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Abstract: Various genetic elements, including integrons, are known to contribute to the development
of antimicrobial resistance. Class 1 integrons have been identified in E. coli isolates and are associated
with multidrug resistance in countries of the Andean Community. However, detailed information
on the gene cassettes located on the variable regions of integrons is lacking. Here, we investigated
the presence and diversity of class 1 integrons, using an in silico approach, in 2533 whole-genome se-
quences obtained from EnteroBase. IntFinder v1.0 revealed that almost one-third of isolates contained
these platforms. Integron-bearing isolates were associated with environmental, food, human, and
animal origins reported from all countries under scrutiny. Moreover, they were identified in clones
known for their pathogenicity or multidrug resistance. Integrons carried cassettes associated with
aminoglycoside (aadA), trimethoprim (dfrA), cephalosporin (blaOXA; blaDHA), and fluoroquinolone
(aac(6′)-Ib-cr; qnrB) resistance. These platforms showed higher diversity and larger numbers than
previously reported. Moreover, integrons carrying more than three cassettes in their variable regions
were determined. Monitoring the prevalence and diversity of genetic elements is necessary for
recognizing emergent patterns of resistance in pathogenic bacteria, especially in countries where
various factors are recognized to favor the selection of resistant microorganisms.

Keywords: Escherichia coli; class 1 integrons; dfrA genes; aadA genes; bioinformatic tools; Andean
Community

1. Introduction

Escherichia coli is widely distributed in natural environments and is a common in-
habitant of the gastrointestinal tract in animals, including humans. While it serves as an
important commensal resident, it also poses a threat as a potential pathogen, capable of
causing both intestinal and extra-intestinal diseases [1,2]. The rise of multidrug-resistant
(MDR) E. coli can be attributed to prolonged antibiotic exposure, presenting substantial
hurdles for public health systems [3]. This phenomenon has been observed globally, with
prevalence rates influenced by geographical regions, populations, and countries [4,5]. In
South America, several factors contribute to the dissemination of antimicrobial resistance.
These include drug misuse in the community, the spread of genetic markers through the
food chain, and environmental contamination from sewage disposal, not only from hospi-
tals but also from industrial and urban sources [6]. In particular, strains of E. coli resistant
to commonly used antibiotics have been documented in countries comprising the Andean
Community—an intergovernmental organization consisting of Bolivia, Colombia, Ecuador,
and Peru [7–10].
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Genetic changes and the horizontal transmission of resistant traits are recognized as
crucial factors driving the development of antimicrobial resistance. MDR phenotypes arise
as bacteria acquire and disseminate resistance genes through horizontal transfer [11,12].
This process is facilitated by genetic elements such as gene cassettes/integrons, insertion
sequences (IS), and transposons, which have the ability to move between and within
DNA molecules. Additionally, plasmids and conjugative elements play a role in mobi-
lizing genetic information between bacterial cells [13]. Integrons, in particular, are ca-
pable of integrating gene cassettes through natural recombination events, making them
adequate platforms for gene expression [14]. They are associated with IS, transposons,
and plasmids, which collectively facilitate the spread of resistance traits among bacterial
populations [15,16]. A typical integron consists of a variable region and two conserved
segments. These segments are known as the 5′ and 3′ conserved sequences (CS). The
intI1 gene is situated within the 5′ CS and encodes a tyrosine recombinase responsible
for integrating or excising genes at the attI site. Additionally, the intI1 gene contains the
(Pc) promoter sequence, which drives the expression of gene cassettes located within the
variable region [17,18]. Integrons are classified into five groups based on the sequence of
the intI1 gene they carry, with class 1 integrons being particularly prevalent and clinically
significant [15,16]. In contrast, the 3′ CS region may incorporate genes conferring resistance
to sulphonamides (sul1) or quaternary ammonium compounds (qacE∆1) [17]. These genes
are frequently encountered in class 1 integrons, while class 2 integrons often harbor genes
associated with transposition proteins (tns). Other classes of integrons have not been
associated with gene cassettes [15]. The variable region of the integron, situated between
these two segments, serves as a platform for the integration of various cassettes that confer
resistance to multiple classes of antibiotics [15]. These gene cassettes typically consist of an
open reading frame and a recombination site (attC), and they are integrated at the attI site
and expressed from the Pc promoter. The level of transcription depends on the proximity
of the cassette to the promoter, with genes located closer to it exhibiting higher expression
levels [18]. Class 1 integrons have been linked to a range of gene cassettes conferring
resistance to aminoglycosides, folate antagonists, β-lactams, quinolones, and other classes
of antibiotics [16].

