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Abstract: Skin is the primary and largest protective organ of the human body. It produces a number of
highly evolved arsenal of factors to counter the continuous assault of foreign materials and pathogens
from the environment. One such potent factor is the repertoire of Antimicrobial Peptides (AMPs) that
not only directly destroys invading pathogens, but also optimally modulate the immune functions of
the body to counter the establishment and spread of infections. The canonical direct antimicrobial
functions of these AMPs have been in focus for a long time to design principles for enhanced
therapeutics, especially against the multi-drug resistant pathogens. However, in recent times the
immunomodulatory functions performed by these peptides at sub-microbicidal concentrations have
been a point of major focus in the field of host-directed therapeutics. Such strategies have the added
benefit of not having the pathogens develop resistance against the immunomodulatory pathways,
since the pathogens exploit these signaling pathways to obtain and survive within the host. Thus,
this review summarizes the potent immunomodulatory effect of these AMPs on, specifically, the
different host immune cells with the view of providing a platform of information that might help
in designing studies to exploit and formulate effective host-directed adjunct therapeutic strategies
that would synergies with drug regimens to counter the current diversity of drug-resistant skin
opportunistic pathogens.

Keywords: antimicrobial peptides; AMPs; immunomodulation; skin pathogen; immune cells;
gram-positive bacteria; multi-drug resistance

1. Introduction

Skin is the largest organ of human body that provides a general protective barrier. The
skin forms the first line of defense against any external pathogen or entities. It consists
of three different layers: epidermis, dermis, and hypodermis [1]. The epidermis or the
epithelial layer is crucial for providing a protective layer to body against invasive pathogens,
foreign entities and additionally controls loss of water and electrolytes. The different layers
making up the epidermis are stratum corneum (SC), stratum granulosum (SG), stratum
spinosum (SS), and stratum basale (SB) which altogether are responsible for the waterproof
nature of the skin [2]. The primary cells constituting the epidermis are keratinocytes
(epidermal cells), melanocytes (melanin producing cells), and Langerhans cells (immune
cells). The keratinocytes present in the epidermis undergo cornification to differentiate into
corneocytes. The corneocytes further form the acidic envelope also known as the cornified
envelope (CE). Keratinocytes are generally tightly embedded within the CE and are mostly
connected by the corneodesmosomes that form the main intercellular adhesive structures
in the stratum corneum [3]. Dermis is the thick middle layer of skin. The dermis is made
of two layers: the reticular dermis and the papillary dermis. Reticular dermis, the thick
basal layer of dermis, is comprised of blood vessels, nerves, lymphatic system, and adipose
tissues. It supports the overall movement of skin. Papillary dermis is the upper layer of
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dermis that contains sweat glands, hair follicles, blood vessels, adipocytes, and mostly
phagocytic immune cells. The papillary dermis aids in thermoregulation of the body [4].
The hypodermis is the innermost skin layer also known as the subcutaneous layer of skin.
Hypodermis aids in connecting dermal layer to muscles and bones while contributing to the
insulation of the body at the same time. The hypodermis usually consists of mostly adipose
and connective tissues, blood vessels, and large nerves [5]. Skin contributes to physical,
chemical as well immunological protection of body against the external environment.

From a cellular point of view, the skin consists of keratinocytes, and fibroblasts along
with leucocytes like Langerhans cells, macrophages, dendritic cells, and resident mem-
ory T cells. All these together are responsible for the maintenance and protection of the
skin barrier. The keratinocytes present in skin are majorly responsible for innate immune
interactions during infections [6]. They express pathogen pattern recognition receptors
(PRRs) like Toll-like receptors (TLRs) which get induced upon pathogen exposure. The
keratinocytes are found to express TLR 1-3, 5, and 10 which produces inflammatory cy-
tokines and chemokines, including interleukin-1β (IL-1β), IL-8, and CCL20. Upon wound
infection, the TLRs trigger recruitment of local and blood leucocytes to tackle the onset of
infection [7]. The Langerhans cells (LCs) also reside in the outer region of the epidermis
and aid in antigen presentation to activate the immune response against any infection.
Dermis region contains dendritic cells (skin origin) and macrophages which either play
role of Antigen Presenting cells (APCs) and present pathogen-associated antigens to the
resident T-cells or initiate immune reaction via the lymphatic system [8]. The resident
T cells, also known as the Skin resident memory T (Trm) cells, are crucial elements of
the skin-associated immune response. Apart from resident T cells, the regulatory T cells
CD4+ FoxP3+ T regulatory (Treg) cells are also essential for regulation and maintenance of
the immune response homeostasis [9]. Also, dendritic epidermal γδ T cells (DETCs) are
additionally critical for recognizing the danger-associated molecular patterns (DAMPs) in
case of wound and pathological conditions [10].

