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Abstract: Wearable health devices (WHDs) are rapidly gaining ground in the biomedical field due to
their ability to monitor the individual physiological state in everyday life scenarios, while providing
a comfortable wear experience. This study introduces a novel wearable biomedical device capable of
synchronously acquiring electrocardiographic (ECG), photoplethysmographic (PPG), galvanic skin
response (GSR) and motion signals. The device has been specifically designed to be worn on a finger,
enabling the acquisition of all biosignals directly on the fingertips, offering the significant advantage
of being very comfortable and easy to be employed by the users. The simultaneous acquisition of
different biosignals allows the extraction of important physiological indices, such as heart rate (HR)
and its variability (HRV), pulse arrival time (PAT), GSR level, blood oxygenation level (SpO2), and
respiratory rate, as well as motion detection, enabling the assessment of physiological states, together
with the detection of potential physical and mental stress conditions. Preliminary measurements have
been conducted on healthy subjects using a measurement protocol consisting of resting states (i.e.,
SUPINE and SIT) alternated with physiological stress conditions (i.e., STAND and WALK). Statistical
analyses have been carried out among the distributions of the physiological indices extracted in time,
frequency, and information domains, evaluated under different physiological conditions. The results
of our analyses demonstrate the capability of the device to detect changes between rest and stress
conditions, thereby encouraging its use for assessing individuals’ physiological state. Furthermore,
the possibility of performing synchronous acquisitions of PPG and ECG signals has allowed us
to compare HRV and pulse rate variability (PRV) indices, so as to corroborate the reliability of
PRV analysis under stationary physical conditions. Finally, the study confirms the already known
limitations of wearable devices during physical activities, suggesting the use of algorithms for motion
artifact correction.

Keywords: wearable health devices (WHDs); electrocardiography (ECG); photoplethysmography
(PPG); galvanic skin response (GSR); oxygen saturation (SpO2); pulse arrival time (PAT)

1. Introduction

In the last decade, we have witnessed the widespread development and commercial-
ization of novel biomedical technologies, well known as wearable health devices (WHDs),
which have captured public interest thanks to their potential as non-invasive tools for
health monitoring [1,2]. WHDs are biomedical devices characterized by minimal weight
and size, deliberately designed for comfortable wear, and enabling the continuous acquisi-
tion of multiple biosignals [3,4]. These attributes make WHDs potentially valuable tools
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for remote monitoring of both fragile and healthy individuals, being able to be employed
in clinical and daily healthcare environments [5,6]. They can assist the healthcare system
in assessing physiological functions during convalescence periods [7,8], post-surgical re-
sponses to specific therapies [9,10], and even facilitate the early diagnosis of disorders
affecting different organs [11–13]. In this context, the scientific community is currently en-
gaged in the design and achievement of new integrated sensors allowing the non-invasive
concurrent acquisition of different biosignals from the same body district, and in the devel-
opment of measurement techniques and signal processing algorithms able to extract novel
physiological indices capable of providing further information on the health status [14–16].

In this regard, photoplethysmography (PPG) [17–19] is one of the most widely em-
ployed non-invasive measurement methods, allowing the simple and comfortable ex-
traction of key cardiovascular parameters, making it widely implemented in almost all
commercially available wearable devices [20–22]. The ease of use, non-invasiveness, and
low cost of PPG sensors and devices have contributed to its growth and employment.
Photoplethysmography has been typically compared with the less comfortable electrocar-
diographic (ECG) technique, representing the current clinical gold standard for evaluating
cardiac functions [23–25]. Starting from the pulse wave detected by a PPG sensor, it is
indeed possible to obtain the Pulse-to-Pulse interval (PP) [17], defined similarly to the
ECG R-R interval (RR) [26]. From PP and RR time series, it is possible to extract various
physiological parameters [27–29], such as heart rate (HR) and HR variability (HRV), the
latter allowing to gain significant insights into cardiocirculatory regulation mechanisms
and the autonomic tone in different physiological states, as well as the overall functionali-
ties of the cardiovascular system [30–32]. The synchronous acquisition of PPG and ECG
signals also allows to extract a further physiological parameter known as pulse arrival time
(PAT) [33], which holds great potential in the realm of cardiovascular health assessment. By
reflecting the time taken for the pulse wave to travel through the circulatory system, PAT
can be utilized for estimating important parameters such as arterial stiffness or even blood
pressure [34,35]. Lastly, from a PPG signal, it is possible to evaluate blood oxygen satu-
ration level (SpO2) [36], by utilizing two light sources at different wavelengths, and even
estimate the respiratory rate by using suitable signal processing techniques, thus enabling
the extraction of useful information about the respiratory system functionality [37].

Another significant biosignal is the galvanic skin response (GSR), i.e., the measurement
of the electrical conductance offered by the epidermal tissue, whose variations reflect the
regulatory mechanisms of the autonomic nervous system (ANS) and, in particular, of the
sympathetic nervous system (SNS). When a strong SNS activation occurs, the activity of
the sweat glands and, consequently, the sweat produced by the human body increase
proportionally [38]. This leads to the GSR signal being considered as another physiological
parameter that can be used alongside HRV indices for discriminating physiological resting
states. In fact, when a stressful event of any nature (e.g., mental, physical, emotional) occurs,
the organism responds with a defense mechanism better known in the literature as General
Adaption Syndrome (GAS), in which complex mechanisms of autonomic regulation are
orchestrated by the ANS, entailing sudden changes in various physiological parameters
(e.g., HR, sweat, respiratory rate) [39].

Finally, it is also interesting to integrate within wearable devices motion sensing
technologies, in order to detect subject movements, allowing the identification of motion
artifacts, which are among the main sources of signal corruption [40,41]. Additionally,
motion sensors can be employed to distinguish between different physiological states, e.g.,
discerning whether the subject is at rest or engaged in physical activities, as well to detect
some dangerous or even pathological conditions, e.g., by allowing fall detection [42] or
identifying local tremors that could be indicative of emerging nervous system disorders [43].