These integrons are frequently encountered in enteropathogenic bacteria [16]. Es-
cherichia, Klebsiella, Salmonella, Shigella, and Yersinia are notable genera of the Enterobacteri-
aceae family that colonize the intestinal tract and can lead to intestinal, genitourinary, and
bloodstream infections [19]. As mentioned earlier, the emergence of MDR E. coli has been
linked to prolonged exposure to antibiotics. Indeed, class 1 integrons have been identified
in E. coli isolates from various geographical regions [20]. The prevalence of these platforms
and their associated cassettes is known to fluctuate over time, a phenomenon linked to
selective antibiotic pressure. An increase in the prevalence of class 1 integrons in E. coli
has been observed in South Korea and China [16,20]. Moreover, the incidence of class 1
integrons harboring multiple cassettes has increased among E. coli isolates, suggesting that
they facilitate the acquisition of gene cassettes [16,20]. Therefore, the continuous monitoring
of integrons is crucial, particularly for understanding the spread of drug resistance.

As mentioned previously, strains of MDR E. coli have been documented in countries
forming the trade block called the Andean Community [7–10]. This organization promotes
collaboration in industry, agriculture, social issues, and trade. The constant flow of people
and resources increases the risk of the cross-transmission of microorganisms, particularly
those resistant to multiple drugs. Integrons have been identified in MDR and pathogenic
isolates of E. coli belonging to various clones reported in the countries under scrutiny. Sev-
eral studies have documented the presence of various antibiotic-resistant genes, primarily
dfrA and aadA, in the variable regions of these integrons [21–24], while others have solely
documented the presence of the intI1 gene [25–27]. Class 1 integrons have been linked
to an increase in MDR E. coli, attributed to the diversity of cassettes within their variable
regions [20,28]. The limited information available on these cassettes among isolates from
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Andean countries may hinder our ability to study their dynamics and their relationship
with resistance genes.

Bioinformatic tools have not only facilitated the identification of mobile genetic el-
ements but have also helped establish crucial connections between resistance traits and
pathogenic bacteria [29,30]. The objective of this study is to use IntFinder v1.0, a tool
capable of detecting integrons in both raw reads and assembled genomes [31,32], to identify
the association of integrons with resistance cassettes in isolates from countries within the
Andean Community.

2. Results
2.1. Bacterial Isolate Dataset

The final dataset comprised 2533 whole-genome sequenced isolates of E. coli docu-
mented in countries of the Andean Community (Table S1, Supplementary Materials). The
majority of isolates were reported in Ecuador (75%), followed by Peru (19%), Colombia
(3%), Venezuela (2%), and Bolivia (1%). Nearly half of the isolates were sourced from
human samples (47%), followed by those from animal samples (31%), the environment
(20%), and food products (2%).

2.2. Integron Characterization by Country and Source

IntFinder v1.0 identified integrons in 29% of isolates, all classified as class 1 integrons
(Table S2, Supplementary Materials). These integrons were distributed across all countries,
with the highest prevalence observed in samples from Ecuador, followed by Peru, Colombia,
Venezuela, and Bolivia. However, in terms of relative abundance, approximately 30% of
isolates from Ecuador and Colombia tested positive for integrons, while they accounted
for 20% in Peruvian samples. Less than 1% of isolates from Venezuela and Bolivia showed
evidence of integrons (Figure 1A). These class 1 integrons were detected across various
sources, including human, animal, environmental, and food-related samples. However,
analysis of the relative abundance revealed that integrons were present in approximately
30% of environmental and animal samples, while 25% of human samples carried these
sequences. Class 1 integrons were found in less than 20% of isolates derived from food or
environmental samples (Figure 1B).
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Figure 1. Abundance of integrons detected in E. coli isolates classified by (A) country and (B) source.

