRO/ERGO-GCE sensor for Ag+ detection was
evaluated under optimized conditions, focusing on sensitivity, selectivity, reproducibility,
and stability (Figure 3). In Figure 3A, DPV curves of the MB-CRO/ERGO-GCE are shown,
with varying concentrations of Ag+ in 10 mM Tris buffer solution (pH 7.4). As the Ag+

concentration increased from 1 fM to 100 nM, the sensor’s peak current values gradually
decreased. The calibration plot, illustrating the relationship between Ag+ concentrations
and Ip, is depicted in the inset of Figure 3A. The plot reveals two distinct linear regions,
each associated with different response characteristics. At lower concentrations, the sensor
responded rapidly as Ag+ ions quickly interact with the electrode surface. At higher
concentrations, the response slowed, resulting in two separate linear ranges due to this
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differential behavior. The first linear range, from 1 fM to 10 pM, is described by the
regression equation of Ip (µA) = 0.26 Log[Ag+] + 1.2 (R2 = 0.98). The second linear range,
from 10 pM to 100 nM, follows the regression equation of Ip (µA) = 0.12 Log[Ag+] − 0.44
(R2 = 0.99). Table 1 compares the performance of the MB-CRO/ERGO-GCE sensor with
previously reported Ag+ sensors. The aptasensor we proposed exhibited an exceptional
linear range and surpassed previously reported sensors in terms of sensitivity, achieving a
remarkable limit of detection (LOD) of 0.83 fM. The sensor displayed excellent selectivity for
Ag+ detection (Figure 3B). The peak current significantly changed only upon Ag+ addition
(100 nM), while negligible responses were observed for other metal ions (Mn2+, Fe3+,
Cu2+, Ni2+, Co2+, Mg2+) at a higher concentration (1 µM). The sensor also exhibited good
reproducibility (Figure 3C). DPV responses from five independently fabricated electrodes
showed minimal variation, indicating consistent sensor performance. Furthermore, the
sensor demonstrated excellent long-term stability (Figure 3D). After 15 days of storage at
room temperature, the peak current remained at 98.9% of its initial value, highlighting the
sensor’s reliable performance.
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and Ag+ concentration (log scale). (B) DPV responses in the presence of 100 nM Ag+ and 1 µM of
various potentially interfering metal ions (Mn2+, Fe3+, Cu2+, Ni2+, Co2+, Mg2+). (C) Reproducibility
of sensor response for five independently fabricated electrodes. (D) Sensor stability over 15 days in
10 mM Tris buffer.

Table 1. Comparison of Ag+ sensor performance.

Materials Technique Linear Range LOD Ref.

BiOI NSs PEC 0–300 µM 0.21 µM [28]
SQDs/Au DPV 0.1 nM–3 µM 71 pM [67]
Au-IDA SWV 0.25 nM~2 nM 106 nM [68]
CPM-Pt UV-vis 0.5~10 pM 1.1 pM [29]

Oligonucleotide-
Based Au Electrode DPV 10–200 nM 10 nM [57]

Pt@ZIF-8 nanozyme Colorimetry 0.1–1000.0 nM 0.034 nM [69]
MB-CRO/ERGO-

GCE DPV 1 fM~100 nM 0.83 fM This work

To assess real-world applicability, the sensor’s performance was evaluated in tap
water and pond water samples spiked with Ag+ (Table 2). Samples were prepared by
diluting the real water with 10 mM Tris buffer (pH 7.4). The standard addition method
was used to quantify Ag+. The results demonstrated good recovery rates and low relative
standard deviation (RSD) values, indicating the sensor’s potential for Ag+ detection in
real-world samples.

Table 2. Detection of Ag+ concentrations in real samples using MB-CRO/ERGO-GCE (n = 3).

Samples Added Found Recovery (%) RSD (%)

Tap Water 100 fM 98.4 fM 98.4 3.61
100 pM 98.6 pM 98.6 1.74
100 nM 97.7 nM 97.7 135

Pond Water 100 fM 99.4 fM 99.4 3.15
100 pM 97.6 pM 97.6 2.48
100 nM 98.1 nM 98.1 1.78

4. Conclusions

This work successfully demonstrates a novel and highly sensitive electrochemical
aptasensor for Ag+ detection. The sensor leverages the specific interaction between MB-
CRO and ERGO, achieving an ultra-high detection limit of 0.83 fM, surpassing current
methods of Ag+ detection. Additionally, the sensor exhibits excellent selectivity for Ag+

ions, minimizing interference from other metal ions in real-world samples. The straightfor-
ward fabrication process and rapid analysis capabilities make the sensor readily deployable
for on-site monitoring. Furthermore, the sensor demonstrates good reproducibility and
stability, maintaining consistent performance across multiple fabrications and over time.
The successful application of the sensor for Ag+ detection in real-world tap and pond
water samples validates its potential for practical applications in environmental monitoring.
This approach paves the way for developing highly sensitive and selective aptasensors for
the detection of various environmental contaminants beyond Ag+. Future research will
explore the sensor’s suitability for monitoring silver nanoparticle pollution and other areas
of environmental and biological analysis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano14090775/s1, Figure S1: Raman spectra of GO and ERGO;
Figure S2. CV curves at various scan rates from 0.01 to 0.1 V/s at (A) bare GCE and (C) ERGO-GCE.

https://www.mdpi.com/article/10.3390/nano14090775/s1
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(B) Linear plots of υ1/2 vs. redox peak currents (Ipa/Ipc) at (B) bare GCE and (D) ERGO-GCE in 5 mM
[Fe(CN)6]3– in 0.1M KCl solution.
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