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Abstract: This research focuses on assessing the synergistic effects of Mexican oregano (Lippia grave-
olens) essential oil or carvacrol when combined with the antibiotic imipenem, aiming to reduce
the pathogenic viability and virulence of Acinetobacter baumannii and Pseudomonas aeruginosa. The
study highlighted the synergistic effect of combining L. graveolens essential oil or carvacrol with
imipenem, significantly reducing the required doses for inhibiting bacterial growth. The combination
treatments drastically lowered the necessary imipenem doses, highlighting a potent enhancement in
efficacy against A. baumannii and P. aeruginosa. For example, the minimum inhibitory concentrations
(MIC) for the essential oil/imipenem combinations were notably low, at 0.03/0.000023 mg/mL for A.
baumannii and 0.0073/0.000023 mg/mL for P. aeruginosa. Similarly, the combinations significantly
inhibited biofilm formation at lower concentrations than when the components were used individu-
ally, demonstrating the strategic advantage of this approach in combating antibiotic resistance. For
OXA-51, imipenem showed a relatively stable interaction during 30 ns of dynamic simulation of
their interaction, indicating changes (<2 nm) in ligand positioning during this period. Carvacrol
exhibited similar fluctuations to imipenem, suggesting its potential inhibition efficacy, while thymol
showed significant variability, particularly at >10 ns, suggesting potential instability. With IMP-1,
imipenem also displayed very stable interactions during 38 ns and demonstrated notable movement
and positioning changes within the active site, indicating a more dynamic interaction. In contrast,
carvacrol and thymol maintained their position within the active site only ~20 and ~15 ns, respectively.
These results highlight the effectiveness of combining L. graveolens essential oil and carvacrol with
imipenem in tackling the difficult-to-treat pathogens A. baumannii and P. aeruginosa.

Keywords: Lippia graveolens; carvacrol; A. baumannii; P. aeruginosa; co-cultures

1. Introduction

Antibiotics are drugs used to treat infections caused by bacteria, which cause their
elimination or limit their growth and multiplication [1]. However, the efficacy of these
agents has been widely threatened due to a phenomenon known as antibiotic resistance.
This refers to the set of mechanisms that bacteria employ to avoid the effect of antibiotics
on them, with poor control of their use being one of the possible causes of microorganism
mutation for developing this condition [2,3]. Antibiotic resistance represents a serious
large-scale health problem, as it endangers global human development [3]; in 2019 alone,
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around 5 million people died from some disease related to resistant microorganisms [4],
and it is estimated that this figure will increase to 10 million by 2050, accumulating a
global cost of 100 trillion dollars [5]. In conjunction, the development of resistance has also
limited the arsenal of available drugs [6]. Such is the case with carbapenem antibiotics,
used for treating severe pathogens due to their broad activity and are considered last-line
treatment. However, with the emergence of resistant strains, the efficacy of these treatments
is compromised [7,8]. In this sense, a group of bacteria has been recognized as priority
pathogens according to the WHO, due to their great capacity of resistance to antibiotics
and have become of research interest. This is formed by the pathogens Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa
and Enterobacter spp. [9,10]. Furthermore, these microorganisms are responsible for more
than 50% of all clinical infections [11].

Within this group, two pathogens, A. baumannii and P. aeruginosa, stand out due to
their markedly relevant resistance and mortality rates. A. baumannii is a bacterium that
has stood out for its ability to withstand hostile environments and develop and exhibit
resistance factors [12]. Between 2019 and 2020 alone, at the beginning of the COVID-19
pandemic, there was an increase in the number of infections caused by carbapenem-
resistant A. baumannii, amounting to 79% more [13]. Furthermore, this pathogen’s overall
prevalence of resistance to imipenem has been estimated at 53.8–76.8% [6], which may
partly explain its high mortality rate, estimated to be as high as 68% [14]. Resistant P.
aeruginosa-related infections also increased by 32% in 2020 [13], and this characteristic of
resistance causes a high degree of mortality [15]. These rates vary widely, ranging from
32% to 64% in infections such as ventilator-associated pneumonia (VAP), sepsis in burn
patients and bloodstream infections [16]. However, the situation can be exacerbated if the
disease is caused by a multiresistant strain, in which case mortality can be as high as 70%.
Accordingly, it has been estimated that the global rate of resistance to carbapenems by P.
aeruginosa ranges from 10 to 50% [17].

In turn, antibiotic resistance can manifest itself through several mechanisms, the main
ones being the alteration of membrane permeability, increased activity of efflux pumps,
modification of the drug target site, biofilm formation and the presence of enzymes that
degrade or modify antibiotics [18]. These last two mechanisms are factors of great interest
because, on the one hand, biofilms provide the pathogen with the capacity to resist adverse
environmental situations and protect it from external agents that may harm it, such as
antibiotics, which makes its treatment more difficult [17,19]. On the other hand, resistance
mediated by modifying enzymes, such as β-lactamases, represents a common cause of
difficult-to-treat infections and provides bacteria with increased resistance to antibiotics [19].
For A. baumannii, β-lactamases of the OXA type are the predominant factor in carbapenem
resistance in this bacterium [12], while in P. aeruginosa, the IMP-1 enzyme was the first
metallo-β-lactamase (MBL) identified and associated with carbapenem resistance and one
of the most widely distributed since its coding genes can spread between species [20].