The development of wearable devices capable of performing multiparametric acquisi-
tions of the aforementioned parameters is thus of remarkable scientific and commercial
interest. The ongoing research is focused not only on the already widely available wrist-
worn devices, but also, more recently, on promising smart ring-shaped wearables. Most of
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devices commercially available (e.g., Fitbit, Galaxy Watch, Oura Ring) [44,45] only allow
the extraction of a few cardiovascular and/or respiratory physiological indices, e.g., heart
rate, HRV, and SpO2 levels. Conversely, certain emerging technologies (such as the Apple
Watch [46–48]) have demonstrated the potential to integrate ECG sensors directly on the
wrist, while other devices (like Circul+) can be worn directly on the fingers, enabling
advanced HRV analyses and blood pressure estimation [46,49]. Table 1 lists and compares
the main wearable devices available on the market, in terms of design (i.e., wristband,
smartwatch or ring), acquired biosignals, sampling rate, extracted features, and computed
physiological indices [44–46,49]. Nevertheless, studies regarding the reliability of measure-
ments obtained from such devices are still lacking, necessitating further research to validate
and promote the use of this promising technology.

Table 1. Comparison of the main wearable devices available on the market in terms of design,
recorded biosignals, features and computed physiological indices, and sampling rate [44–46,49].

Name Type of Device Biosignals Features and Physiological
Indices Sampling Rate

Apple Watch Wristband/smartwatch
PPG, ECG, wrist
temperature and

motion

SpO2 levels, HRV, sleep and
physical activity tracking, fall

recognition and atrial fibrillation
detection

500 Hz

Galaxy Watch Wristband/smartwatch
PPG, ECG, wrist
temperature and

motion

SpO2 levels, HR, sleep and
physical activity tracking 25 Hz

Oura Ring Ring
PPG, finger

temperature and
motion

SpO2 levels, HRV, sleep and
physical activity tracking,

respiratory rate
250 Hz

Circul+ Ring
PPG, ECG, finger
temperature and

motion

SpO2 levels, HRV, sleep and
physical activity tracking, blood

pressure
100 Hz

In this context, herein, we present a novel ring-shaped wearable device capable of
performing the synchronous acquisitions of ECG, PPG, GSR, and motion signals directly
on the fingers, starting from a previous prototype of a probe only able to acquire PPG and
GSR signals [36]. An initial measurement campaign on healthy subjects using a protocol
consisting of rest and orthostatic stress phases has been conducted, in order to test the
proper working of the proposed device and to assess the overall quality of the obtained
data in typical everyday scenarios, thereby also extracting physiological indices with the
aim of evaluating the feasibility to discriminate different physiological states.

2. Materials and Methods
2.1. Architecture, Design, and Development of the Wearable Ring-Shaped Device

The device proposed in this work has been designed to perform the synchronous
acquisition of multiple physiological signals on a single body district, i.e., the fingers, in
order to introduce a novel solution exploiting the true potential of wearable technologies.
During the design phase, the efforts were focused on developing a compact and comfortable
device that employs miniaturized highly integrated components without compromising
its lightweight nature and compactness. Our device (whose architecture is depicted in
Figure 1) is microcontroller-based, wherein the microcontroller serves as the core of the
system, overseeing and managing both analog and digital modules, the acquisition of
physiological parameters, and ultimately, data exchange over BLE communication protocol.
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Figure 1. Schematic block representing the architecture of the system. The ultra-low power microcon-
troller (MCU) handles all the peripherals connected by using three different buses: I2C BUS, which
allows communications between MCU and digital sensors (PPG and inertial measurement unit);
ADC BUS, used to connect analog signals output (ECG and GSR) to the MCU ADC; and UART BUS,
which is employed to communicate with BLE module in order to exchange the data collected by the
MCU. Lastly, the battery management system (BMS) provides energy to the entire system.

The chosen microcontroller is the ultralow-power STM32L432KC (manufactured by
STMicroelectronics, Geneva, Switzerland), based on the high-performance Arm Cortex M4
32-bit RISC core operating at frequencies up to 80 MHz, which integrates important features,
such as a 12-bit analog-to-digital converter (ADC), USB 2.0 full speed, low-power UART,
and two separate I2C channels [50]. Its features enable an efficient management of the data
reading and exchange processes without latency issues while ensuring ultra-low-power
capabilities, essential for a battery-powered device.

The management of peripherals is carried out through three data buses that have been
implemented to ensure communication with digital sensors, which occurs through the I2C
protocol (I2C BUS), communication with the BLE module using the UART serial protocol
(UART BUS), and, finally, the reading of raw data originating from analog sensors (ADC
BUS), respectively. The MAX30102 PPG sensor and the motion detection module MPU6050
together constitute the digital sensor system within the device.

The MAX30102 (manufactured by Analog Devices, Inc., Wilmington, MA, USA) is
an integrated sensor designed for acquiring the PPG waveform in reflection mode, which
is achieved through a photodetector and two light-emitting diodes operating in the red
(660 nm) and in the infrared spectrum (880 nm) [51]. The MAX30102 features a high-
resolution (up to 18 bit) low-noise internal ADC, complemented by an ambient light
rejection circuit. Both elements contribute to obtain high-quality PPG signals under typical
usage conditions, including situations with significant ambient light presence, as illustrated
in a previous work [36]. In our application, the MAX30102 has been configured to acquire
both wavelengths at a sampling frequency of 1 kHz with a 16-bit ADC resolution. This
sampling frequency is adequate for carrying out HRV analyses and PAT computation,
since such a high temporal resolution enables the detection of time delays in the order of
milliseconds between ECG and PPG waveforms.
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The second digital sensor integrated in the system is the MPU6050, which is a complete
inertial measurement unit, known for its solid performance in capturing acceleration and
angular velocity data [52]. This compact module includes both a three-axis accelerometer
and a three-axis gyroscope. In our device, the MPU6050 has been integrated to acquire
accurate acceleration signals along the three orthogonal axes. The sampling frequency of
this module has also been set to 1 kHz, in order to be the same as that of the PPG sensor
and to ensure the highest fidelity in data capture.