The skin is colonized with normal skin microbiota that is mostly commensal in na-
ture. However, under abnormal or perturbed circumstances, these microbiota behave as
opportunistic pathogens. One of the most common ways the pathogen breaches the skin
barrier is via wound or tear of skin that allows entry of pathogen inside the body and
starting of infection and evasion from the immediate immune response [11]. One of the
best example is Staphylococcus aureus, which produces superantigen proteins and toxins
to nullify the neutrophil attack. Staphopain A degrades elastin and leads to blockade of
chemokine receptor 2 (CXCR2) [12]. Streptococci or mostly group A streptococcus (GAS)
produces pneumolysin and streptolysin O (SLO) which are pore-forming in nature and
aid the bacteria to evade immune cells. Apart from that, they produce c5a-peptidase and
M-proteins that inactivate the complement system [13].

Among the complex series of events taking place when bacteria interacts with the
skin, one of the important steps is how the resident immune cells of skin start the release
of chemokines, cytokines and AMPs in order to deal with the infection. As AMPs are one
of the major players in the skin related immune reactions so, in the current review we
have elaborately discussed various roles of human skin AMPs including protection against
the microbial infection, immunomodulation of immune cell responses, and application of
AMPs in adjunct therapy against various skin infections.

In this review, we primarily focused on the non-canonical immunomodulatory func-
tions of AMPs against Gram-positive opportunistic bacteria in skin infections, which might
provide a potent avenue for shaping host-directed therapeutics against, specially, the
multi-drug drug-resistant varieties of such bacteria.

2. Opportunistic Skin Pathogen-Associated Infections
2.1. Group A Streptococcal Infections

The skin has a reservoir of normal microbiota that stays in a commensal relation with
the host. However, immunodeficient circumstances or breach of the skin barrier allow
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these commensals to become opportunistic pathogens. Streptococci are gram-positive
bacteria that reside on the skin. Amongst them, Streptococcus pneumoniae and Streptococcus
pyogenes (also known as group A streptococcus or GAS), are the two most critical pathogens
responsible for lethal diseases [14]. Group A streptococcus causes condition ranging
from mild infections like impetigo, ecthyma, cellulitis to severe life threatening ones like
necrotizing fasciitis, acute glomerulonephritis and toxic shock syndrome (TSS) [15]. It is
also known as the “flesh-eating” bacterium since it invades the soft tissue and destroys them
during necrotizing fasciitis. There are more than 200 serotypes of group A streptococci
depending on the surface protein known as M protein which is encoded by the emm
gene [16]. GAS has several virulence factors that aids in the host pathogenesis (Figure 1). It
has hyaluronic acid (HA), pili, M proteins and the S. pyogenes fibronectin-binding adhesin
(SfbI), which allows the pathogen to adhere and colonize the nasopharynx region including
tonsil epithelium and skin [17]. Apart from that, it has many pyrogenic exotoxins like
exotoxins A, B, and C and superantigens like streptococcal superantigen (SSA), SpeA,
SpeB, SpeG, SpeH, SpeJ, SmeZ, and SmeZ-2 [18]. These super antigens interact with major
histocompatibility complex (MHC) class II molecule and leads to the nonspecific heightened
activation of T cells which further leads to the excessive production of various interleukins
(IL-1, IL-6) and inflammatory cytokines such as tumor necrosis factor beta (TNFβ) and
gamma interferon (IFNγ) [19].

