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1. Evaluation of the electric field regime for nonlinear electrophoretic velocity: 

includes Table S1  

To classify the velocity dependence of nonlinear electrophoresis (EPNL) with electric field magnitude, and to 

identify the appropriate field regime of the nonlinear electrophoretic velocity, the three dimensionless parameters 

(𝛽, 𝐷𝑢 and 𝑃𝑒) utilized are expressed as follows [1–3] : 

𝛽 =
𝐸𝑎

𝜑
                                        (S1) 

𝐷𝑢 =
𝐾𝜎

𝐾𝑚𝑎
                                                                                  (S2) 

where 𝐸 denotes the applied electric field magnitude, a is the particle radius, 𝜑  is the thermal voltage, 𝐾𝜎is surface 

conductivity, 𝐾𝑚 is bulk conductivity, 𝑣𝐸𝑃,𝐿 and  𝑣𝐸𝑃,𝑁𝐿 represent the linear and nonlinear electrophoretic particle 

velocity, respectively, and 𝐷 is the diffusion coefficient. 

 

Table S1. Values of the parameters used to analyze the moderate field regime, cubic dependence (𝐸3).  

Separation 

ID 
Cell ID – Label color  Du Pe 

E used for parameters 

estimation (V/cm) 

Dependence of 

nonlinear EP with E 

1 

E. coli (ATCC 11775) - 

Green 0.3 0.09 0.1 100 Moderate (E3) 

S. cerevisiae (ATCC 

9080) - Red 0.9 0.03 0.4 50 Moderate (E3) 

2 

B. subtilis (ATCC 6051) 

- Green 0.7 0.05 0.3 100 Moderate (E3) 

B. cereus (ATCC 14579) 

- Red 0.5 0.10 0.3 100 Moderate (E3) 

3 

S. cerevisiae (ATCC 

9763) - Green 0.8 0.02 0.3 50 Moderate (E3) 

S. cerevisiae (ATCC 

9080) - Red 0.9 0.03 0.4 50 Moderate (E3) 

2. Analytical curve fitting of the cubic dependence of EPNL velocity on E:  includes 

Table S2 and Figure S1 

Under the SY model [2,3], a dielectric particle, whose zeta potential (negative) is lower in absolute value than the 

absolute value of the zeta potential of the channel wall (negative), will travel in the direction of an applied electric 

field (𝐄) when suspended in an electrolyte solution. In such a case, the magnitude of the particle velocity presents 

two types of dependencies with the electric field. One dependency is based on electric field magnitude (𝐸), related 

to electroosmotic (EO) flow and electrophoresis (EP), and the other dependency is linked to |∇𝐸2|, related to 

dielectrophoresis (DEP). For the case of EP, corrections over the classic linear dependence lead to a nonlinear 

response whose power depends on the particle-solution interface properties [2,3]. Each response can be associated 

to a mobility (𝜇), such that: 

𝑣𝑝 = (𝜇𝐸𝑂 + 𝜇𝐸𝑃,𝐿)𝐸 + 𝜇𝐸𝑃,𝑁𝐿
(3)

𝐸3 + 𝜇𝐷𝐸𝑃|∇𝐸2|       (S3) 

where the nonlinear term was proven to be cubic in the previous section for every cell species analyzed in this 
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work. 

To obtain the value of the mobility associated with nonlinear electrophoretic (EP) velocity, particle tracking 

velocimetry (PTV) experiments were performed over channels with no insulating structures (flat channels) 

subjected to DC electric fields ranging from 25-1200 V/cm, enabling the construction of their speed profile as 

function of 𝐸 (as shown in Figure S1). Such channels generate in principle a constant electric field profile, resulting 

in |∇𝐸2| = 0, and in the annulation of the DEP term in eqn. (S3). 