The analog sensors block connected to the ADC BUS line consists of ECG and GSR
sensors. As shown in the bottom right corner of Figure 1, each sensor can be divided into
two main parts: the electrodes, which allow the detection of electrical signals directly on
the fingers, and their respective conditioning circuits, which enable the high-quality signal
acquisition performed by the MCU’s internal ADC. In detail, the ECG signal is acquired
through three electrodes, and unlike all the other recorded signals, it requires the use of
fingers from both hands (specifically, the thumb of the left hand and the index and middle
fingers of the right hand): the first captures the electrical potential on the phalanx of the left
thumb (the same hand in which the device is intended to be worn); the second one serves
the same purpose but operates on the right hand index finger; finally, the third electrode is
placed in contact with the right hand middle finger and can optionally be used to activate
the right leg drive (RLD) circuit, which reduces electrical noise and enhances the quality of
the recorded ECG signal. With this spatial arrangement, the electrodes follow the geometry
of Einthoven’s Triangle, thus enabling the acquisition of a single-lead ECG (lead I) [53]. The
signal detected by the electrodes is then sent as input into the AD8232 chip, an integrated
analog front-end designed for the measurement of biopotentials, allowing the extraction,
amplification, and filtering of the small biopotentials detected by the electrodes [54]. The
AD8232 output is then connected to the ADC BUS line, where the high-quality ECG signals
are sampled.

The GSR signal is acquired through two electrodes placed in contact with two di-
ametrically opposite areas of the index finger of the left hand. From a methodological
perspective, the measurement of this signal relies on the volt–amperometric method for
acquiring skin resistance measurements [38]. By applying an electrical potential to one
electrode and measuring the remaining potential in the other one (i.e., the sensing electrode)
while also monitoring the current flowing through the electrodes, it becomes possible to
compute the resistance value provided by the epidermal tissue. The size of the electrodes
and the applied voltage on the finger limit the current density below 10 µA/cm2, the
threshold indicated by publication recommendations for electrodermal measurements to
avoid the possible sweat gland damage [38]. The signal detected by the sensing electrode is
then routed to a dedicated conditioning circuit that, through amplification and filtering
operations, improves the signal quality. Further details on the analog front-end circuit
for GSR acquisition can be found in our previous work [36]. Finally, the output of the
conditioning circuit is connected to the ADC BUS line. The acquisition of both analog signal
outputs from their respective conditioning circuits is carried out by the internal ADC of the
MCU, which has been configured to capture the signals at a resolution of 12 bits and at a
sampling frequency of 1 kHz. The synchronization of the acquired data is ensured by the
data reading routine, executed by the MCU cyclically every millisecond throughout the
duration of the measurements. This routine is executed whenever the MAX30102 completes
an acquisition of both PPG signals, as communicated by the latter through an interrupt
signal generated by interrupt (INT) pin. Upon the arrival of this signal, the MCU enters the
measurement reading routine, reading and storing in a buffer the ECG, GSR, and motion
data acquired in the same cycle, respectively, from the MCU internal converter and the
MPU6050 module.

The BLE communication protocol has been chosen to remotely transmit the recorded
biosignals, since it exhibits an excellent trade-off between transmission speed and energy
consumption and is among the most commonly used wireless communication protocols
within wearable technologies. For the implementation of BLE communication, the HM-18



Biosensors 2024, 14, 205 6 of 21

module based on Texas Instruments (Dallas, TX, USA) CC2640R2F IC has been utilized,
which is controlled by the MCU through the UART BUS line and, once paired, enables data
exchange with other BLE devices in proximity.

Finally, as depicted in the top right corner of Figure 1, the entire system is powered
by the battery management system (BMS), which primarily comprises a lithium battery
managed by a charge controller circuit, and together with LDO regulators provides the
voltage levels required by the rest of the components (i.e., MCU and sensors).

Beyond the architecture of the system, relevant considerations about the shape of the
device have been taken into account in order to allow the acquisition of high-resolution sig-
nals without compromising the compactness and adaptability of the product. A ring-shaped
device can satisfy both needs with the drawback of a slightly more complex assembly pro-
cedure, due to the use of flexible printed circuits.

Figure 2a shows both the top and bottom views of the PCB designed for the devel-
opment of our device. In detail, the rigid PCB (in green) houses all the above-described
components except for the MAX30102 sensor, which is instead integrated into the flexible
PCB (in yellow) to acquire the PPG signal on the underside of the finger.
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Figure 2. (a) Top and bottom views of the rigid PCB (in green) and flexible PCB (in yellow), with the
latter hosting the PPG MAX30102 sensor for acquiring the PPG waveform on the underside of the
finger. The ECG and GSR electrodes are highlighted with red and blue rectangles, respectively; the
fingers used for the acquisition of the ECG signals are indicated in parentheses. (b) Photographs of
the developed ring-shaped device, in its main view (left) and while being worn on the forefinger.
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The yellow areas in the top view of the rigid PCB (highlighted by the red squares)
represent the first two ECG electrodes, while the third electrode is indicated by the red
rectangle in the bottom view of the flexible PCB. The PCB also integrates two GSR electrodes,
denoted by the two blue rectangles in the top view. For carrying out the measurements, the
proper and good contact between skin and electrodes is an essential requirement. Therefore,
all the electrodes on the flexible PCB were fabricated using the electroless nickel immersion
gold (ENIG) surface finish process, which is a metal suitable for creating flexible electrodes.
Thanks to the gold surface, they behave very similarly to Ag/AgCl electrodes used as a
standard for GSR [38,55]. Furthermore, thanks to the ergonomic ring shape of the device,
these electrodes can well adhere to the finger, allowing a constant and continuous contact
over time. Moreover, in order to improve the ECG electrode usability, two hot air solder
leveling (HASL) finished pads are positioned in the forward part of the PCB, which also
avoid undesirable contacts between the fingers and other parts of the PCB. The potential
problem with the reliability of ECG measures is solved with the proper choice of electrode
positions. Similarly, from preliminary tests, it was observed that an 8 mm diameter allows
for an adequate contact between the skin and electrodes and reduces inter-subject variability.
Particular care was taken to avoid placing components on the top side of the PCB, in order
to leave the whole space for the Bluetooth module, and to position BLE antenna outside
the PCB in order to ensure the best data transmission performances. The whole circuit has
been carefully designed to reduce mutual interferences between analogue’s highly sensitive
traces and digital paths; for this reason, a multi-layer routing technique has been employed.
The PCB is thought to be produced in a factory with pick and place machines and reflow
soldering techniques only. In this way, it has been possible to shrink components with a
tenth of a millimeter tolerance. The design has been developed using the CAE software
Altium Designer 22 (San Diego, CA, USA).