Antibiotics 2023, 12, x FOR PEER REVIEW 3 of 15 
 

2. Opportunistic Skin Pathogen-Associated Infections 
2.1. Group A Streptococcal Infections 

The skin has a reservoir of normal microbiota that stays in a commensal relation with 
the host. However, immunodeficient circumstances or breach of the skin barrier allow 
these commensals to become opportunistic pathogens. Streptococci are gram-positive bac-
teria that reside on the skin. Amongst them, Streptococcus pneumoniae and Streptococcus 
pyogenes (also known as group A streptococcus or GAS), are the two most critical patho-
gens responsible for lethal diseases [14]. Group A streptococcus causes condition ranging 
from mild infections like impetigo, ecthyma, cellulitis to severe life threatening ones like 
necrotizing fasciitis, acute glomerulonephritis and toxic shock syndrome (TSS) [15]. It is 
also known as the “flesh-eating” bacterium since it invades the soft tissue and destroys 
them during necrotizing fasciitis. There are more than 200 serotypes of group A strepto-
cocci depending on the surface protein known as M protein which is encoded by the emm 
gene [16]. GAS has several virulence factors that aids in the host pathogenesis (Figure 1). 
It has hyaluronic acid (HA), pili, M proteins and the S. pyogenes fibronectin-binding adhe-
sin (SfbI), which allows the pathogen to adhere and colonize the nasopharynx region in-
cluding tonsil epithelium and skin [17]. Apart from that, it has many pyrogenic exotoxins 
like exotoxins A, B, and C and superantigens like streptococcal superantigen (SSA), SpeA, 
SpeB, SpeG, SpeH, SpeJ, SmeZ, and SmeZ-2 [18]. These super antigens interact with major 
histocompatibility complex (MHC) class II molecule and leads to the nonspecific height-
ened activation of T cells which further leads to the excessive production of various inter-
leukins (IL-1, IL-6) and inflammatory cytokines such as tumor necrosis factor beta(TNFβ) 
and gamma interferon(IFNγ) [19]. 

 
Figure 1. Pathogenesis of GAS: Group A streptococcus(GAS) invade immune system by employing 
different virulent factors, such as scpA which cleaves C5a and spyCEP which targets IL8, and affect 
Figure 1. Pathogenesis of GAS: Group A streptococcus (GAS) invade immune system by employing
different virulent factors, such as scpA which cleaves C5a and spyCEP which targets IL8, and affect
recruitment of immune cells. M-protein which provides protection against phagocytosis and SLO
impairs neutrophil function [20].
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2.2. Staphylococcal Infections

Staphylococcus aureus is the most common member of the normal skin microbiota that
can turn in to an opportunistic pathogen in case of host immune compromise. Staphy-
lococcal infections range from mild skin diseases, like impetigo, folliculitis, furunculosis,
abscesses, to severe conditions, such as endocarditis, pneumonia, sepsis and toxic shock
syndrome [21]. They are notoriously known to consist of highly antibiotic resistance strains
like methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) that
make treatment processes highly difficult [22]. S. aureus uses microbial surface components
recognizing adhesive matrix molecules (MSCRAMMs) to bind to the skin surface. The
S. aureus produces a variety of cytotoxin-like hemolysins and leukocidins as well as cy-
tolytic enzymes that cause lysis of the host tissues and help in infection. S. aureus also
contains an array of exotoxins like staphylococcal enterotoxins A, B, and C as well as toxic
shock syndrome toxin-1 [23]. S. aureus has various mechanisms to evade the immune
cell functions and hence, to prevent bacterial clearance. There are several pore-forming
toxins of S. aureus like α-toxin and leukotoxins, including γ-hemolysin, Panton-Valentine
leukocidin (PVL), and leukocidin E/D. All these together aids this pathogen in evading the
host immune system and help spreading of infections [24].

3. Skin Antimicrobial Peptides (AMPs)

Human AMPs are 12–100 amino acids long alpha helical molecules that are amphi-
pathic and cationic in nature [25]. These molecules mostly fight against the pathogens by
membrane interaction leading to lysis. Since, the skin forms the first line of contact with
the normal microbiota and other pathogens, the skin epithelial cells produces epithelial an-
timicrobial proteins (eAMPs) also known as the skin AMPs, for the overall protection of the
body from the various external assaults. The skin AMPs generally consists of cathelicidins
and β-defensins. Several AMPs like human β-defensins (hBD) 1-3, cathelicidin LL-37,
ribonuclease RNase-7, and dermcidin are found in the human skin [26]. The mechanisms
of antimicrobial action of AMPs are based on either AMPs produced by skin commensal
microbiota or by activation of the pathogen recognition system, which later triggers the
production of AMPs from the epithelial cells [27]. The human cathelicidin antimicrobial
peptide hCAP-18 is the precursor molecules for several AMPs. LL-37, a 37-amino-acid
peptide molecule is the major potent AMP derived through in situ protease-digestion of
hCAP-18, that lyse the negatively charged pathogen membrane by binding to it using a net
positive charge of +6 [28]. The synergistic effect of AMPs produced by the commensal mi-
crobe and the skin are also documented. For example, in case of atopic dermatitis (AD) the
AMPs produced by the commensals Staphylococcus epidermidis and Staphylococcus hominis
were found to work synergistically with LL-37 against Staphylococcus aureus infection [29].