Due to the increasing antibiotic resistance and diminishing effectiveness, clinical
practice is searching for alternatives that can permeate this discouraging scenario. In
this regard, the use of plant compounds has proven to be a good option as they exhibit
characteristics such as low toxicity, accessibility, extensive medicinal use, and above all,
a high antibacterial capacity related to their phytochemical composition [21–23]. A plant
with great antibacterial activity is oregano in its different species (Origanum vulgare and
Lippia graveolens), which has proven to be effective against microorganisms such as Candida
albicans, methicillin-resistant Staphylococcus aureus (MRSA), Salmonella enterica, P. aeruginosa
and A. baumannii [24–27]. This effectiveness is attributed to its main terpene compounds,
carvacrol and thymol. In addition, one of the current trends is the combination of antibacte-
rial agents, which has been shown to have enhanced antibacterial activity. For example, a
study evaluated the combination of O. vulgare essential oil with polymyxin B against iso-
lates of A. baumannii and observed a synergistic effect inhibiting its growth [28]. Similarly,
another study revealed that when A. baumannii was cultured on a medium containing trans-
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cinnamaldehyde-β-lactam antibiotic and eugenol-β-lactam combinations, respectively, the
bacterial growth was decreased compared to bacteria exposed to individual treatments [29].
Building upon these findings, this study explored the synergistic effects of L. graveolens
essential oil and carvacrol combined with imipenem in axenic cultures and co-cultures, a
perspective not extensively examined in previous research.

2. Results
2.1. Antibacterial Capacity of L. graveolens Essential Oil, Carvacrol and Imipenem against Axenic
Culture and Co-Culture of P. aeruginosa and A. baumannii
2.1.1. Formation of the Co-Culture

Two distinct morphological characteristics were identified in colonies grown in co-
cultures (Figure S1), distinguishing the studied species; large, circular, white, raised, creamy
colonies were identified as A. baumannii, while small, spotty, circular, white, poorly translu-
cent colonies were established as P. aeruginosa [30–34]. It was determined that the 1:1000
ratio with 1 µL of P. aeruginosa and 999 µL of A. baumannii allowed optimal growth of both
bacteria in the medium, so the following evaluations were performed using that established
ratio (Figure S1C). This ratio showed a variation in growth of 1,127,495 CFU/mL for A.
baumannii and 1,333,402 CFU/mL for P. aeruginosa. A. baumannii represented 48.89% of the
total bacterial growth, while P. aeruginosa obtained 51.11%, compared with the initial inocu-
lum, showing a downward readjustment in A. baummannii and an upward readjustment in
P. aeruginosa.

Establishing a homogeneous co-culture of A. baumannii and P. aeruginosa offers several
key advantages for this study. Firstly, a balanced co-culture could more accurately simulate
polymicrobial infections, providing a more complex model for assessing treatment efficacy.
Secondly, using this co-culture will help understand how treatments impact each species in a
shared environment. Moreover, maintaining a balance in bacterial competition ensures that
neither species outcompetes the other, which is important for evaluating the simultaneous
effects of active compounds on both bacteria.

2.1.2. MIC and MBC of L. graveolens, Carvacrol and Imipenem against Axenic and
Co-Culture of P. aeruginosa and A. baumannii

Table 1 shows the MIC and MBC values for imipenem, L. graveolens essential oil, and
carvacrol against A. baumannii and P. aeruginosa, both in axenic cultures and co-cultures.
A notable observation is the increased dosage requirement for MBCs compared to MICs,
indicating a higher concentration needed for bactericidal effects. For A. baumannii, the MBC
of imipenem was twice as high as its MIC, while the essential oil and carvacrol required
higher doses. Conversely, P. aeruginosa was more susceptible to the plant compounds,
requiring only half the MIC necessary for A. baumannii.

Table 1. Minimum inhibitory concentrations (MICs) and bactericidal concentrations (MBCs) of
imipenem, L. graveolens essential oil and carvacrol against P. aeruginosa and A. baumannii in the axenic
and co-cultured form at 1:1000 ratio.