2.3. Integron Characterization by ST

Integron-positive isolates were associated with 149 different sequence types (STs).
Figure 2A illustrates the prevalence of integrons among isolates associated with relevant
pathogenic or MDR STs; the latter are highlighted in bold in the figure. In MDR clones, the
highest occurrence of integrons was observed in isolates from ST162 (77%), followed by
those associated with ST449 (63%) and ST744 (59%). Approximately half of the isolates
belonging to ST156, ST58, and ST152 were positive for integrons, while in E. coli from
ST90, ST117, and ST155, integrons were present in less than 50% of isolates. In pathogenic
E. coli, integrons were most abundant in bacteria from ST1193 (85%), ST457 (67%), and
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ST648 (60%), whereas, in isolates from ST354 and ST131, integrons were present in half of
them. They were also detected in 40% and 33% of E. coli associated with ST48 and ST23,
respectively. In bacteria belonging to the remaining STs, these platforms were present in
less than 30% of isolates.
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Figure 2B,C depicts the aforementioned sequence types categorized by country and
source, respectively. Integron-containing E. coli isolates belonging to STs known for mul-
tidrug resistance were predominantly reported in Ecuador, although bacteria from Peru
were also associated with ST155, ST744, and ST152. E. coli from the latter two STs were
also found in Colombian samples. Isolates from these STs mainly originated from envi-
ronmental, human, and animal sources. ST117, ST58, and ST162 were also linked to food
samples, while ST152 and ST156 were found in human samples. On the other hand, STs
associated with pathogenic bacteria were predominantly documented in Ecuador, although
some isolates belonging to ST648, ST131, ST23, ST69, ST10, and ST38 were also reported
in Peru. E. coli from ST69 was also found in Colombia. Most of the STs were linked to
animal, environmental, and human samples. Bacteria from ST1193 and ST131 originated
from human and environmental samples, whereas those of ST648 and ST23 came from
animal and human samples.
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2.4. Integrons and Antibiotic Resistance Genes

Gene cassettes conferring resistance to aminoglycosides and dihydrofolate reductase
inhibitors were the most prevalent, were detected across samples from all sources reported
in all five countries, and were associated with all the aforementioned STs. Similarly,
genes conferring resistance to phenicols were identified in isolates from Ecuador and
Peru. Integrons carrying these genes were reported from various sources. Conversely,
genes associated with β-lactam resistance were primarily detected in human isolates
reported from Peru, Ecuador, and Colombia. Resistance markers for lincosamide and
sulfonamide antibiotics were found in environmental and animal samples, with the latter
also associated with genes conferring resistance to quinolones. These markers were also
detected in human isolates, along with those associated with rifampicin resistance. All
STs exhibited resistance markers for aminoglycosides and folate antagonists. Additionally,
resistance to chloramphenicol was observed across most of them. Genes encoding β-lactam
hydrolases were prevalent, particularly in ST152 and ST10. Among the ST156, ST744, and
ST69 clones, there were also traits associated with quinolone resistance. Furthermore,
rifampicin-resistant genes were detected in the latter two STs (Figure 3).
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Figure 3. Integron-associated resistance genes classified by (A) country, (B) source of isolation, and
(C) sequence type.

A total of 37 different integrons were identified by IntFinder v1.0. Resistance to
aminoglycosides was mediated by adenylyl transferases encoded by seven different aadA
alleles, while resistance to trimethoprim was associated with dihydrofolate reductases
encoded by seven different dfrA alleles. Inactivation of aminoglycosides was also facilitated
by drug-modifying enzymes, including adenylyl and acetyl transferases encoded by the
ant(2′) and aac(3)-Vla genes, respectively. Additionally, resistance was linked to the aac(6′)-lb-
cr gene, identified in certain integrons, encoding an acetyl transferase capable of inactivating
both aminoglycoside and quinolone antibiotics. Quinolone resistance was also associated
with the qnrB genes, which produce proteins that bind to topoisomerases and protect them
from drugs. β-lactam inactivation was facilitated by hydrolases encoded by the blaOXA
and blaDHA genes, while resistance to rifampicin was attributed to enzymes encoded by
the arr genes, catalyzing the ADP-ribosylative inactivation of the antibiotic (Table 1).
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Table 1. Resistance markers located in the variable regions of class 1 integrons detected in E. coli
isolates reported in countries of the Andean Community.