AMPs are identified to have direct impact on the immune cells like dendritic cells,
macrophages, monocytes, neutrophils along with the T and B lymphocytes. Recent studies
emphasise the immunomodulation properties of AMPs that can heighten the immune
reaction and recognition of pathogen that evade the system. Table 1 summarizes the major
types of such AMPs produced by the human skin.

Table 1. Different AMPs produced by the human skin.

Sl. No. Antimicrobial Peptide Mechanism of Action Reference

1 LL37 Barrel-stave mechanism of membrane disruption and inhibit LPS
binding in Bacteria, fungi and viral pathogens; P. aeruginosa [30]

2 OP-145 (LL-37 derived;
phase II) Membrane disruption in gram-positive [31]

3 PAC113 (P113; histatin 5
analog; phase IIb)

Membrane disruption and immunomodulation
ESKAPE Pathogens [32]
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Table 1. Cont.

Sl. No. Antimicrobial Peptide Mechanism of Action Reference

4 Cys-KR12 Membrane disruption
E. coli, S. aureus [33]

5 LTX-109 Membrane disruption and cell lysis in MRSA [34]

6 AMPR-11
Disrupts bacterial membranes by interacting with cardiolipin and

lipid A in sepsis-causing bacteria, including
multidrug-resistant strains

[35]

7 Dalbavancin Inhibition of bacterial cell wall synthesis in S. aureus [36]

8 Polymyxins Membrane disruption in P. aeruginosa [37]

9 Vancomycin Inhibition of bacterial cell wall synthesis in MRSA, VISA, VRSA [38]

10 WRL3 Membrane lysis in MRSA [39]

Mode of Action

Most AMPs work by direct killing via targeting the bacterial cell membrane (Figure 2).
The membrane targeting includes interaction of the AMP via its binding domain to the
bacterial cell membranes. Once bound, pore formation within the lipid bilayer takes
place [40]. Apart from that, AMPs also cause rupture of the pathogens by targeting crucial
proteins, enzymes, and cellular mechanisms [41]. The other mechanisms of their action may
include the immunomodulatory ability of AMP. AMPs cause activation of the interleukins
as well as chemokines and cytokines, which in turn heighten the immune response against
the pathogens and lead to their clearance from the body [42].
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4. Immunomodulation of Host Immune Cells and Responses

The concept of immunomodulation is a new-age approach of manipulating the im-
mune response against pathogen entry and infection inside the host [44]. The immune
system has an important role not only for providing defense but also helps in the wound
healing process. Modulation of immune system to heighten the host protective response
by training the immune cells to act against the pathogens in an efficient manner by ad-
ministration of modulators is the main goal of this approach [45]. The innate immune
system is the primary host defense against life threatening infections as well as host mod-
ified harmful entities that are self-harming in nature [44]. The innate immune system
consists of PRRs which identifies the foreign molecules and starts producing inflammatory
responses like interferons, cytokines and chemokines [46]. But with time, the pathogens
have evolved ways to evade the immune system and colonize within the host and start
an infection. For example, Salmonella enterica causes acetylation of the lipid A component
of its cell membrane lipopolysaccharide, thus altering its surface charge to a positive state
causing the bacterial cells to repel positively charged AMPs produced by host immune
cells and hence evade the immune response [47]. So, administering immunomodulators
or “Immuno-trainers” will train the immune system by providing non-specific stimulus
to produce a refined response that could counter such pathogenic adaptations by various
infection causing microorganisms.