A. baumannii P. aeruginosa Co-Culture

Antibacterial (mg/mL) MIC MBC MIC MBC MIC MBC

Imipenem 5 × 10−4 1 × 10−3 5 × 10−4 >2 × 10−3 5 × 10−4 4 × 10−3

Essential oil of L. graveolens 0.625 >15 0.156 0.312 1.25 >15

Carvacrol 0.150 >2.25 0.075 0.150 0.30 >2.25

Number of replicates > 3.
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Furthermore, in co-culture, the necessary doses for bactericidal action were elevated
compared to individual cultures: imipenem required up to fourfold for A. baumannii, while
the essential oil’s MIC was eightfold higher than that for P. aeruginosa alone. Carvacrol’s
MIC needed to inhibit co-culture growth was double that for A. baumannii. These differen-
tial susceptibilities underscore the complexity of treating co-infections and highlight the
importance of tailored antibacterial strategies. The results obtained at this stage made it
possible to determine the inhibitory concentrations of each antibacterial against A. bauman-
nii and P. aeruginosa bacteria grown individually and in co-culture. These concentrations
were used in the antibacterial combination tests to establish their effect on the viability and
virulence of the two bacteria under investigation.

2.2. Synergy of L. graveolens–Imipenem and Carvacrol–Imipenem against Axenic and Co-Cultures
of P. aeruginosa and A. baumannii

Table 2 shows the fractional inhibitory concentration indices (FICIs) of the combina-
tions of each plant compound with imipenem against bacterial axenic and co-cultures. This
parameter was obtained from the sum of the Fractional Inhibitory Concentration (FIC) of
each combined agent, obtained from the ratio between the MIC in the combination and
the individual MIC (Table 1). For A. baumannii, using combinations of oregano essential
oil–imipenem and carvacrol–imipenem at doses 21 times lower than the MIC of each agent
was enough to inhibit its growth. In the case of P. aeruginosa, the same pattern of behavior
was observed for the essential oil–imipenem combination, as 21.4 times less than the MIC
of each agent was required. However, for the carvacrol–imipenem combination, 21.4 times
less of the MIC of carvacrol and 10.7 times less of the MIC of imipenem was needed to
inhibit bacterial growth.

Table 2. Minimum inhibitory concentrations (MICs) and fractional inhibitory concentration indices
(FICIs) in the combinations of imipenem, L. graveolens essential oil and carvacrol against P. aeruginosa
and A. baumannii in the axenic and co-culture form that resulted in synergistic effects.

Type of Culture
EO L.

graveolens
(MIC, mg/mL)

Imipenem
(MIC, mg/mL) Effect (FICI) Carvacrol

(MIC, mg/mL)
Imipenem

(MIC, mg/mL) Effect (FICI)

A. baumannii axenic 0.03 2.34 × 10−5 Synergy (0.09) 7 × 10−3 2.34 × 10−5 Synergy (0.09)

P. aeruginosa axenic 7.30 × 10−3 2.34 × 10−5 Synergy (0.09) 3.5 × 10−3 4.69 × 10−5 Synergy (0.14)

Co-culture 0.06 4.69 × 10−5 Synergy (0.14) 0.014 4.69 × 10−5 Synergy (0.14)

Number of replicates > 3. EO: essential oil.

The combinations of essential oil–imipenem and carvacrol–imipenem in co-culture
showed a similar trend, since higher concentrations were required to inhibit co-culture
growth compared to the axenic ones. It was necessary to use twice the concentration of
oregano essential oil against co-cultures compared to that used in the combination against
A. baumannii and eight times more than that required against P. aeruginosa. Meanwhile,
when combined with oregano oil, the concentration of imipenem was two times higher in
the co-culture than required to inhibit both bacteria’ axenic growth. The same behavior
was observed for the carvacrol combination compared to the concentration needed in A.
baumannii. Finally, twice the concentration of carvacrol was necessary for the co-culture for
A. baumannii in the combination test. At the same time, in comparison with P. aeruginosa, it
required four times the concentration in the co-culture system. However, it was evident
that the combinations of treatments could considerably reduce the doses used for inhibition
in both types of systems.
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The FICIs of the lower concentrations were established between 0.0934 and 0.14041,
indicating that the proposed combinations had a synergistic effect in inhibiting bacterial
growth. The combination of antibacterial agents is a practice that has gained great relevance,
supported by its effectiveness in bacterial control [35].

2.3. Individual and Combined L. graveolens Essential Oil, Carvacrol, and Imipenem against Axenic
and Co-Cultured Biofilms of P. aeruginosa, A. baumannii on Endotracheal Tubes

Table 3 and Figure 1 detail the inhibitory effects on biofilm formation for A. baumannii,
P. aeruginosa, and their co-culture when treated with L. graveolens essential oil, carvacrol,
imipenem, and their combinations. P. aeruginosa biofilms demanded higher concentrations
of L. graveolens essential oil and imipenem for inhibition compared to A. baumannii. Specifi-
cally, L. graveolens essential oil required a 2.25-fold greater concentration and imipenem a
1.8-fold increase, while carvacrol needed the same concentration for both pathogens. On
the contrary, the inhibitory concentration of L. graveolens essential oil in co-culture is com-
parable to that employed for P. aeruginosa axenic culture (3 and 2.7 mg/mL, respectively).
However, in the case of carvacrol, it is necessary to use concentrations 10 times greater than
those of axenic cultures. Notably, imipenem’s effect on biofilm formation in the co-culture
system is more effective than in axenic cultures. This highlights the potential of combined
treatments for treating antibiotic-resistant bacteria.