Now, since the nonlinear electrophoretic response is obtained when expanding particle speed in powers of 𝐸 or 

in powers of 𝐷𝑢, it is possible to use the associated coefficients of these corrections as fitting parameters to 

experimental data [2,3]. In this way, the theoretical particle velocity profile can be obtained using a regression 

taking only linear and cubic terms. Let 𝑣𝑖 be a vector that contains the information of the particle velocity associated 

with the electric field magnitude domain 𝐸𝑖; 𝐸𝑖𝑗 the design matrix in the electric field domain; 𝜇𝑗 the parameter 

vector that contains the information of the mobilities; and 𝜀𝑖 an error vector; then: 

𝑣𝑖 = 𝐸𝑖𝑗𝜇𝑗 + 𝜀𝑖            (S4) 

 Let 𝑝 be the total number of points in the experimental velocity profile. For the present problem, (𝜇𝐸𝑂 + 𝜇𝐸𝑃,𝐿) 

and 𝜇𝐸𝑃,𝑁𝐿
(3)

 are to be used as fitting parameters such that eqn. (S4) can be rewritten as: 

[

𝑣1

⋮
𝑣𝑝

] = [
𝐸1 𝐸1

3

⋮ ⋮
𝐸𝑝 𝐸𝑝

3
] [

(𝜇𝐸𝑂 + 𝜇𝐸𝑃,𝐿)

𝜇𝐸𝑃,𝑁𝐿
(3) ] + [

𝜀1

⋮
𝜀𝑝

]        (S5) 

 Then, with the use of the least-squares estimation, the predicted value of the mobilities (𝜇̂𝑗) can be obtained 

with: 

𝜇̂𝑗 = (𝐸𝑖𝑗
T𝐸𝑖𝑗)

−1
𝐸𝑖𝑗

T𝑣𝑖           (S6) 

and, 

𝑣𝑖 = 𝐸𝑖𝑗𝜇̂𝑗            (S7) 

with 𝑣𝑖 being the predicted value of particle speed [5]. 

 The deviation of such estimation is obtained by means of the variance-covariance matrix of the parameters in 

𝜇̂𝑗, whose definition is: 

𝑉𝑎𝑟(𝜇̂𝑗) = 𝜎2(𝐸𝑖𝑗
T𝐸𝑖𝑗)

−1
= (𝑣𝑖 − 𝐸𝑖𝑗𝜇̂𝑗)

T
(𝑣𝑖 − 𝐸𝑖𝑗𝜇̂𝑗)

(𝐸𝑖𝑗
T𝐸𝑖𝑗)

−1

𝑖−2
      (S8) 

 The 11 term in such matrix provides the variance of the mobility associated with the linear response, and the 

𝑗𝑗 term provides the variance of the mobility associated with the nonlinear response [5]. 

 The metric used to determine the accuracy of the regression model and its capability to make predictions within 

the electric field domain is the coefficient of determination 𝑅2, defined as: 

𝑅2 = 1 −
∑ (𝑣𝑖−𝐸𝑖𝑗𝜇̂𝑗)

2𝑝
𝑖=1

∑ (𝑣𝑖−𝑣̅)2𝑝
𝑖=1

           (S9) 

in which 𝑣̅ is the mean value of the particle velocity profile [5]. 

 This curve fitting method is also used to determine the mobility associated with linear EP only differing in the 

amount of fitting parameters and in the 𝐸 domain taken to perform it. Now, since 𝜇𝐸𝑂 is coupled in the linear 

response, current monitoring experiments were also done in flat channels resulting in 𝜇𝐸𝑂 ≈ 4.7 ×

10−8 m2V−1s−1. With this, it is possible to solve for 𝜇𝐸𝑃,𝐿 when the curve fitting is complete.   

 This method was applied to five cell types used in this study. The estimation of their mobilities of linear and 

nonlinear EP, their respective standard deviations and coefficients of determination are contained in Table S2. 

Their curve fittings are illustrated in Figure S1. It is important to note that the values of 𝜇𝐸𝑃,𝑁𝐿
(3)

 are constant and 

not a function of electric field under the evaluated operating conditions (Table S1),which are in agreement with 
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the trends provided by a recent study by Cobos et. al on EPNL phenomena for a spherical colloidal particle [1]. 

 

Table S2. Electrokinetic mobilities obtained with direct curve fitting of theoretical cubic dependence of cell 

velocity with electric field magnitude and fitting metrics. 