4.1. Dendritic Cells

Dendritic cells (DCs) are the type of migratory, antigen-presenting cells derived from
bone marrow that can activate and differentiate the naive T lymphocytes. DCs recognize
the foreign pathogens and allergens and leads to the induction of immunogenic responses
via binding to the pathogen-associated molecular patterns (PAMPs) [48]. DCs are of
different subtypes depending on the phenotype and functions. The subtypes of DCs
include conventionals DCs (cDCs), monocyte-derived DCs (MoDCs), plasmacytoid DCs
(pDCs), interstitial DCs, dermal DCs, inflammatory DCs, Langerhans cells (LCs), and
transitional DCs [49]. DCs are the key players in the recognition and subsequent packaging
and presentation of the antigenic molecules to activate the downstream immune effector
machinery to produce specific immune response. DCs are generally considered as the
interface between the innate and adaptive immune response [50]. Upon interaction and
recognition with the bacterial pathogens the DCs leads to the enhanced expression of MHC
molecules. The dermal DCs causes heightened expression of the co-stimulatory receptors.
CD1c+ DCs and the CD141+ DCs are the two dominant population of dermal DCs. Among
which CD141+ DCs are important for the cross presentation of the antigenic molecules to
the CD8+ T cells [51]. In case of bacterial infection, DCs lead to Th17 mediated response
along with the activation of inflammasome receptors. Mostly the NLRP3 inflammasome
is activated after priming by a PRRs followed by activation of the NF-kB, that lead to
the induction of NLPR3, pro-IL-1β and pro-IL-18 and cytokines such as IL-6, IL-8 and
TNF-α [52]. However, the pathogens are evolving to equip themselves with arsenals
to evade DCs. For example, in case of Staphylococcus aureus, the DCs interact with the
pathogen and cause lysis of the bacteria. Once the pathogen is engulfed by DCs, phagosome
formation takes place that fuse with hydrolase containing lysosomes that cause killing
of the pathogen. Pathogens are also subjected to the acidic pH and reactive oxygen and
nitrogen species (ROS & RNS) [53]. However, S. aureus has employed several mechanisms
to evade killing by the DCs. S. aureus produces staphyloxanthin (Sx) that neutralizes
ROS and RNS. S. aureus also interfere with antigen processing and presentation to the
MHC class II, reducing their T cell-priming ability by producing phenol-soluble modulins
(PSMs) that can form pores and cause disruption of the phagolysosome, hence evade
the DCs [54]. Recent studies in the field of immunomodulation show that Human beta-
defensin-3 (hBD3) can induce the maturation of Langerhans cell–like dendritic cells (LC-
DCs) followed by increment in the CCR7 expression. hBD3 also cause maturation of
primary human skin–migratory DCs that migrate towards the draining lymph nodes for
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induction of immune responses. Antimicrobial Peptide (human lactoferrin-derived peptide)
hLF1–11 also induces the monocyte-dendritic cell differentiation and as a result was found
to enhance the Th17 polarization which shows anti-fungal effects [55]. So modulation of
the DCs using AMPs can be part of the new immunotherapy regime [56].

4.2. Mast Cells

Mast cells are leukocytes from the hematopoietic lineage which are found in abundant
amount in the host epidermal layers and blood. The mast cells contain abundant amount
of secretory granules of histamine, serotonin and cytokine-like tumor necrosis factor (TNF)
and IL-4, as well as growth factors, like vascular endothelial growth factor [57]. Mast cells
enhance the migration of DCs into the site of infection. The mast cells are of two types
based on their phenotypes—(i) mucosal mast cells that produce tryptase; and (ii) connective
tissue-based mast cells that produce chymase, tryptase, and carboxypeptidases. At the
site of infection and inflammation, upon activation, mast cells release their secretory
granules and several chemokines and cytokines and lead to the induction of additional
inflammatory mediators [58]. Mast cells are also found to produce extracellular traps
known as the MC extracellular traps (MCETs) that entrap pathogens like the Group A
streptococci (GAS) and kill them by action of tryptase and the antimicrobial peptide LL-
37 [59]. In case of E. coli and K. pneumoniae, pathogen bind to the BMMCs by interaction of
CD48, a glycosylphosphatidylinositol-mannose receptor on mast cell surface with FimH,
a mannose-binding lectin present on the type-1 fimbriae [60] and hence reside inside the
mast cells and evade phagocytosis. However, it was found that chemically synthesized
AMPs like Retrocyclins (RC-100, RC-101) and Protegrin-1 (PG-1) caused degranulation
of the human mast cells (HMCs) by Mast related G protein coupled receptor X2 (MrgX2)
and act independent of the formyl peptide receptor-like 1 (FPRL1), a known receptor for
AMPs [61] and hence help in efficient clearance of the pathogens.