Table 3. Minimum biofilm inhibitory concentrations (MBICs) of L. graveolens essential oil, carvacrol,
imipenem and their combinations on A. baumannii, P. aeruginosa and their co-culture.

Type of Culture
Minimum Biofilm Inhibitory Concentrations (MBICs, mg/mL)

OEO Carvacrol Imipenem OEO/Imipenem Carvacrol/Imipenem

A. baumannii axenic 1.2 0.6 5 × 10−4 0.06/2.35 × 10−5 0.18/1.41 × 10−4

P. aeruginosa axenic 2.7 0.6 9 × 10−4 0.48/1.68 × 10−4 0.03/8.5 × 10−5

Co-culture 3 6 2.5 × 10−4 0.6/9.4 × 10−5 1.12/9.4 × 10−5

Number of replicates > 3. OEO = essential oil of L. graveolens.

Remarkably, the treatment combination exhibited a pronounced reduction in the doses
needed to inhibit biofilm formation. For instance, combining 0.06 mg/mL of oregano
oil with 2.35 × 10−5 mg/mL of imipenem reduced A. baumannii biofilm establishment,
marking a 20- to 21-fold dose reduction compared to their individual applications. The
carvacrol/imipenem combination also displayed this dose-lowering effect, requiring 3.3 to
3.5 times less concentration than when used individually. This synergistic effect extended to
the treatment of co-cultures, where the L. graveolens oil/imipenem combination effectively
inhibited biofilms at significantly reduced doses—five times less for the oil and nearly
three times less for imipenem compared to their separate use. The carvacrol/imipenem
combination maintained this trend, showcasing an equal concentration reduction factor.

Fluorescence microscopy images ratified these findings (Figure 1), revealing a sub-
stantial decrease in biofilm formation when treatments were applied, particularly with
antimicrobial combinations. Notably, irrespective of the culture type, the concentrations
necessary to inhibit biofilm formation exceeded those required to suppress planktonic
bacterial growth. For instance, the dose of L. graveolens essential oil needed to reduce A.
baumannii biofilm growth was double that for planktonic inhibition. In contrast, P. aerug-
inosa biofilms required an even higher, 17-fold increase in the essential oil concentration
over the MIC. Similarly, the carvacrol dose increased eight-fold, and the imipenem dose
nearly doubled to inhibit biofilm formation compared to their planktonic counterparts. In
co-culture systems, biofilm inhibition called for a 2.4-fold increase in L. graveolens essen-
tial oil concentration and a 20-fold rise in the carvacrol dose, while imipenem’s biofilm
inhibitory dose was half that of its planktonic MIC, underscoring the nuanced dynamics of
biofilm response to treatment.
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These results reflect the potent inhibitory effects of L. graveolens essential oil, car-
vacrol, and imipenem on the biofilm formation of A. baumannii, P. aeruginosa, and their
co-culture, with the combinations revealing a remarkable synergy that significantly reduces
the required doses.
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Figure 1. Fluorescence microscopy (200×) of biofilms of A. baumannii, P. aeruginosa and their co-culture
on glass coverslips, incubated at 37 ◦C for 24 h in LB broth exposed to ½ MIC of the treatments essen-
tial oil of L. graveolens (EO), carvacrol and combinations with imipenem, stained with Syto 9 at 0.001%.
(a) Control A. baumannii, (b) control P. aeruginosa, (c) co-culture control, (d) biofilm of A. baumannii
exposed to 0.312 mg/mL EO, (e) biofilm of P. aeruginosa exposed to 0.078 mg/mL of EO, (f) co-culture
biofilm exposed to 0.625 mg/mL of EO, (g) biofilm of A. baumannii exposed to 0.075 mg/mL of
carvacrol, (h) biofilm of P. aeruginosa exposed to 0.0375 mg/mL carvacrol, (i) co-culture biofilm
exposed to 0.15 mg/mL carvacrol, (j) A. baumannii biofilm exposed to EO–imipenem combination
of 0.015/1.17 × 10−5 mg/mL, (k) P. aeruginosa biofilm exposed to EO–imipenem combination of
3.65 × 10−3/1.17 × 10−5 mg/mL, (l) co-culture biofilm exposed to EO–imipenem combination of
0.03/2.34 × 10−5 mg/mL, (m) biofilm of A. baumannii exposed to the carvacrol–imipenem com-
bination of 3.5 × 10−3/1.17 × 10−5 mg/mL, (n) biofilm of P. aeruginosa biofilm exposed to the
carvacrol–imipenem combination of 1.75 × 10−3/2.34 × 10−5 mg/mL, (o) co-culture biofilm exposed
to the carvacrol–imipenem combination of 0.007/2.34 × 10−5 mg/mL.