Integron Gene Cassettes in the Variable Region Antimicrobial
Resistance Pattern Frequency (%) Accession

Number

In1741 aadA1, cmlA1, aadA2, dfrA12, aadA17, lnu(F) AG, CHL, FA, LIN 0.4 CP042600

In37 aac(6′)-Ib-cr, blaOXA-1, catB3, arr-3 AG, CIP, PEN-CP, CHL, RIF 0.1 AY259086

In1021 aac(6′)-Ib-cr, arr-3, dfrA27, aadA16 AG, CIP, RIF, FA 0.1 KF921558

In1001 aac(6′)-Ib3, aac(6′)-Ib-cr, catB3, dfrA1 AG, CIP, CHL, FA 0.5 KF921553

In1598 aadA16, dfrA27, arr-3, aac(6′)-Ib-cr AG, FA, RIF, CIP 0.4 MG196293

In1558 dfrA12, aadA2, cmlA1, aadA1 FA, AG, CHL 8.5 CP031549

In640 dfrA12, aadA2, cmlA1, aadA1 FA, AG, CHL 1.4 FM244708

In1632 aadA1, cmlA1, aadA2b AG, CHL 2.2 CP034788

In1671 aadA1, cmlA1, aadA2b AG, CHL 0.3 CP036168

In1405 aadA22, lnu(F), sul3 AG, LIN, SUL 0.9 CP021843

In1004 aadA2b, cmlA1, aadA1 AG, CHL 10.0 KF921558

In1153 aadA2b, cmlA1, aadA1 AG, CHL 1.7 CP010575

In1179 aadA2b, cmlA1, aadA1 AG, CHL 0.3 CP011644

In1621 blaDHA-1, qnrB4, dfrA17 PEN-CP, CIP, FA 0.4 MK048477

In1058 blaOXA-4, aadA2, cmlA1 PEN-CP, AG, CHL 0.4 KJ463833

In1262 aadA2, dfrA12 AG, FA 0.3 KX710093

In322 aadA1, blaOXA-1 AG, PEN-CP 8.6 AM991977

In1265 aadA1, dfrA1 AG, FA 7.4 CP011540

In1077 aadA1, aac(3)-VIa AG 2.3 CP009409

In1637 aadA2, dfrA12 AG, FA 0.1 LN830952

In1756 aadA2, dfrA12 AG, FA 0.1 CP042894

In1438 aadA2, dfrA12 AG, FA 14.3 CP022692

In406 aadA2, dfrA12 AG, FA 0.1 AP012055

In1546 aadA5, dfrA17 AG, FA 17.2 CP031110

In294 ant(2′′)-Ia, aadA2b AG 0.1 AJ971341

In1412 dfrA12, aadA2 AG, FA 0.4 CP019647

In1181 dfrA17, aadA5 AG, FA 0.1 CP006642

In1449 dfrA17, aadA5 AG, FA 0.3 CP023145

In1450 dfrA17, aadA5 AG, FA 2.7 CM008265

In1363 lnu(F), aadA17 LIN, AG 0.5 CP019443

In1612 dfrA5 FA 3.3 CP034201

In862 aadA1 AG 0.8 CP011540

In530 aadA1 AG 3.9 AM055748

In18 dfrA1 FA 0.1 X17478

In191 dfrA14 FA 8.1 HF545433

In1210 dfrA16 FA 0.3 KT884517

In1205 dfrA17 FA 1.2 CP012626

AG: aminoglycosides; CHL: chloramphenicol; FA: folate antagonist; LIN: lincosamide; PEN: penicillin; CP:
cephalosporin; RIF: rifampicin; SUL: sulfonamide.
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Resistance to clindamycin was linked to nucleotidyl transferases encoded by the lnu(F)
genes. Similarly, sequences associated with transferases that inactivate chloramphenicol
(catB) were identified, although resistance to this antibiotic was mainly attributed to efflux
pumps encoded by the cmlA1 genes. Additionally, sul3 genes were found, responsible for
conferring resistance to sulfonamide antibiotics by encoding dihydropteroate synthases.
Regarding the variable regions, approximately half of the integrons harbored an aadA
cassette in the first position, while 30% contained a dfrA cassette. Among the remaining
20% of isolates, aac (8%), bla (6%), ant (3%), and lnu (3%) genes were identified as the
first cassette. The majority of positive isolates contained integrons with either one of two
cassettes in the variable regions. The predominant genes identified were aadA and dfrA,
along with additional genes encoding β-lactamases, acetyl transferases, and nucleotidyl
transferases. Integrons with three cassettes were detected in 16% of isolates, while those
containing four cassettes represented 11% of the samples. Only a small fraction, less than
1% of isolates, exhibited a single integron with more than four cassettes in the variable
region (Table 1).