In Figure 2b, the developed ring-shaped wearable device is shown, in its main view
(left panel) and while being worn on the forefinger (right panel). As shown, the main
rigid PCB encompasses all the electronic components except for the ones used for PPG
acquisition. In the figure, it is possible to note the switch to turn on the device, the Bluetooth
module used for wireless communications, the battery connector, the two circle-shaped ECG
electrodes on the upper part, and a magnetic two pole connector used for battery charging.
Compared to standard USB-C charging solutions, a magnetic connector significantly helps
ensuring the compactness on the device; however, a dedicated charger for the device is
needed. The black connectors were used for programming purposes only during testing
phases; hence, they are not an integral part of the circuit and can be easily removed after
the upload of the final version of the firmware. The yellow part is the flexible PCB, which
is realized with a 0.2 mm polyimide film, and performs three functions, i.e., guaranteeing a
proper wearing of the device on the finger (see Figure 2b), hosting the integrated circuit for
PPG acquisition in reflection mode, and providing conductive surfaces usable as electrodes
for ECG and GSR acquisitions.

2.2. Experimental Protocol

Six healthy subjects (three females, age 27.3 ± 2.9 years) were recruited and subjected
to two different measurement protocols designed to simulate various activities typically
performed in daily-life scenarios. Each protocol lasted for 12 min and consisted of two
phases differentiating between resting and stress conditions.

The first measurement protocol comprised a resting phase, during which the subject
was lying on a bed in a supine position (SUPINE) for 6 min, followed by a standing phase
(STAND) in which the subject stood upright for another 6 min.

The second measurement protocol required the subject to remain first seated on a
chair for 6 min, followed by a walking phase (WALK) lasting 6 min with the subject instead
moving at a normal walking speed. In order to standardize the walking speed, a sports
treadmill set with a speed of 4 km/h was utilized. This speed was also chosen to minimize
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as much as possible any small movements of the wearable device, given by the fact that it
might tend to slip during walking in case of imperfect adherence to the subject’s finger.

The device was worn by all subjects on the index finger of the left hand, where the
recordings of PPG (red and infrared), GSR, and movement signals were acquired. During
SUPINE, STAND, and SIT phases, the ECG signal was also acquired by requiring the
subjects to put their left-hand thumb and their index and middle fingers of the right hand
on the corresponding ECG electrodes, as previously described (see Figure 2a).

2.3. Data Processing and Time Series Extraction

An appositely developed MATLAB-based graphical user interface was designed for
managing the system and transferring the acquired data to a computer, also enabling
real-time visualization and preprocessing of the signals. All the operations described below,
including filtering, processing, and signal analysis, were carried out within the MATLAB
environment (MATLAB R2022b©, The MathWorks, Inc., Natick, MA, USA).

The raw ECG signal was processed using a zero-phase fourth-order bandpass But-
terworth digital filter, with lower and upper cutoff frequencies set at 0.1 Hz and 20 Hz,
respectively. Subsequently, a modified version of the Pan–Tompkins algorithm [56] was
employed to detect the R peaks in the ECG trace. The PPG signals (both red and infrared)
were processed using a zero-phase fourth-order lowpass Butterworth digital filter, with a
lower cutoff frequency of 8 Hz. A peak detection algorithm was implemented to identify
the maxima and minima of the two signals. Lastly, a zero-phase fourth-order lowpass
Butterworth digital filter with a cutoff frequency of 4 Hz was utilized to filter the GSR
signal. The acquired data underwent a visual inspection to ensure suitability for subsequent
processing and analysis. Accelerometer data were also visually analyzed to proactively
identify any motion artifacts that could potentially corrupt the relevant signals.

Afterwards, for each phase of the measurement protocol, according to the standard
short-term HRV analysis approach, a temporal sub-window was selected to obtain 300-beat-
long time series [29]. From the ECG signal, RR time series were extracted by considering
the temporal distance between two consecutive R peaks. Similarly, PP time series were
extracted by considering the temporal distance between two consecutive minima of the
PPG waveform, for both the red (PPred) and infrared (PPir) wavelengths. Starting from the
minimum and maximum values extracted from the red and infrared PPG signals, it was
possible to calculate the SpO2 values using the same methodology (i.e., empirical model
and calibration process) implemented in our previous work [36] to which the readers can
refer to for further details.

From the literature, it is well known that the infrared PPG signal exhibits better
resolution compared to the red PPG one due to the ability of the infrared wavelengths to
penetrate deeper into human tissues [57,58]. This is reflected in a more reliable detection
of the minima of the PPG waveform, resulting in the extraction of PP time series that
are more similar to the RR time series. In this work, this aspect was investigated using
the Bland–Altman analysis [59], a useful tool for evaluating the agreement between two
measurements. Specifically, the agreement coefficient between the PPred and PPir time
series, as well as between each of them and the RR time series, was obtained for each
subject and acquisition phases by using the following formula:

Agreement =
1.96·std(x1 − x2)

mean((x1 + x2)/2)
(1)

where x1 and x2 represent the two compared time series. Low and closer to zero values for
this index are indicative of a good agreement between a measurement under investigation
and a well-established reference gold standard. The agreement measures between PPir and
PPred time series were computed for all the four phases (i.e., SUPINE, STAND, SIT, and
WALK phases). On the other hand, the agreement between RR and PP time series was
computed only for SUPINE, STAND, and SIT phases and not for the WALK phase, since
the ECG signal was not acquired in this last part of the experimental protocol.
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In light of the worse quality of red PPG signals, PPred time series have been discarded
for further cardiovascular dynamic analysis. Similarly, the PAT time series, calculated
by considering the time interval between the R-peak of the ECG and the peak of the
PPG waveform within the same cardiac cycle [33], were obtained by using the infrared
PPG signal.