2.4. In Silico Binding Affinity and Dynamic Stability of Molecular Complexes between OXA-51
and IMP-1 β-Lactamases from A. baumannii and P. aeruginosa with Carvacrol, Thymol
and Imipenem
2.4.1. Binding Affinity

Table 4 presents the binding affinities and interactions of carvacrol, thymol, and
imipenem within the active sites of OXA-51 and IMP-1 β-lactamases from A. baumannii and
P. aeruginosa. Imipenem, as the natural substrate of these enzymes, showed the strongest
binding affinity, serving as the benchmark for comparison. Specifically, imipenem’s binding
strength showed the highest negative affinity energy, indicating a robust and likely stable
interaction, particularly with OXA-51 at −6.1 Kcal/mol and IMP-1 at −5.5 Kcal/mol.
Carvacrol followed closely, especially with OXA-51, exhibiting marginally lower affinity
energy, suggesting a slightly less strong but still significant interaction. While still effectively
binding, thymol displayed the least affinity.

Table 4. In silico molecular interactions between OXA-51 and IMP-1 enzymes with imipenem,
carvacrol and thymol, in a competitive landscape (obtained through Chimera 1.16 and Discovery
Studio 2021).

Enzyme Molecule Affinity Energy
(Kcal/mol) Interactions Amino acids

OXA-51 Imipenem −6.1

- Conventional hydrogen bond
- Hydrogen–carbon bond

- Pi-Sulfur
- Pi-Alkyl

- Arg 260 *
- Ser 218
- Gly 219
- Ser 80 *

- Phe 111 *
- Trp 114 *
- Trp 222
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Table 4. Cont.

Enzyme Molecule Affinity Energy
(Kcal/mol) Interactions Amino acids

Carvacrol −5.5
- Conventional hydrogen bond

- Pi-Sigma
- Pi-Pi T-shaped

- Arg 260 *
- Phe 111 *

Thymol −5.4 - Pi-Pi stacked
- Pi-Alkyl

- Phe 111 *
- Trp 220

- Trp 114 *
- Tep 222

IMP-1
Imipenem −5.5

- Conventional hydrogen bond
- Hydrogen–carbon bond

- Alkyl
- Pi-Alkyl

- Asp 81
- Asn 167 *
- His 139 *
- Val 25 *
- Val 31 *
- His197

Carvacrol −4.9

- Conventional hydrogen bond
- Pi-Donor hydrogen bond

- Pi-Sigma
- Pi-Sulfur
- Pi-Alkyl

- Asp 81
- His 139 *
- Asn 167 *
- His 197
- His 79 *
- Cys 158

Thymol −4.8

- Conventional hydrogen bond
- Pi-Donor hydrogen bond

- Unfavorable Donor–Donor
- Pi-Sigma
- Pi-Alkyl

- His 77 *
- Asn 167 *
- His 197
- His 79 *
- His 139 *

* Amino acids mostly related to the active site of OXA-51 and IMP-1 enzymes or more actively involved. They are
also indicated by underlining.

The interactions at the atomic level, particularly with key amino acids like Arg260
and Ser80 for OXA-51, suggested a dynamic interplay where imipenem forms stabilizing
hydrogen bonds. At the same time, carvacrol engages through both hydrogen bonding and
hydrophobic interactions with conserved residues. Notably, thymol’s interactions diverge,
lacking the specific bonding with catalytic site residues, which may account for its lower
binding affinity.

2.4.2. Complexes Stability by Dynamic Simulation

The interactions between ligands and enzymes are dynamic phenomena; they evolve,
influenced by the inherent stability of the initial complex. To capture the essence of
this dynamism, the fluctuations of the ligand–enzyme complexes involving imipenem,
carvacrol, and thymol with OXA-51 and IMP-1 β-lactamases were investigated. The
resultant of ligand root mean square deviation (RMSD) profiles (Figure 2) represents the
stability of the interactions between ligand and protein over time.

Figure 2 shows the RMSD and binding free energies of the ligands with β-lactamase
OXA-51 (a and b) and IMP-1 (c and d). A stable RMSD curve, with minimal fluctuations,
indicates a robust and enduring interaction, while significant variability suggests a more
transient and potentially weaker binding. For OXA-51, imipenem demonstrates substantial
stability (RMSD < 2 nm) during 30 ns of simulation, with notable deviations at later
points, possibly signifying enzymatic processing. Carvacrol’s steadiness implies a durable
interaction comparable to imipenem (~30 ns) with some alterations after 5 ns, while thymol
shows pronounced variability after 10 ns, indicative that its interaction with OXA-51 is
less favorable.
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The ligand-OXA-51 RMSD patterns revealed that the imipenem dissociates around
40 ns, aligning with the expected enzymatic cleavage. Carvacrol remains anchored in the
active site, suggesting a stable interaction throughout the simulation. Thymol, conversely,
displays more pronounced movements, potentially affecting its binding stability. The
insights gained from the RMSD patterns call for a more detailed examination of the crucial
moments of interaction between the ligands and the OXA-51 enzyme, which are detailed
in Supplementary Figures S2–S4. Similarly, the binding behavior of these ligands with
IMP-1, depicted in Figure 2c, highlights the differences in variations of interactions between
ligands over time. Notably, the RMSD trajectory for imipenem and carvacrol with IMP-1
remains relatively stable, with a discernible decrease in its stability for imipenem at 38 ns
(likely indicative of hydrolytic process) and 20 ns, respectively. The detailed progression of
these interactions over time can be further explored in Supplementary Figures S5–S7.