Cell ID 𝝁𝑬𝑷,𝑳 × 𝟏𝟎−𝟖 (𝐦𝟐𝐕−𝟏𝐬−𝟏) 𝝁𝑬𝑷,𝑵𝑳
(𝟑)

× 𝟏𝟎−𝟏𝟕 (𝐦𝟒𝐕−𝟑𝐬−𝟏) 𝑹𝟐 

E. coli (ATCC 11775) -1.97 ± 0.10  -0.21 ± 0.01 0.899 

S. cerevisiae (ATCC 9763)  -2.26 ± 0.30  -0.76 ± 0.17 0.983 

B. subtilis(ATCC 6051) -2.34 ± 0.46 -1.72 ± 0.19 0.965 

B. cereus (ATCC 14579) -3.59 ± 0.24 -0.39 ± 0.01 0.965 

S. cerevisiae (ATCC 9080) -2.58 ± 0.37 -2.41 ± 0.41 0.911 
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Figure S1. Curve fitting of the experimental velocity profile for the cell species shown in Table S2 as a function of the electric 

field magnitude in the SY cubic model. The analyses are illustrated for (A) E. coli (ATCC 11775), (B) S. cerevisiae (ATCC 

9763), (C) B. subtilis (ATCC 6051), (D) B. cereus (ATCC 14579), and (E) S. cerevisiae (ATCC 9080). 
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3. Information on the computational model: includes Figure S2, and Table S3  

A 2D computational model built using COMSOL Multiphysics was considered to be an appropriate choice for the 

modeling [4], mainly because the changes in the electric field distribution along the channel depth can be ignored. 

The Electric Currents module within COMSOL Multiphysics was utilized for estimating the electric field 

distribution across the iEK device and for solving the Laplace equation. The relative permittivity and conductivity 

of the fluid suspending medium (r) were set to 78.4 and 4.07 x 10-3 S/m (40.7 µS/cm), respectively. Figure S2 

depicts the different boundary conditions and domains used, and Table S3 lists these conditions as equations. 

Maximum and minimum element sizes for free triangular meshes were 130 µm and 0.261 µm, respectively. 

 
Figure S2. Representation of the domains and boundaries used in the computational model. Each colored area shows each of 

the different domains employed and the red dotted boxes indicate the boundaries used. The gray color illustrates the PDMS 

domain, the blue color represents the suspending medium field, and the yellow color indicates the platinum electrodes. The 

labels A, B, C, and D indicate electrodes used in the EK injection and separation process. The numbers 1, 2, and 3 represent 

the boundaries listed in Table S3. Boundary 1 represents the outer PDMS surface; boundary 2 describes the three reservoirs 

where electric potentials are applied: A, B, and C. Boundary 3 is the ground electrode D. All the other channel dimensions are 

shown in Figure 1 in the manuscript. 

 

Table S3. Information about the Domain and Boundary conditions defined in the model. Domains are depicted in Figure S2 

and the labels A, B, C, and D, are used to indicate the electrodes. Details on the voltages used for the EK injection and 

separation process are reported in Table 2 of the manuscript.   

Domain conditions 

Domain type Element region & color Definition* 

Current conservation 

 

PDMS domain (channel walls and insulating posts), 

gray color ∇ ∙ 𝐉 = −∇ ∙ ((𝜎 + 𝜀0𝜀𝑟
∂

∂t
) 𝐄); 

where 𝐄 = −∇𝑉 
Suspending medium domain, blue color 

Platinum electrodes domain, yellow color 

Initial values 

PDMS domain (channel walls and insulating posts), 

gray color 
𝑉0 = 0 

Suspending medium domain, blue color 

Platinum electrodes domain, yellow color 

Boundary conditions 

Boundary condition type Element number Definition* 

Electric insulation 1 𝐧 ∙ 𝐉 = 0 

Electric potential 2 

𝑉𝐴 = 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝐴; 

𝑉𝐵(𝑡) = 𝑉𝐷𝐶 + 𝑉𝑝 sin(ω𝑡); 

𝑉𝐶 = 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝐶; 

𝑉𝐷 = 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝐷; 
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*𝑉 represents the electric potential, featuring a temporal component, 𝑉𝑝 is the peak amplitude of the applied electric 

potential in the DC-biased (𝑉𝐷𝐶) AC signal, 𝐉 is the electric current density and ω =  2π𝑓, with 𝑓 representing the 

AC frequency. The variables 𝜀0 and 𝜀𝑟 represent the permittivity of the vacuum and the relative permittivity of each 

given domain, respectively. The permittivity of a given domain is 𝜀 = 𝜀0𝜀𝑟. 