4.3. Neutrophils

Neutrophils also known as the human neutrophilic polymorphonuclear leukocytes
(PMNs) are integral part of the innate immune system and provide a primary line of defense
against bacterial infections. They are produced in bone marrow and keep circulating in
blood for hours, [62] and getting immediately recruited to the site of inflammation and
infection. Neutrophils employed in the site of infection uptake the bacteria, phagocytose
and kill them by ROS production or bactericidal agents. Recently, it has been found
to have a mechanism known as NETosis where release of neutrophil extracellular traps
(NETs) takes place [63]. The neutrophil recruitment to the site of infection is a multistep
process involving detection of the pathogen by recognizing their specialized PAMPs using
the host PRRs, like Toll-like receptors (TLRs) and nucleotide-binding oligomerization
domain (NOD) proteins [64]. This interaction triggers the production of cytokines and
chemokines like IL-8, IL-1α, IL-β, CXCL1, CXCL2, CXCL5, tumor necrosis factor (TNF). But
in case of gram-positive bacteria, they have inhibitory protein that binds to the receptors
and hence inhibit the ligand-receptor interaction. For example, Staphylococcus aureus
has chemotaxis inhibitory protein of S. aureus (CHIPS) that inhibits the migration of the
neutrophils by binding to the C5a receptor and formyl peptide receptor (FPR) [65]. In
case of gram-negative bacteria, many bacteria modify their lipid A structure to evade the
TLR4 recognition. They also employ masking of the epitopes that allows them to avoid
recognition by PRRs [66]. Recently it has been found that innate defense regulator (IDR) can
modulate the chemotactic action of the neutrophils to enhance the immune response against
skin associated pathogens. KSLW (KKVVFWVKFK-NH2) is a synthetic antimicrobial
peptide that showed immunomodulatory properties against the chemotactic effect on
human neutrophils, increasing its migration rate in case of infection of opportunistic skin
pathogens Staphylococcus aureus and Pseudomonas aeruginosa infections [67].
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4.4. Macrophages

Macrophages are immune cells of myeloid lineage present throughout the body for
immunosurveillance. They along with DCs, neutrophils and mast cells are known as
‘professional’ phagocytic cells that engulf the invading pathogens and foreign particles.
Macrophages are differentiated from precursor monocytes after they extravasate from
blood via endothelium [68]. There are different types of macrophages based on their
anatomical site and functional characteristics at those sites, like the specialized tissue-
resident macrophages which include osteoclasts present in the bone, alveolar macrophages
present in the lungs, histiocytes present near the interstitial connective tissue and Kupffer
cells present in the liver [69]. On the basis of functional activation, we can distinguishM1
macrophage that provides protection against several pathogens and also associated with
the tumor immunity; and the M2 macrophages also known as the regulatory macrophages,
having a role in wound healing and against inflammation. Tumour-associated macrophages
(TAMs), as the name suggests are involved in the tumour targeting immunity [70]. In case
of infection, bacteria are recognized by the epithelial cells using pathogen recognition recep-
tors (PRRs) based on the bacteria associated molecules. Once recognized release of the pro-
inflammatory cytokines and chemokines like granulocyte-macrophage colony-stimulating
factor (GM-CSF), monocyte chemotactic protein-1 (MCP-1), and various interleukins (IL-6,
IL-1β, and IL-8) takes place. Pathogens also contain chemoattractants that induce the
macrophages to be recruited for performing phagocytosis [71]. However, certain pathogens
hijack the alveolar macrophages by inhibiting the acidification of the phagosome. For exam-
ple, Mycobacterium tuberculosis (Mtb) secretes tyrosine phosphatase PtpA, that inactivates
the host vacuolar ATPase, and consequently phagosomal acidification, creating a place
for the bacteria to reside and persists [72]. Aryl-based synthetic mimics of antimicrobial
peptides (SMAMPs) with antimicrobial activity were found to perform immunomodulatory
activities in macrophages both in the presence and in the absence of lipopolysaccharide.
Hence, these synthetic peptides are considered as a promising therapy against various life
threatening infections [73].

4.5. Gamma Delta (γδ) T Cells

Gamma delta (γδ) T cells also known as the dendritic epidermal T cells (DETCs) are a
small group of CD3-positive T cells present in the peripheral blood and lymphoid tissues.
They are present in close proximity of the junction between the epidermis and the dermis.
γδ T cells cause induction of several cytokines, such as IL-4, IL-17, IL-21, IL-22, and IFN-γ,
which are associated with various immune responses [74]. They modulate the response
against skin inflammation and wound healing and form the first line of defense against
pathogens. γδ T cells are categorized into three subtypes according to the expression of γ
and δ chains: Vδ1 T cells, Vδ2 T cells, and Vδ3 T cells [75]. In case of bacterial infection like
Listeria monocytogenes, the circulating γδ T cells immediately come into action which causes
activation of the neutrophils and clearance of the pathogens from the system. However,
the bacteria are experts in evading the immune system, and evasion from the γδ T cells is
also part of it [76]. Certain pathogens evade the immune system by dysregulation of the
γδ T cells. It was found that Synthetic Cationic Peptide IDR-1002 showed induction of the
γδ T cells which lead to the activation of the adaptive immunity [77]. Such molecules thus
could be targeted and modulated in favor of enhancing host immune responses against
specific pathogens.