This analysis accentuates the importance of considering the dynamic nature of ligand–
enzyme interactions in predicting the efficacy of antimicrobial agents. The observed binding
behaviors, characterized by varying degrees of stability, provide a molecular basis for the
synergistic effects seen in experimental biofilm inhibition assays.

3. Discussion

Establishing a co-culture between A. baumannii and P. aeruginosa is critical in modeling
polymicrobial interactions, a common challenge in clinical infections such as cystic fibrosis
and pneumonia. Our study’s ability to maintain a balanced co-culture mirrors recent re-
search indicating the complexity of microbial communities where cross-feeding and biofilm
production contribute to the synergy between co-infecting pathogens, often exacerbating
disease severity and challenging antimicrobial treatments [36].

Our findings suggest a dynamic coexistence between A. baumannii and P. aeruginosa,
potentially mediated by similar mechanisms of cross-protection as those reported in biofilm
conditions, which can significantly alter antibiotic resistance profiles within microbial
communities [37,38]. This cross-protection is particularly notable in our observations of the
varying growth rates between the two bacteria, aligning with recent studies that have found
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that A. baumannii can protect other bacteria within biofilms, thereby enhancing resistance to
antibiotics [39]. Additionally, the higher proportions of P. aeruginosa in our co-culture may
be attributed to its virulence factors and the ability to produce compounds detrimental to
neighboring microbes, as seen in other studies where P. aeruginosa’s toxic by-products lead
to increased susceptibility and even lysis of other bacteria like S. aureus [40,41]. This aligns
with the concept that polymicrobial interactions are not solely competitive but can also
include protective and symbiotic relationships that facilitate coexistence and even shared
resistance to environmental stresses.

The implications of these results extend to the understanding of in vivo infections,
similar to observations made by Ramsey et al., where pathogen persistence was reliant
on cross-feeding by a co-infecting pathogen with the exchange of by-products, such as
ethanol and lactate [42]. This phenomenon between A. baumannii and P. aeruginosa could
play a role in their co-persistence and impact on biofilm formation. The potential for
shared siderophore utilization and cross-feeding between pathogens could necessitate
a re-examination of antibiotic regimens to ensure that treatment is effective against the
collective resistance mechanisms employed by co-infecting pathogens. This study advances
the understanding of co-culture formation and stability and contributes to the broader
narrative of microbial relations in polymicrobial interactions, highlighting the need for
innovative treatment strategies that consider the dynamic and synergistic nature of these
complex bacterial communities.

The establishment of co-culture between A. baumannii and P. aeruginosa marks an
advancement in the simulation of polymicrobial infections. Dynamic adjustments observed
in microbial populations during the study reflect the complexities created by species
interaction. The strains examined demonstrated sensitivity to imipenem according to CLSI
guidelines [43], suggesting its continued relevance in treating such infections.

The Lippia graveolens essential oil used in this study was characterized in detail in a
previous study carried out by Rodriguez-Garcia et al. [44] by using gas chromatography–
mass spectrometry, where carvacrol was identified as the predominant component (47.4%),
accompanied by significant amounts of p-cymene (26.4%) and smaller fractions of thymol
(3%), among others. The consistency in the major components such as carvacrol, p-cymene,
and thymol aligns with findings from other studies [45]. Additionally, DMSO as a solvent
was necessitated by the low aqueous solubility of the essential oil components, which might
pose challenges for therapeutic applications.

MICs and MBCs for L. graveolens essential oil and carvacrol against axenic cultures
align with previous investigations, including those with O. vulgare essential oil [27] [46–48].
This places our findings in an established scientific context and expands on the efficacy
of treatment combinations against axenic and co-cultures. Notably, the differential doses
required for A. baumannii compared to P. aeruginosa underscore the influence of specific
virulence factors like the polysaccharide capsule in bacterial resistance mechanisms [49,50].
The study indicates that combining plant-derived compounds with imipenem may offer
a promising advance for clinical therapy in the context of bacterial resistance. These
combinations exploit distinct mechanisms of action—disruption of membrane integrity
by essential oils and inhibition of cell wall synthesis by imipenem—potentially enhancing
antibacterial outcomes [48,51–59]. Such strategies could contribute significantly to the fight
against rising antibiotic resistance by varying the approaches to pathogen inhibition.