3. Discussion

This study explores the presence and diversity of class 1 integrons among isolates
documented in Ecuador, Colombia, Peru, Bolivia, and Venezuela, representing the Andean
Community. Integrons were found in only 29% of isolates, displaying limited diversity in
gene cassette content, albeit higher than previously reported. Despite this, the detected
integrons contained genes conferring resistance to commonly used antibiotics, contributing
to the emergence of multidrug-resistant phenotypes in E. coli. The use of bioinformatic
tools has been instrumental in identifying mobile genetic elements carrying resistance
genes and elucidating their relationship with pathogenic bacteria [29,30]. IntFinder v1.0,
specifically, facilitates the detection of integrons using both raw reads and assembled
genomes/contigs [31].

Integrons were found to be more common in isolates from Ecuador, Colombia, and
Peru compared with those reported in Bolivia and Venezuela. Interestingly, integrons were
equally distributed among animal, environmental, and human samples, but they were less
frequently identified in those obtained from food samples. In Ecuador, integrons were
detected in human, animal, environmental, and food sources, consistent with findings from
previous studies [22,24,33,34]. In Peruvian isolates, integrons were detected in samples from
both humans and animals, while Colombian isolates showed an association between these
platforms and clinical sources. Indeed, integrons have been reported in E. coli from patients
and farm animals [10,21,35], although there are limited data available on their presence in
environmental samples. Clinical isolates from Bolivia and Venezuela were associated with
integrons, although they have also been reported in environmental samples [36,37].

ST162 is recognized as a multidrug-resistant clone [38]. In Ecuadorian isolates derived
from the environment, this sequence type has been linked to integrons carrying resistance
markers for aminoglycosides and trimethoprim [23]. In fact, our analysis confirmed the
presence of these genes within this ST, in addition to genes conferring resistance to chlo-
ramphenicol. Moreover, isolates associated with both human and animal samples were
identified. Notably, ST162 has been documented in such samples in Ecuador, Bolivia,
and Colombia, although references to integrons have not been previously noted [39–41].
Similarly, our findings reveal that ST155, isolated from human, animal, and environmen-
tal sources, harbored integrons containing genes conferring resistance to the specified
antibiotics. ST155 is another well-established multidrug-resistant clone [42] observed in
Peru, Ecuador, and Colombia; however, previous studies have not associated it with inte-
grons [43–45]. Interestingly, in Bolivia, this sequence type is associated with the presence
of the intI1 gene, although no references to gene cassettes within the variable region were
identified [27]. ST58, ST744, ST90, and ST156 are recognized MDR clones [46–49] that
have been documented in the area without previous references to integrons [27,40,50,51].
However, our investigation revealed that isolates belonging to these STs did indeed carry
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integrons containing resistance markers for aminoglycosides, trimethoprim, phenicols, and
quinolones. Similarly, E. coli strains from the ST152, ST177, and ST449 clones also harbored
integrons with the mentioned resistance markers. Although these clones are known for
their multidrug resistance [52–54], they have not been previously documented in the area.

The majority of pathogenic STs harbored integrons carrying markers for aminogly-
cosides and trimethoprim. Specifically, ST131, ST1193, ST38, and ST457 were exclusively
associated with these genes. These sequence types, along with ST10, ST48, ST410, and ST69,
are well known for their involvement in extraintestinal infections [55–60]. Furthermore,
the latter four also carried genes conferring resistance to chloramphenicol, while ST10 addi-
tionally contained markers for β-lactams. Integron-containing ST10 and ST410 have been
documented in Ecuador and Bolivia [23,24,27], whereas the remaining STs have not been
directly linked to these platforms. In Bolivia, ST48, ST410, and ST69 isolates were found to
be positive for the intI1 gene and harbored many of the aforementioned resistance genes,
although no references to the variable regions of integrons were identified [27]. These clones
have also been reported in other countries, but the presence of integrons was not specifically
assessed [10,45,51,61–63]. ST23, ST648, and ST354 have not been previously documented
in the countries under study. However, these STs have been associated with extraintestinal
infections [59,64,65]. Our analysis revealed that isolates belonging to these clones carried
genes responsible for aminoglycosides, trimethoprim, and chloramphenicol resistance.