The GSR time series were obtained by sampling the GSR signal at the peaks of the
infrared PPG waveforms, and the analyses were focused on calculating the mean and
standard deviation of the obtained GSR time series. Finally, an estimation of respiratory
rate was carried out from the PPG signals, by applying a bandpass filter to the infrared
PPG waveforms, based on the knowledge that respiratory variability is typically contained
in the high-frequency (HF) band (0.15–0.4 Hz) [37,60]. The respiratory time series were
extracted by sampling the reconstructed breathing signal at the peaks of the infrared PPG
signal, and then estimating the power spectral density through the weighted covariance
method, thereby identifying the respiratory rate. Further details on the used algorithms
are reported in a previous work [37], in which the respiratory parameters computed from
PPG-reconstructed waveforms were tested against reference breathing signals to analyze
cardiorespiratory interactions.

2.4. HRV and PAT Analyses

The RR, PPir, and PAT time series were analyzed to extract indices reflecting physio-
logical changes in response to the different phases of the acquisition protocol.

The classical HRV time-domain indices were calculated, i.e., the average (MEAN),
standard deviation of the normal-to-normal intervals (SDNN), and root mean square of
successive differences between normal heartbeats (RMSSD) on RR and PPir time series (in
the latter case, we refer to pulse rate variability, PRV) [27]. Analogously, the time-domain
indices of MEAN and standard deviation (STD) were computed on the PAT time series.

Before performing frequency-domain and information-theoretic analysis, physiologi-
cal time series were preprocessed applying a high-pass autoregressive filter (with a cutoff
frequency of 0.0156 Hz) and normalizing the filtered series to zero mean and unit variance.
The non-parametric Blackman–Tukey method (Hamming window, bandwidth of 0.04 Hz)
was applied to obtain the power spectrum for each subject and condition of RR, PPir, and
PAT time series [61]. The low-frequency (LF) and HF power contents were evaluated by
integrating the distribution in the ranges of 0.04–0.15 Hz and 0.15–0.4 Hz, respectively [27].
These power values are generally used to obtain the ratio between the LF and HF contents.
Although still debated, this index gives insight into the sympathovagal balance in HRV
analysis [27]. Conversely, its role in the analysis of PAT variability is not clear and seems to
be unrelated to the ANS regulatory activity [62].

Finally, the conditional entropy (CE) measure was estimated to characterize the time
series complexity in terms of its irregularity and unpredictability, quantifying the residual
uncertainty about the current state of the process remaining when past dynamics are
known [63]. Specifically, this index decreases as the predictability of the series increases
and reaches zero for fully predictable dynamics. Under the hypothesis of Gaussianity and
stationarity for the process X, this index was computed as follows:

CE =
1
2

ln
(

2πeσ̂2
U

)
(2)

where σ̂2
U is the estimated variance of the prediction error U of the linear regression

describing the evolution of the process over time, i.e., Xn = ∑m
k=1 akXn−k + Un with ak the

regression coefficient related to lag k. In this work, the order of the AR model used to
the describe the physiological processes was set to m = 2, and the ordinary least squares
method [64] was used to identify the variance σ̂2

U starting from the regression coefficients.
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2.5. Statistical Analysis

In this work, a statistical analysis was performed to assess the feasibility of using
the above-described indices to discriminate changes between the different physiological
conditions. Bootstrap data analysis was employed to assess the statistical significance of
the results, generating a distribution of values for each subject, phase acquisition protocol,
and feature computed on RR, PPir, and PAT time series. Specifically, considering what is
reported in the literature about the ultra-short-term analysis [65–67], 100 data windows of
120 samples each were randomly extracted from the original 300-point time series, and then
time, frequency, and information domain indices were computed for each of the surrogate
data. This approach allows to obtain for each subject a distribution of the evaluated index
in the different acquisition phases, thus becoming statistically comparable. Specifically, a
parametric Student t-test for unpaired data was applied to compare the distributions of the
indices evaluated on surrogates obtained in the SUPINE and STAND positions, as well as
in the SIT and WALK conditions (in this case, taking into account only the PPir time series
indices). For all the comparisons, the significance level was set at p < 0.05.

3. Results

In this section, the results of the acquisitions carried out using the ring-shaped device
during the measurement protocols are reported. Figure 3 shows the PPG waveforms (both
red and infrared) and the ECG, GSR, and motion (i.e., spatial acceleration along) signals
acquired by the device during the SUPINE–STAND measurement protocol.
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Figure 3. Exemplary signals acquired on a subject during the first measurement protocol: (a) PPG
(both red and infrared) and (b) ECG signals in a 10 s time window and (c) GSR and (d) motion signals
over the entire duration of the protocol. In (a,b), red crosses indicate PPG maxima/minima and ECG
R peaks, respectively.

In particular, Figure 3a,b show the detail of a 10 s acquisition window, allowing the
visualization and qualitative appreciation of the high fidelity of the acquired biosignals.
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Both PPG waveforms exhibit the typical morphology reported in the literature [17,20], with
the dicrotic notch clearly visible; the end of the systolic phase and of the diastolic phase
(indicated by the maximum and the minimum of the PPG signal, respectively) are marked
by red crosses. It is noteworthy that the PPG infrared signal exhibits a better quality, since
the infrared wavelengths penetrate more deeply into the body skin and tissues [57,58], as
previously discussed. Similarly, the ECG signal appears stable and well defined, with the
R peaks (also marked by red crosses in Figure 3b) easily distinct from other points in the
QRS complex.