4.6. NK Cells

Natural killer (NK) cells are part of the innate immune system that has cytolytic
function mostly against tumor or virus infected cells. However, recently the role of NK
cells in the immune response against bacterial infections has been established. Upon
activation, the NK cells induce release of cytokines like IFN-γ, tumor necrosis factor-α
(TNF-α), granulocyte macrophage colony-stimulating factor (GM-CSF), and chemokines
like CCL1, CCL2, CCL3, CCL4, CCL5, and CXCL8 that can regulate the role of other innate
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and adaptive immune cells [78]. Even though NK cells constitute a smaller fraction of the
total lymphocyte population, yet they are highly widespread throughout the body. The
magnitude of the NK cells-mediated cytotoxicity is dependent on the microenvironment.
Type I IFN, IL-12, IL-18 and IL-15 are known activators of NK cells while IL-2 was found to
promote cell proliferation, cytotoxicity and cytokine secretion in the NK cells [79]. It was
found that in case of the extracellular bacterium Staphylococcus aureus, NK cell-depleted
mice had drastically higher bacterial load in the lungs and spleen as compared to control
animals [80]. In case of intracellular bacteria like M. tuberculosis, the NK cells caused
apoptosis of infected monocytes and thus killing the bacteria. NK cells also secrete cytotoxic
molecules like Granulysin, a membrane damaging peptide, which are effective against
both gram-positive and -negative bacteria [81]. However, certain bacteria have evolved to
utilize the NK cells to survive inside the host. For example, Listeria monocytogenes encodes
a protein that leads to the induction of NK cells. IL-10 produced by the NK cells regress the
activation of the inflammation-associated myeloid cells, resulting in an increased bacterial
load inside the host [82]. Antimicrobial peptide indolicidin and its synthetic structural
analogues were found to have anti-microbial activity. They were found to cause enhanced
killing the bacteria through the induction of improved killing activity of NK cells [83].

4.7. Keratinocytes

Keratinocytes are predominantly present in all the layers of epidermis. The differentia-
tion of the keratinocytes takes place while travelling from the outer epidermis towards the
skin surface. They provide protective shield to the skin against external environment and
pathogens [84]. The keratinocytes identify pathogens by the interaction of their PRRs with
the PAMPs present in pathogens. Among the PRRs, TLRs) are the most common that are
produced both constitutively as well as via induction, and dectin-1 and nucleotide-binding
oligomerization domain (NOD)-like receptors (NLRs) also take part in the pathogen recog-
nition [85]. The epidermal keratinocytes fight against the invading pathogens by releasing
cytokines and chemokines like CXCL1, CXCL2, CCL20, CCL2 and IL-8, and also certain
AMPs. Apart from that the epidermal keratinocytes are known to be non-professional
phagocytic cells that internalize the invading pathogens to potentiate the clearance of those
foreign material out of the body [86]. In case of S. aureus infection IL-17C gets activated
following recognition by the NOD2 based pathway and that in turn cooperate with TNF
and enhance the human β-defensin (HBD) 2 and HBD3 which cause reduction of the
pathogen load. Apart from that LL-37 was also produced by the keratinocytes which is
found to be effective against several pathogens [87]. But S. aureus was found to interact
with keratinocytes PRRs and cause stimulation of the keratinocyte autophagy which due to
some unknown reasons facilitates the persistence of the bacteria intracellularly by down-
regulating the inflammasome signaling pathway [88]. Recently, it has been found that
cathelicidin peptide LL-37 if used as immunomodulatory agent causes induction of the
proinflammatory cytokines in keratinocytes which enhance the bacterial clearance ability of
these cells [89]. Similarly, recently the antibacterial polymers has gained popularity as an ef-
fective alternative therapy against infections for example, amino-functional hyperbranched
dendritic–linear–dendritic copolymers (HBDLDs) based on polyethylene glycol (PEG) and
2,2-bis(hydroxymethyl)propionic acid (bis-MPA) are found to induce the expression of
RNase 7 and hence enhance keratinocyte mediated killing of the pathogens [90].