The most prevalent genes identified were those encoding various aminoglycoside
adenylyl transferases (AadA) and dihydrofolate reductases (DfrA). These markers have
previously been reported in E. coli associated with integrons in the scrutinized area, with
specific alleles such as dfrA1, dfrA5, dfrA7, dfrA12, dfrA15, dfrA17, aadA1, aadA2, and aadA5
documented [21,22,36]. In addition to these known sequences, our findings revealed the
presence of previously unreported genes, including aadA2b, aadA16, aadA17, aadA22, dfrA14,
dfrA16, and dfrA27. Furthermore, other markers for aminoglycosides, such as those encod-
ing acetyl and nucleotidyl transferases, were found. While these genes have been described
in E. coli in the area [22], they have not been directly linked to integrons. Resistance to
chloramphenicol was attributed to acetyl transferases (Cat) and efflux pumps (Cml1), pre-
dominantly identified in animal and human samples. Specifically, genes encoding CatB3
have been detected in clinical isolates from Peru [21]. The sequences identified in our study
have been documented in clinical and animal sources from Bolivia and Ecuador, although
a direct relationship with integrons was not assessed [27,33].

Our findings show that resistance to β-lactams was associated with hydrolases en-
coded by bla-OXA1 and blaDHA4, which were found in human and environmental isolates.
A study reported the presence of intI1 and bla-OXA1 genes in both environmental and
human isolates, although it was not specified whether bla-OXA1 was located in the variable
region [27]. However, in Colombia, a class 1 integron carrying the blaVIM-4 gene, encod-
ing for a metallo-β-lactamase, has been documented in clinical isolates [35]. Quinolone
resistance was determined to be mediated by the aac(6′)-Ib-cr and qnrB4 genes. These
markers have been documented in numerous studies in the area, particularly in associa-
tion with clinical and environmental samples, yet they have not been directly related to
integrons [22,25,27].

Among the identified sequences, a total of 27 different gene cassette complexes were
detected, all of which contained resistance genes. Integrons are commonly recognized
as genetic structures with a low cost [66]; specifically, the number of gene cassettes has
a notable impact on their fitness. Integrons carrying a larger number of gene cassettes
tend to incur higher costs, leading to their decreased prevalence. Consequently, integrons
harboring fewer, less costly cassettes are more commonly observed [67,68]. In fact, over
70% of predicted integrons were found to have one or two cassettes, and less than 1%
contained more than five resistance genes in the variable region. Moreover, in half of the
integrons, the first position was occupied by either an aadA or a dfrA gene. These cassettes
contain highly recombinogenic attC sites and are frequently detected in such positions in
class 1 integrons due to their low cost [66]. Additionally, the relatively costly aac(6′)-lb gene



Antibiotics 2024, 13, 394 9 of 14

was found at the first position in approximately 8% of integrons. It has been suggested that
this cassette must be located near the promoter to achieve proper expression levels [66].

Our results revealed that integrons are more predominantly present and diverse in the
studied area than previously reported in the literature. Additionally, they carry a greater
number of genes than previously documented. It is worth noting that only simple integrons
containing two cassettes in their variable region have been reported in E. coli. The present
results highlight that larger integrons containing more than two cassettes are prevalent
among relevant STs. These complex integrons may play an important role in expanding the
array of resistant markers found in E. coli. They carry genes conferring resistance not only to
antibiotics commonly used as first-line defenses against E. coli—such as fluoroquinolones,
trimethoprim–sulfamethoxazole, and cephalosporins—but also to aminoglycosides, which
are typically reserved for treating serious infections [69,70]. Resistance markers against chlo-
ramphenicol, clindamycin, and rifampicin were also detected. These drugs may serve as
viable alternatives when other antibiotics are ineffective or deemed inappropriate [71–73].
Certainly, integrons are extensively distributed among E. coli strains documented across di-
verse geographical regions [20], and they are thought to play a crucial role in the emergence
of multidrug-resistant phenotypes within Enterobacteriaceae [16]. These mosaic structures
act as reservoirs of exchangeable cassettes, which are not only linked to drug resistance but
also to virulence and pathogenicity [74].

The dataset utilized in this study was constructed using E. coli sequences sourced
from EnteroBase, potentially introducing bias toward isolates derived from culturable and
pathogenic bacteria. While it is expected that novel isolates will continue to be reported, the
ones examined in this study serve as relevant examples. Moreover, the approach employed
in this study relies on a database of well-described integrons, which only represents a partial
population. However, despite these limitations, the findings presented here contribute to
advancing our understanding of the relationship between integrons, resistance genes, and
E. coli in the Andean region.