Figure 3c,d depict exemplary waveforms of the skin conductance (i.e., GSR) and
motion signals over the entire duration of the first measurement protocol, which lasts
approximately 12 min. The GSR signal shows a slight decrease over time, confirming
that the subject was in a resting state during the first phase of the measurement protocol.
Furthermore, the trend and values of the GSR signal on the fingers align with those found
in the reference literature [38,68] for similar physiological conditions. The variations
in accelerometric signals in the x, y, and z axes (Figure 3d) allow the identification of
the subject’s position and of sudden voluntary or involuntary movements, substantially
contributing to the obtainment of further information about the subject’s motor activity
during the measurement protocol. Indeed, an abrupt variation in the accelerometric data
can be observed, indicating the actual change in the subject’s position from SUPINE to
STAND, which occurs precisely at the halfway point of the first protocol. The GSR signal
(Figure 3c) also identifies this transition, as evidenced by a sudden increase in sweating
corresponding to the phase change. It is worth underlining that the visualization of all
the biosignals acquired by the system is of great assistance in highlighting capabilities
and functionalities of our device, especially considering that all these traces are acquired
synchronously on the same body district.

Figure 4 shows the boxplot distributions of the agreement index of the Bland–Altman
method computed between RR and PP time series, respectively, extracted from the ECG
trace and the two PPG signals. These analyses were conducted to assess the reliability of
the interbeat interval time series extracted from the two PPG traces, compared to ECG
reference. Furthermore, this comparison is also crucial to assess the reliability of the time
series during the different phases of the protocol, in order to understand whether motor
activity might lead to the corruption of the computed time series values.
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(a) PPir and PPred, (b) PPred and RR, and (c) PPir and RR, evaluated across the six subjects during the
four phases (i.e., SUPINE, STAND, SIT, and WALK) of the two measurement protocols.

The agreement between PPir and PPred extracted during the two measurement proto-
cols is shown in Figure 4a. A very good agreement is observed for almost all subjects in
phases without motor activity (i.e., SUPINE, STAND, and SIT phases), with values ranging
between 0 and 0.2, except for the subject 2 during the SUPINE phase. Conversely, in the
presence of motor activity, there is a noticeable deterioration in the agreement, with an
average value of 0.35 and an increased dispersion of values among subjects. This finding is
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expected, as physical activity leads to worsened measurement conditions, primarily due
to the presence of motion artifacts resulting in a reduced quality of the acquired physio-
logical signals, with the PPG signal being particularly affected. This leads us to consider
the physiological indices extracted from PPG signals, e.g., blood oxygen saturation and
respiration rate, to be less reliable during this phase. Figure 4b,c show the agreements
obtained by, respectively, comparing PPred and PPir with RR taken as the reference. Even
if similar distributions can be observed across the acquisition phases, it is interesting to
note how agreement values range between 0 and 0.2 for PPred and are halved for PPir, thus
confirming once again the overall better quality of the infrared PPG signals.

Starting from the above-described results on the quality of the acquired signals, the
subsequent analyses were focused on the extraction of most physiological indices from
the PPir time series only. The evaluation of the blood oxygenation makes an exception,
requiring both PPG waveforms.

Table 2 presents the physiological indices (expressed as mean value ± standard devia-
tion) extracted in the time, frequency, and information domains from 300-point PPir, RR,
and PAT time series, obtained from the six subjects during the two measurement protocols.
The reported values during the SUPINE, STAND, and SIT phases, and for some of the
time series even during the WALK phase, are consistently in line with what is typically
reported in the literature, both for resting situations that are followed by the transition to
more stressful physiological conditions [68–70]. In detail, the heart rate is lower in resting
phases and increases during the following two physiological conditions. This response
reflects the level of activation of the ANS as also indicated by an average decrease in the
SDNN and RMSSD indices with STAND, and contrarily an increase during SIT (except for
RMSSDPPir). Moreover, as expected, the LF/HF ratio increases during the other phases of
the protocol if compared to REST. CE values are lower during the STAND phase, indicating
higher regularity and predictability of cardiac dynamics.

Table 2. Results of short-term analysis of PRV, HRV, PAT, GSR, blood oxygen saturation level, and
respiration rate (RESP), during the different phases of the measurement protocol and averaged across
the six subjects. The values are expressed as mean ± standard deviation.

Measure/Phase SUPINE STAND SIT WALK

HRPpir [bpm] 73 ± 12 87 ± 16 77 ± 8 100 ± 10
SDNNPpir [ms] 55.55 ± 20.94 51.10 ± 21.26 58.65 ± 25.05 85.22 ± 42.08
RMSSDPpir [ms] 57.47 ± 37.57 38.46 ± 17.95 47.16 ± 25.19 109.94 ± 72.57

LF/HFPpir 0.68 ± 0.30 2.12 ± 1.94 1.30 ± 0.44 1.17 ± 1.10
CEPpir [nats] 1.20 ± 0.12 0.94 ± 0.31 1.07 ± 0.10 1.27 ± 0.23
HRRR [bpm] 74 ± 12 87 ± 16 77 ± 8 -

SDNNRR [ms] 51.53 ± 20.14 48.68 ± 21.91 59.48 ± 24.96 -
RMSSDRR [ms] 44.55 ± 19.79 31.31 ± 21.63 50.14 ± 26.06 -

LF/HFRR 1.05 ± 0.54 3.41 ± 3.55 1.46 ± 0.93 -
CERR 1.13 ± 0.12 0.76 ± 0.34 1.08 ± 0.21 -

MEANPAT [ms] 372.60 ± 51.01 349.92 ± 26.47 396.31 ± 60.71 -
STDPAT [ms] 14.49 ± 9.26 17.25 ± 9.57 19.66 ± 12.38 -
LF/HFPAT 0.39 ± 0.14 1.03 ± 0.44 1.08 ± 0.24 -

CEPAT [nats] 3.92 ± 0.80 4.15 ± 0.51 4.07 ± 0.59 -
GSR [µS] 0.80 ± 0.21 0.86 ± 0.14 1.11 ± 0.39 3.17 ± 1.04
SpO2 [%] 97.8 ± 1.6 98.7 ± 1.7 99.9 ± 0.19 88.05 ± 21.11

RESP [Hz] 0.27 ± 0.04 0.23 ± 0.06 0.25 ± 0.07 0.32 ± 0.03

All these results reflect the well-known prevalence of the parasympathetic branch
activity in a resting condition and the sympathetic activation occurring during stress states.
In general, different considerations can be made for the measurements obtained during the
WALK phase. Indeed, the consistent presence of motion artifacts leads to a degradation of
the PPG signal and, consequently, of the PPir time series. This results in a loss of reliability
in the extracted physiological indices, since it is possible to observe an unexpected increase
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in SDNN, RMSSD, and LF/HF values, accompanied by an increase in CE, indicating an
augmentation in the complexity of the PPir time series. The worsening of the quality of the
PPG waveform during WALK is also evidenced by a relevant increase in the variability of
SDNN and RMSSD across subjects.