4.8. Melanocytes

Melanocytes are mainly known as the melanin pigment producing cells which are
responsible for the protection against UV-induced DNA damage. The melanocytes are
the dendritic cells that are mostly present in the epidermis and in the hair follicles [91].
Melanocytes are derived from the neural-crest, and they migrate while embryological
development takes place and localize in the skin and hair follicles [92]. The immunological
role of the melanocytes in the invertebrates is well studied and validated. However, in case
of the human melanocytes it has been found that in case of pathogens like Candida albicans
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the TLR2 and 4 expression heightens in the melanocytes which inhibit pathogen growth [93].
As already known that TLR2 is involved in the recognition of gram-positive bacteria based
on the peptidoglycan and lipoteichoic acid, and TLR4 recognizes the peptidoglycan present
in the gram-negative bacteria cell surface. Once recognized myeloid differentiation factor-88
(MyD88) gets recruited, which allows activation of the nuclear factor-κB (NF-κB) pathway
or mitogen-activated protein (MAP) kinase pathway that leads to the pathogen clearance
from the system [94]. Recently, it was found that pathogens like Salmonella typhimurium
can reside inside the melanocytes and hence evade the host defense system [95]. However,
alpha-melanocyte stimulating hormone (α-MSH) is a newly discovered neuropeptide from
the melanocortin family, which has been found to enhance the activity of the melanocytes
leading to enhanced antimicrobial activity and bacterial clearance [96].

5. AMPs in Adjunct Therapy

Recently, several AMPs have undergone various stages of preclinical and clinical phase
trials to combat skin related bacterial infections. AMPs has recently gained highlight as
promising alternatives to combat bacterial infections and control microbial resistance [97].
The main steps in the AMP therapeutic development must include: (i) to screen for AMPs
that are effective against prevalent multi-drug resistant opportunistic pathogens; (ii) to
evaluate the impact of immunomodulation by AMPs in treating skin infections; (iii) to
identify new techniques for better delivery of the AMPs. Some of the examples of AMPs in
clinical trials as therapeutics include, IDR-1018 already in clinical trials (phase II) for healing
wounds [98]. AG-30, an angiogenic peptide that showed high antimicrobial activity against
P. aeruginosa, E. coli, and S. aureus via a membrane disruption mechanism [99]. Histatin 5
(Hst 5) is a salivary cationic peptide produced with anti-bacterial activity against five out
of six ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumanni, Pseudomonas aeruginosa, and Enterobacter species) pathogens [32].
AMPs are also used as adjuvants for the development of vaccines against viral and bacterial
infections. hBD-2 is being used as an adjuvant to the vaccine against Mycobacteroides, has
increased the effectiveness of therapy [100]. Pexiganan, a derivative of magainin, is under
phase III trials for the treatment of infected foot ulcers in patients with diabetes mellitus [34].
Synthetic peptides such as P-novispirin G10 which has a bactericidal immunomodulatory
fusion peptide of HBD-3 with a mannose-binding lectin, showed high effectivity against
MRSA [101].

Challenges of AMP Therapies

Several AMPs are currently undergoing clinical trial for replacing the conventional
antibiotics to treat several bacterial infections. However, one of the major problems asso-
ciated with AMPs is their cytotoxic nature [102]. Because of the possible cytotoxicity of
AMPs the clinical trial of many AMPs are not possible. For example, tyrothricin can only
be administered topically because of its systemic toxicity. Recently, there are strategies
like developing synthetic analogues of AMPs that are less toxic in nature for example,
truncated LL-37 fragments, named as LL-13 and LL-17, are less toxic in nature and are
highly effective against both MRSA and VRSA Staphylococcus aureus strains [103]. Apart
from cytotoxicity another problem with AMP therapy is the delivery of AMPs to the site of
infection. To solve this problem several novel AMP delivery systems are being developed.
For example, nanotubes attached AMPs like graphene oxide nanotubes attached AMPs
are found highly effective against Staphylococcus aureus (MRSA) strains [104]. Hydrogels
loaded with alamethicin are found to be effective in reducing bacterial adherence and
fastening the wound healing [105].

6. Conclusions

Identification and development of new therapeutic strategies to deal with infections
caused by antibiotic-resistant bacteria continues to be one of the major problems in the
field of drug discovery. AMPs are found to be highly effective against multi-drug resis-
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tant opportunistic skin pathogens. Apart from that, the concept of immunomodulation
has opened a new avenue in the field of therapeutics. AMPs can be exploited to mod-
ulate not only the innate immune responses but also to deal with infections caused by
antibiotic-resistant bacteria. It will aid not only to fight against skin pathogens but also
to treat inflammatory skin diseases and promote wound healing. Recent advances in the
understanding of the cellular and molecular functions and mechanisms of AMPs in human
skin and in infectious/inflammatory skin diseases, will contribute to have better target
medicines and therapies.
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