4. Materials and Methods
4.1. Selection of Dataset

A dataset of E. coli isolates (n = 2533) that were whole-genome-sequenced was com-
piled from EnteroBase (http://enterobase.warwick.ac.uk/, accessed on 22 March 2023),
a platform dedicated to studying genomic variation in enterobacteria. The compilation of
this dataset adhered to specific criteria: (i) inclusion of isolates reported from countries
within the Andean Community, including Ecuador, Colombia, Bolivia, and Peru, with
the addition of data from Venezuela up to 2006, as it was a former member; (ii) collection
of samples spanning the period 1993 to 2023; and (iii) selection of non-repetitive whole
genomes. Sequences in FASTA format were downloaded on 22 March 2023.

4.2. Multilocus Sequence Type Identification

The software MLST v2.19.0 developed by Torsten Seemann was employed to deter-
mine the sequence types (STs) using default settings (https://github.com/tseemann/mlst;
accessed on 22 February 2023). The allele analysis scheme utilized for this purpose was
from PubMLST.org [75]. The MLST scheme used was based on seven consensus genes, adk,
fumC, gyrB, icd, mdh, purA, and recA.

4.3. IntFinder v1.0

IntFinder v1.0, developed by the Center for Genomic Epidemiology at the Techni-
cal University of Denmark (https://bitbucket.org/genomicepidemiology/intfinder/src/
master/; accessed on 22 May 2023; software version: 2019-12-18; database version: 2019-
11-29), was utilized to identify resistance integrons with modified parameters: threshold,
0.9, and min cov, 0.9. IntFinder v1.0 is accessible online (https://cge.food.dtu.dk/services/
IntFinder-1.0/; accessed on 24 May 2023) and utilizes k-mer alignment for sequence detec-
tion, leveraging KMA v1.3.9, developed by the Center for Genomic Epidemiology at the

http://enterobase.warwick.ac.uk/
https://github.com/tseemann/mlst
https://bitbucket.org/genomicepidemiology/intfinder/src/master/
https://bitbucket.org/genomicepidemiology/intfinder/src/master/
https://cge.food.dtu.dk/services/IntFinder-1.0/
https://cge.food.dtu.dk/services/IntFinder-1.0/
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Technical University of Denmark (https://bitbucket.org/genomicepidemiology/kma/src/
master/, accessed on 24 May 2023) [76]. This alignment methodology enables detection
based on an adjustable similarity threshold. Integron identification relies on detecting
the presence of the integrase sequence, specifically, intI1. The integron database com-
prises data obtained from the public repository INTEGRALL (http://integrall.bio.ua.pt/;
accessed on 24 May 2023) [77]. The database employs the unique numbers assigned by
INTEGRALL to each integron (ln) [31,78]. Prediction of antimicrobial resistance genes in
the integron database was carried out using the local standalone version of ResFinder v4.1
developed by the Center for Genomic Epidemiology at the Technical University of Denmark
(https://bitbucket.org/genomicepidemiology/resfinder/src/master/; software version:
2019-01-29; database version: 2019-02-20, accessed on 24 May 2023) [79]. This analysis
employed parameters requiring a minimum sequence identity of 90% and a minimum
coverage of 60%.

5. Conclusions

In this study, we investigated the occurrence and diversity of class 1 integrons in
isolates reported from countries of the Andean Community using an in silico approach.
Utilizing IntFinder v1.0, we found that almost one-third of the isolates tested positive for
integrons. Class 1 integrons were identified in environmental, food, human, and animal
isolates belonging to various relevant clones known for their pathogenicity or multidrug
resistance. Overall, the integrons carried cassettes conferring resistance to antibiotics
used in E. coli infections, such as fluoroquinolones, trimethoprim, cephalosporins, and
aminoglycosides. The integrons identified in this study exhibited a greater number and
variety of cassettes compared with what has been previously reported in the literature.
Furthermore, the majority of integrons observed carried only two or three cassettes in
their variable regions. However, in certain cases, four or even six cassettes were identified.
These large mosaic structures harbor markers conferring resistance to various antibiotic
classes, thereby aiding bacteria in adapting to environmental stress. In South American
countries, several factors are recognized as favoring the spread of antibiotic-resistant
bacteria. Therefore, monitoring the presence and diversity of these platforms in the region
appears imperative. In silico studies are not only useful for identifying genetic traits
associated with mobile elements but also contribute to recognizing emergent patterns of
resistance, particularly in species inhabiting the intestine and regularly exposed to antibiotic
pressure.

Supplementary Materials: The following supporting information can be downloaded at https://www.
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