The achieved results on the PAT time series are also supported by previous studies [62]
that reported a decrease in the time of arrival of the pressure wave at the body periphery
and an increase in its variability during physical stress. Contrarily, no supporting results
have been achieved in the literature about the reported findings in the frequency domain,
which show an increase in the LF/HF ratio during STAND and SIT.

The modification in the ANS activity is also confirmed by the GSR values computed
from the GSR time series, which are lower during resting conditions and higher during
stress, especially during the transition from SIT to WALK when the GSR triples its value.
Similarly, respiration rate particularly increases during WALK, as expected. The SpO2 index
is in line with the expected values (97–99%) during resting conditions, while the presence
of artifacts degrades the PPG signal up to severely limiting its use for calculating blood
oxygenation levels during non-static measurement conditions, given that the agreement
between the two PPG signals worsens excessively (cf. Figure 4a).

Figures 5–7 depict the results of the bootstrap analysis performed on the time, fre-
quency, and information domains indices computed for the PPir, RR and PAT time series,
evaluated individually for each subject. Statistical analyses were performed on the distri-
butions obtained in the SUPINE and STAND positions, as well as SIT and WALK positions
for the PPir time series, in order to prove on a single-subject basis the capability of using
the device for discriminating physiological changes.

The results of the analyses conducted on PPir during the SUPINE and STAND phases
are shown in Figure 5a. Both time-domain indices (i.e., MEAN and SDNN) decrease
significantly from the first to the second phase for all the subjects except the fifth, showing
instead a significant increase in SDNN. Frequency analysis reveals that in all subjects
a statistically significant increase in the LF/HF ratio is detected. Finally, CE measures
undergo a significant decrease for all subjects except the first, for whom a significant
increase is observed from the SUPINE to the STAND phase. In Figure 5b, the results
obtained for the same time series during the SIT and WALK phases are reported. In this
case, a significant decrease in MEAN values is observed for all subjects as well, while a
statistical increase in SDNN values is observed for all subjects except the fifth, showing
instead a significant decrease. The LF/HF ratio significantly decreases for four subjects,
while a statistical increase is observed for the other two. Finally, CE significantly increases
in all subjects except the first, for whom a statistical decrease is instead reported.

The results of the analyses conducted on the RR time series during SUPINE and
STAND are depicted in Figure 6. They confirm most of the findings obtained from the
analysis of the PPir time series, as nearly identical trends in the indices are reported
compared to those highlighted with regard to Figure 5a. Indeed, also in this case, both
MEAN and SDNN undergo a significant decrease for all subjects, with the only difference
being that, in this instance, no statistical difference is detected in the SDNN values for the
second subject between the SUPINE and STAND phases. The trend is also confirmed for
the LF/HF ratio, where a significant increase is once again observed for all subjects. Finally,
CE shows a statistically significant decrease in all subjects.

Finally, the same analyses were conducted on the PAT time series, yielding results
highly dependent on the subject (as depicted in Figure 7)). Specifically, significant increase
and decrease in MEAN are observed for two and three subjects, respectively, while no
difference is detected for the fourth subject. Similarly, CE measures indicate an increase
between phases for three subjects and a decrease for the other three. The results of the
frequency analysis, on the other hand, show a significant increase in the LF/HF ratio values
for all subjects.
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Figure 5. Results of the PPir time series analysis in time, frequency, and information domains of
MEAN, SDNN, LF/HF, and CE evaluated on the six subjects during (a) the SUPINE–STAND and
(b) the SIT–WALK measurement protocols. Statistical analyses were performed between the two
different phases considering one hundred sub-windows of 120 points randomly extracted from the
PPir time series. Statistical test: Student’s t-test, **, p < 0.001, SUPINE vs. STAND.
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evaluated on the six subjects during the SUPINE–STAND measurement protocol. Statistical analyses
were performed considering one hundred sub-windows of 120 points randomly extracted from the
RR time series. Statistical test: Student’s t-test; *, p < 0.05, **, p < 0.001, SUPINE vs. STAND.
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Figure 7. Results of the analysis of PAT time series in time, frequency, and information domains,
evaluated on the six subjects during the SUPINE–STAND measurement protocol. Statistical analyses
were performed considering one hundred sub-windows of 120 points randomly extracted from the
starting PAT time series. Statistical test: Student’s t-test; *, p < 0.05, **, p < 0.001, SUPINE vs. STAND.
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4. Discussion

The aim of this work is to present a novel multiparametric wearable device that
enables multiparametric acquisition of high-quality biosignals. The analysis of multiple
physiological indices extracted from the various biosignals allows to increase knowledge
about the physiological response of the body during different conditions of physical activity
typically experienced in daily routines.

The design of the electronic board was made with a particular focus on signal integrity,
by splitting the analog and digital parts into separate sections, since power and two ground
planes connected in a star configuration are used. The position of the BLE antenna was also
studied for preventing electromagnetic interferences (EMI), which could potentially affect
other parts of the circuit. Along with the careful selection of integrated biomedical sensors,
this led to the development of a very compact wearable device thanks to the reduced
weight and size, without compromising electrical performances [71]. The device allows
the acquisition of key physiological parameters directly from the index finger, providing
clear advantages in terms of usability and user comfort. In particular, the sensors (i.e., the
ECG and GSR electrodes) and the inertial module have been suitably placed in strategic
points on the fingers of the hand (Figure 2), enabling the acquisition of the biosignals in a
simple and comfortable manner. Furthermore, the system architecture (Figure 1) has been
appositely designed to enable the synchronous high-resolution acquisition of the recorded
biosignals (Figure 3) at a sampling frequency of 1 kHz. To the best of our knowledge,
such a higher sampling rate, together with the synchronous acquisition of GSR signal,
constitutes the main advantage of our device compared to the currently available wearable
technologies (Table 1).