4. Estimation of the predicted retention time using the computational model: 

includes Figures S3-S4. 

4.1 Representation of the horizontal cutline used for velocity estimation: 

A horizontal cutline, 411 µm long, spanning across a constriction between two posts is set in the middle of the post 

array, as shown in Figure S3. Based on the electric field and velocity estimation obtained across the cutline, the 

total retention time (tR,p) for each cell type to migrate across the cutline was predicted. As this data is provided by 

the selected mesh in COMSOL, it should be appropriate to fit an analytical curve by considering the regions 

between points to attain a better prediction. After determining this information for one constriction, the same 

process is repeated until the position of the cell type is greater than or equal to the overall length of the array. This 

lays the foundation for the algorithm used to predict 𝑡𝑅,𝑝. 

 
Figure S3. Illustration of the horizontal cutline utilized to predict electric field and velocity data for all the cell types 

investigated in this study. The length of the cutline considered is 411 µm,  as the posts are 276 µm wide, and each lateral 

constriction is 135 µm, the total cutline length is 67.5 µm + 276 µm + 67.5 µm  = 411 µm. 

4.2 Information on the regression algorithm used for tR,p prediction: 

Due to the presence of insulating structures within the channel, the 𝐸 and |∇𝐸2| profiles get amplified, thereby 

generating functions of the position in the defined cutline (𝑥). To predict particle position (determine 𝑟̂𝑝) along the 

microchannel illustrated in Figure S3, it is necessary to find analytic curves to both 𝐸 and |∇𝐸2| due to the direct 

dependency of particle velocity in these quantities as described in Equation (S3). The use of analytic curves is 

crucial to obtain the best approximation to the arising differential equation: 
𝑑

𝑑𝑡
𝑟̂𝑝(𝑡) = 𝑣𝑝(𝑥, 𝑡)           (S10) 

and because particle velocity is a function of both position and time. The profiles have two properties that must be 

satisfied in the analytical curves: (a) at least within the post section of the channel, they are periodic and (b) the 

derivative with respect to 𝑥 is continuous in the boundaries between constrictions. Properties that are naturally 

satisfied by their Fourier series expansion, with the period being defined as the length of one constriction (𝐿). 

Thereby, the predicted electric field (𝐸̂) can be defined as: 

𝐸̂(𝑥) = 𝑎0 + ∑ [𝑎𝑛 sin (
2𝑛𝜋

𝐿
𝑥) + 𝑏𝑛 cos (

2𝑛𝜋

𝐿
𝑥)]𝑁

𝑛=1       (S11) 

in which: 
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𝑎0 =  
1

𝐿
∫ 𝐸(𝑥) 𝑑𝑥

𝐿

0
          (S12) 

𝑎𝑛 =
2

𝐿
∫ 𝐸(𝑥) sin (

2𝑛𝜋

𝐿
𝑥)  𝑑𝑥

𝐿

0
         (S13) 

𝑏𝑛 =
2

𝐿
∫ 𝐸(𝑥) cos (

2𝑛𝜋

𝐿
𝑥)  𝑑𝑥

𝐿

0
         (S14) 

However, the predicted |∇𝐸2| profile (𝐺(2)) will be obtained by differentiation of the 𝐸2(𝑥) series expansion, to 

use a single set of points and not lose any information by performing a numerical derivative. Since the problem is 

reduced to the 𝑥-axis, the gradient becomes one dimensional, and: 

𝐺(2)(𝑥) = |∇𝐸2|̂ =
𝑑

𝑑𝑥
{𝐴0 + ∑ [𝐴𝑛 sin (

2𝑛𝜋

𝐿
𝑥) + 𝐵𝑛 cos (

2𝑛𝜋

𝐿
𝑥)]𝑁

𝑛=1 }    (S15) 

where the superscript (2) references that this quantity is related to the gradient of the electric field squared and: 

𝐴0 =  
1

𝐿
∫ 𝐸2(𝑥) 𝑑𝑥

𝐿

0
          (S16) 