Synergistic effects observed in L. graveolens–imipenem and carvacrol–imipenem com-
binations across both axenic and mixed cultures highlight the potential of integrative
therapies to augment the action of traditional antibiotics [28,60–62]. This is particularly
pertinent considering the resistance mechanisms activated during co-culture conditions,
including the upregulation of β-lactamase genes, which may undermine the efficacy of
monotherapies [41,63]. The results suggest that therapeutic strategies should consider the
collective action of antimicrobial agents within polymicrobial environments. This approach
may lead to more effective clinical interventions, addressing the intricate interplay of bac-
terial species and their resistance profiles. The insights gained provide a foundation for
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further investigation into the interactive dynamics of A. baumannii and P. aeruginosa, with
implications for evolving clinical treatments against these resistant pathogens.

Biofilm formation in bacteria like P. aeruginosa and A. baumannii can significantly
contribute to their resistance to antibiotics [27,39,64,65]. Recent research has highlighted
the complexity of biofilm-associated antibiotic resistance. For instance, a study by Elfaky
et al. [66] explored the antibacterial potential of 6-gingerol against various bacteria, includ-
ing P. aeruginosa and A. baumannii, focusing on its impact on biofilm formation. Similarly,
Yunus et al. [67] investigated bacterial biofilm growth and perturbation, revealing insights
into the biofilm formation processes of these pathogens. Moreover, research by Celebi
et al. [68] suggested that vitamins could potentiate antibiotic effects against multidrug-
resistant strains of these bacteria, with a notable impact on biofilm formation. Abdullah
and Younis [69] aimed to understand the influence of antibiotic concentrations on biofilm
production by A. baumannii and P. aeruginosa, suggesting a direct relationship between
biofilm formation capabilities and antibiotic resistance. These findings indicate that biofilm
formation serves as a barrier protecting bacterial communities from antibiotic penetra-
tion and as a microenvironment facilitating the transfer of resistance genes. Therefore,
targeting biofilm formation and maturation processes presents a promising strategy for
enhancing the efficacy of antibiotics against biofilm-associated infections by P. aeruginosa
and A. baumannii.

Incorporating this understanding into the current discussion, the findings reflect
that L. graveolens essential oil and carvacrol are effective against biofilm formation in A.
baumannii, P. aeruginosa and their co-culture. Moreover, these plant compounds combined
with imipenem not only inhibited biofilm formation but also reduced the effective doses of
the antibacterials required, which is in line with the strategy to combat bacterial resistance
by using natural compounds that can disrupt biofilm formation and quorum sensing
mechanisms [39,52,70–72]. The combination treatments have shown potential for inhibiting
biofilms by acting on different target sites and stages of biofilm development [27,73–83].
This multipronged approach, targeting both the bacterial cell wall and disrupting biofilm
integrity, holds the potential for more effective treatment strategies, providing an innovative
direction in the fight against resistant bacterial infections.

The binding affinities of phytochemicals to bacterial enzymes such as Penicillin Bind-
ing Proteins (PBPs) and Elongation Factors like EF-Tu have revealed inhibitory interactions
important in the quest for novel anti-resistance strategies [84,85]. In particular, Kaempferol
and Elatine have exhibited strong binding affinities, with Elatine demonstrating a signif-
icant docking score against PBP, suggesting an effective blockade of the bacterial drug
targets [86]. Such molecular interactions are relevant as they may prevent the enzymatic
degradation of antibiotics, thus enhancing their efficacy. This concept is underlined by
studies where terpenes, such as carvacrol, have been shown to bind with notable affinity to
microbial proteins. For instance, carvacrol’s interaction with the E protein of the Dengue
Virus serotype 2, with an affinity energy suggesting significant inhibition of enzymatic
activity, underscores the antiviral and antibacterial potential of terpenes [87]. Similarly,
molecular docking of natural compounds with NDM-1, an MBL from P. aeruginosa, revealed
compounds with binding energies indicative of potential inhibitory action [88].

These insights are particularly relevant to the current study, which explores the molec-
ular interactions between hydrolytic enzymes like OXA-51 and IMP-1 and plant-derived
terpenes. The findings suggest that terpenes may bind favorably to these enzymes, possibly
blocking their active sites and thereby reducing the drug’s degradation, especially carvacrol,
which was more stable in the complex. Such a mechanism could explain the synergistic
effect when these terpenes are combined with antibiotics like imipenem. Therefore, incor-
porating plant compounds could represent a significant advance in counteracting antibiotic
resistance and decreasing bacterial virulence.

The broader implications of these findings are profound. They not only contribute to a
deeper understanding of the antimicrobial mechanisms of terpenes but also open avenues
for the development of innovative therapeutic strategies against bacterial resistance. By
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inhibiting crucial enzymes involved in resistance pathways, these natural compounds
could be harnessed to enhance the efficacy of existing antibiotics, offering a complementary
approach in the global battle against resistant infections.