The results obtained from the agreement measurements between cardiovascular sig-
nals (i.e., PPG and ECG ones) have allowed considering the PP time series as surrogates
for the RR ones during stationary physiological states (Figure 4b,c). This is a remarkably
interesting result, given that it is well known in the literature that the ECG signal is more
challenging to acquire due to its measurement methodology which, in the case of wearable
devices like ours, requires the use of both hands throughout the entire measurement dura-
tion [46,48]. This also paves the way for the deployment of the PPG signal as a surrogate
for ECG in situations where it is impractical to require the user to engage both hands
during recordings.

The findings of the short-term analyses summarized in Table 2 highlight the feasibility
of employing the indices extracted from our device to detect the physiological response of
the body following a postural change even using less amounts of data (i.e., considering
120-point time windows). Moreover, the single-subject analysis performed using combined
bootstrap method with ultra-short-term HRV indices shows how the results achieved using
PP and RR time series are in agreement and almost consistent among subjects. Indeed, the
results of PRV (Figure 5a) and HRV (Figure 6) analyses, evaluated during the SUPINE–
STAND protocol, agree with the widely documented evidence in the literature regarding
the variations in the physiological indices between rest and stress conditions [24,65,72–74].
Specifically, a decrease in MEAN and SDNN and an increase in LF/HF and CE can be
observed, trends which have been widely put in relation to a shift in the sympathovagal
balance in favor of the sympathetic branch, which is typical during transitions from resting
to stress physiological conditions [75,76]. The activity of the SNS also causes an augmented
activity of sweat glands, resulting in an increase in the epidermal sweat: this physiological
mechanism is detected by the GSR signal, whose values are higher during stress conditions
(Table 2). Additionally, it is well established that the increase in the sympathetic activity
caused by orthostatic stress leads to a reduction in cardiac dynamics, as evidenced by
the significant decrease in CE from the rest to stress phase [32,77,78]. Regarding the
ultra-short-term PRV analysis conducted during the SIT–WALK protocol (Figure 5b), it
is possible to observe the same results highlighted by the indices extracted for the short-
term analysis (Table 2). A decrease in the MEAN index is reported in all subjects, in line
with typical trends of this parameter during stress situations. On the other hand, there
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are unexpected variations in SDNN and LF/HF, which show different trends between
subjects. Furthermore, there is a significant increase in CE in all subjects, indicating an
increase in the complexity of the PP time series during the WALK phase. The analyses
conducted on the PAT time series (Figure 7) report the average values of the extracted
indices that align with those reported in the literature for healthy subjects in both resting and
orthostatic stress conditions [35,62,70]. Lastly, our findings highlight a strong deterioration
of the agreement levels between the two PPG signals, especially during the WALK phase
(Figure 4a), confirming the well-known fact that the PPG signal is overly sensitive to motion
artifacts typically encountered during physical activity.

However, on the one hand, these results underscore the potential of the multipara-
metric acquisition capabilities of our device, and at the same time, they highlight the
well-known limitations of the reliability of PPG signals extracted during non-stationary
conditions like walk (Figure 4a) [79–81], which entails the deterioration of the signal and
consequently of the extracted physiological indices, as previously discussed. These findings
strongly encourage the future implementation of motion artifact correction algorithms
to allow for a more accurate detection of physiological parameters even during physical
activities [40,41]. In this regard, the embedded inertial module, which has been integrated
into the device to enable the detection of voluntary and involuntary movements, is fun-
damental for providing useful data for a future use by artifact correction algorithms. In
this way, it will be possible to automatically correct the noisy PPG signal by exploiting
the accelerometer data, enhancing the reliability of physiological indices extracted during
non-stationary conditions.

5. Conclusions

In this work, a novel wearable biomedical device has been presented and discussed,
enabling the synchronous acquisition of PPG, ECG, GSR, and motion signals directly
on the fingers. The features of the developed device, including its compact size, user-
friendly simplicity, and the capability to continuously and non-invasively acquire key
physiological parameters, along with the promising results from the first measurement
campaign, position it as a potential tool for monitoring individuals during their daily
routines. Indeed, preliminary measurement results obtained during various physical
activity conditions demonstrated that our wearable device can be successfully employed to
monitor and discriminate among different physiological states. The combined analysis of
cardiovascular variability indices in the time, frequency, and information domains and of
the acquired GSR signals allowed the assessment of the autonomic tone and especially the
activation of the sympathetic branch of ANS, thereby providing insights into individual
emotional arousal.

Furthermore, the comparison of PRV indices with HRV indices, both extracted from
the wearable device, yielded promising results that suggest the validation of PRV indices
under stationary physical conditions (i.e., in the absence of motor activity). Our results
also confirmed the limitations, widely acknowledged in the literature, regarding the degra-
dation of the PPG signal in the presence of motion artifacts. This finding encourages
the implementation of algorithms for the removal and correction of motion artifacts in
situations involving continuous physical activity.

Future developments will have to primarily focus on a complete validation of the
system using reference patient simulator devices. Concurrently, a future step will be the
optimization of the device in terms of weight, size, and shape (e.g., using a microcontroller
with embedded Bluetooth module). Additionally, the use of different integrated sensor and
power supply technologies will be explored, to further enhance the device performance
in terms of signal resolution and energy efficiency (e.g., implementing inductive battery
charging) [82–84]. Additional measurement campaigns should also be performed, primarily
aimed at detecting the physiological states in a larger number of subjects under different
physical activity conditions. Another important future development should involve the
implementation of the signal processing algorithms directly within the firmware of the
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device, enabling the real-time computation and extraction of the physiological indices.
Finally, the implementation of motion artifact correction algorithms would allow the use of
the device in situations involving motor activities, i.e., for fitness applications.
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