𝐴𝑛 =
2

𝐿
∫ 𝐸2(𝑥) sin (

2𝑛𝜋

𝐿
𝑥)  𝑑𝑥

𝐿

0
         (S17) 

𝐵𝑛 =
2

𝐿
∫ 𝐸2(𝑥) cos (

2𝑛𝜋

𝐿
𝑥)  𝑑𝑥

𝐿

0
         (S18) 

When the derivative in eqn. (S15) is performed, 𝐺(2)(𝑥) becomes: 

𝐺(2)(𝑥) =
2𝑛𝜋

𝐿
∑ [𝐴𝑛 cos (

2𝑛𝜋

𝐿
𝑥) − 𝐵𝑛 sin (

2𝑛𝜋

𝐿
𝑥)]𝑁

𝑛=1       (S19) 

which uses the same coefficients of the Fourier expansion of 𝐸2(𝑥) and the use of a single set of points to carry out 

both curve fittings. 

Using the same procedure to obtain eqn. (S13), the 𝐺(1) profile, related to the gradient of the electric field 

magnitude, is obtained: 

𝐺(1)(𝑥) =
2𝑛𝜋

𝐿
∑ [𝑎𝑛 cos (

2𝑛𝜋

𝐿
𝑥) − 𝑏𝑛 sin (

2𝑛𝜋

𝐿
𝑥)]𝑁

𝑛=1        (S20) 

As the extracted data from COMSOL is a set of points, the integrals in eqns. (S12)-(S14) and (S16)-(S18) must be 

carried out numerically. For this, the scipy library was used in a Python code to apply the appropriate Simpson rule 

to the 𝐸 and 𝐸2 data. This same code calculated their Fourier coefficients and stored them to be used later in their 

analytic predictions. It should be noted that, in eqns. (S13) and (S14), the Fourier series is truncated on the 𝑁-th 

term, due to the discrete nature of the data. As frequency increases, the number of points needed to get a well-

defined sinusoidal function increases as well. As it is hard to define a truncation term given the number of points 

of the raw data, an algorithm was implemented in the mentioned code to expand the distribution until the mean 

squared error is no longer minimized. 

Because of the direct proportionality relation between 𝐸 and the applied voltage in the channel (𝑉), it is asserted 

that 
𝐸1

𝑉1
=

𝐸2

𝑉2
. With this, the curve fitting of 𝐸 can be performed for only one voltage input and then rescale it as 

necessary. Due to the properties of the analyzed channels, this process was performed for terminals A and C together 

and terminal B individually as terminals A and C provide an extra DC-bias signal and terminal B provides either a 

DC or AC+DC signal. For this study, a voltage 𝑉0 = 100 V was used for terminal B and the distribution generated 

by terminals A and C was directly analyzed. Results of the performed curve fittings for both 𝐸 and |∇𝐸2| are 

illustrated in Figure S4. 

 With all this, the predicted particle velocity is defined as: 

𝑣𝑝(𝑡, 𝑥) = (𝜇𝐸𝑂 + 𝜇𝐸𝑃
(1)

) [𝐸̂𝐴,𝐶(𝑥) + 𝑉𝐵(𝑡)𝐸̂𝐵(𝑥)] + 𝜇𝐸𝑃
(3)

[𝐸̂𝐴,𝐶(𝑥) + 𝑉𝐵(𝑡)𝐸̂𝐵(𝑥)]
3

+ 𝜇𝐷𝐸𝑃𝐻̂(𝑥, 𝑡) (S21) 

where: 

𝐻̂(𝑥, 𝑡) = 𝐺𝐴,𝐶
(2)

(𝑥) + 𝑉𝐵
2(𝑡)𝐺̂𝐵

(2)
(𝑥) + 2𝑉𝐵(𝑡) [𝐸̂𝐴,𝐶(𝑥)𝐺𝐵

(1)
(𝑥) + 𝐸̂𝐵(𝑥)𝐺𝐴,𝐶

(1)
(𝑥)]   (S22) 

which is obtained when |∇[𝐸̂𝐴,𝐶(𝑥) + 𝑉𝐵(𝑡)𝐸̂𝐵(𝑥)]
2

| is expanded. Additionally: 
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𝑉𝐵(𝑡) =
1

𝑉0
[𝑉𝐷𝐶 + 𝑉𝑝 sin(𝜔𝑡)]         (S23) 

Finally, an estimation of retention time can be obtained by solving eqn. (S10), which was carried out with the use 

of the 4th order Runge-Kutta method implemented in the previously mentioned code and taking the temporal step 

as the one used in the function generators in the lab (0.06 s). Thus, 𝑡𝑅,𝑝 is extracted when the condition 𝑟̂(𝑡𝑅,𝑝) ≥ 𝐿 

is met. 

 
Figure S4. Results of curve fitting using a Fourier series expansion of the E-field profile. In scattered marking the E-field 

provided by COMSOL is plotted and the red line contains the curve fitting attained with the Fourier series expansion. For both 

data sets, the truncation element was found to be 16. The benchmark selected to define a good fit was the determination 

coefficient 𝑅2 rounded to six decimals. (A, C) Contains the extracted data of the E-field and |∇𝐸2
| with their respective Fourier 

series expansions for terminals A and C, (B, D) contains the extracted data of the E-field and |∇𝐸2
| with their respective 

Fourier series expansions for terminal B. 
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5. Comparison of the velocity magnitudes of all four EK phenomena: includes 

Figure S5. 

Depiction of overall and individual velocities over the cutline is shown in Figure S5. Based on the prediction 

of individual velocities resulting from each one of the four electrokinetic phenomena, it can be observed that for 

all separations (Separation IDs 1-3), the dominant EK phenomena contributing to the overall cell velocities is 

electrophoresis. It is also important to note that at the selected DC-biased AC voltage (Table 2 in the manuscript), 

the magnitude of the nonlinear electrophoretic effects (EPNL
(3)

) was kept low/moderate for the first eluting cell 

species and low/high for the second eluting cell species in such a way that the discrimination between cell species 

is enhanced, and, allowing the separations to take place by exploiting electrophoretic effects. 

 
Figure S5. Predicted overall and individual cell velocities exerted by the four EK phenomena across the cutline (Figure S3), 

for all the cell separations (Separation IDs 1-3). (A,B) Separation ID 1 for E. coli (ATCC 11775, green) and S. cerevisiae 

(ATCC 9080, red) cells from prokaryotic and eukaryotic domains respectively. (C, D) Separation ID 2 for B. subtilis (ATCC 

6051, green) and B. cereus (ATCC 14579, red) cells, respectively, from the same prokaryotic domain and different species. 

(E,F) Separation ID 3 for S. cerevisiae (ATCC 9763, green) and S. cerevisiae (ATCC 9080, red) cells, respectively, from the 

same eukaryotic domain, same species and different microbial strains. 
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6. Reproducibility between repetitions: includes Table S4 and Figure S6 

Table S4. Values of retention times for three distinct experimental repetitions of each separation.  

Separation 

ID 
Cell ID – label color 

tR,e 

Repetition 1 

(s) 

tR,e 

Repetition 2 

(s) 

tR,e 

Repetition 3 

(s) 

tR,e 

Average 

(s) 

Range of 

stdev 

(%) 

1 
E. coli (ATCC 11775) - Green 301.0 300.0 290.0 297.0 2.1 

S. cerevisiae (ATCC 9080) - Red 489.0 470.0 509.0 489.3 3.3 

2 
B. subtilis (ATCC 6051) - Green 340.0 321.0 330.0 330.3 2.9 

B. cereus (ATCC 14579) - Red 606.0 670.0 626.0 634.0 5.2 

3 
S. cerevisiae (ATCC 9763) - Green 352.0 348.0 328.0 342.7 3.1 

S. cerevisiae (ATCC 9080) - Red 465.0 447.0 456.0 456.0 2.1 

 

 
Figure S6. Confidence interval plots of the electropherograms indicating reproducibility between experiments for all the cell 

separations (Separation IDs 1-3). (A) Separation ID 1 for E. coli (ATCC 11775, green) and S. cerevisiae (ATCC 9080, red) 

cells. (B) Separation ID 2 for B. subtilis (ATCC 6051, green) and B. cereus (ATCC 14579, red) cells. (C) Separation ID 3 for 

S. cerevisiae (ATCC 9763, green) and S. cerevisiae (ATCC 9080, red) cells. 
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