4. Materials and Methods
4.1. Conditions for Co-Culture

The methodology for establishing co-culture growth was adapted from the protocols
proposed by Chan et al. [63] and Gao et al. [37]. The strains used were A. baumannii (ATCC®

19606) and P. aeruginosa (ATCC® 10145), which were initially and individually cultured in
Luria Bertani broth (LB, Sigma Aldrich, Toluca, Mexico State, Mexico) for 18–24 h at 37 ◦C
and subsequently each inoculum was adjusted to a concentration of 1 × 108 CFU/mL in
the logarithmic phase of growth. Subsequently, equal concentrations in volume ratios 1:2,
1:1000 and 1000:1 of each species were taken to combine and left incubating at 37 ◦C for
18–24 h. Finally, serial dilutions were made to decrease concentration by 10−1, 10−3, 10−5

and 10−7 and 100 µL of the co-culture was inoculated by mass seeding at a concentration
of 1 × 108 CFU/mL on LB agar plate in triplicate and incubated at 37 ◦C for 18–24 h. Both
strains were detected and counted by visual inspection of the different colony morphologies
(Figure S1).

4.2. MIC and MBC of L. graveolens, Carvacrol and Imipenem on P. aeruginosa and A. baumannii

The methodologies proposed by Bernal-Mercado [89], modified from CLSI, were used
to determine the MIC and MIC of the essential oil of L. graveolens (Ore® organic essential
oil, Chihuahua, Mexico), carvacrol (Sigma Aldrich, Mexico State, Mexico) and imipenem
(Sensimitina, Mexico, 500 mg/500 mg powder for solution). The various concentrations
of carvacrol (0–2.25 mg/mL), L. graveolens essential oil (0–20 mg/mL) and imipenem
(0–2 µg) were evaluated individually against P. aeruginosa and A. baumannii strains in their
axenic and co-cultured form. The serial microdilution technique was used in these tests.
For this, a microplate (Costar 96, Sigma Aldrich) was used where in each well, 5 µL of
a culture adjusted to 1 × 108 CFU/mL was inoculated to obtain a final concentration of
1 × 105 CFU/mL; and 300 µL of broth containing each antibacterial was added at different
concentrations, incubating at 37 ◦C for 24 h. The antibacterials were prepared in LB broth
(Merck, Darmstadt, Germany) and 100 µL of DMSO (Merck) to achieve better oil solubility
and carvacrol. Dilutions, where inhibition was observed, were identified, and 20 µL of
each identified dilution was inoculated on plates with 20 mL of Mueller–Hinton agar free
of the antimicrobial agent. The MIC was established as the lowest concentration of the
treatments capable of completely inhibiting bacterial growth. On the other hand, MBC was
defined as the lowest concentration of the antibacterials that caused loss of viability. These
determinations were made in triplicate.

4.3. Effect of L. graveolens–Imipenem and Carvacrol–Imipenem Essential Oil Combinations on
Axenic and Co-Cultures of P. aeruginosa and A. baumannii

The method proposed by Guo et al. [61] to analyze antibacterial combinations and by
Canut-Blasco et al. [90] of the Spanish Society of Infectious Diseases and Clinical Microbiol-
ogy was adapted and used. Different concentration fractions were established based on
the MIC of each antibacterial agent against the cultures used. A 96-well microtiter plate
(Fluostar Omega, BMG Labtech with 12 columns and 8 rows, Ortenberg, Germany) was
used and the corresponding wells were inoculated with 100 µL of a bacterial suspension
(1 × 108 CFU/mL). In turn, carvacrol and the essential oil were distributed in each column,
while the concentrations of imipenem were placed in each row. To each well with the
adjusted inoculum, the required concentration of antibacterial was added to a final volume
of 200 µL (50 µL of each antibacterial). The plates were incubated at 37 ◦C for 24 h, and the
absence of growth was detected visually and confirmed by OD readings at 600 nm. The
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following formulas were used to calculate the fractional inhibitory concentration (FIC) of
each antibacterial:

FIC Plant Compounds(PC) =
MIC of PC in combination with antibiotic

MIC of PC
(1)

FIC Antibiotic =
MIC of antibiotic in combination with PC

MIC of antibiotic
(2)

where PC is L. graveolens oil or carvacrol, respectively. The following Equation (3) is used to
obtain the fractional inhibitory concentration index (FICI) of the combination:

FICI = FIC PC + FIC antibiotic (3)

And it is interpreted as follows (∑FIC = FICI):

- ∑FIC ≤ 0.5: combination with a synergistic effect.
- ∑FIC > 0.5 ≤ 4: combination indifferent or no interaction.
- ∑FIC > 4: combination with antagonistic effect.

4.4. Impact of L. graveolens Essential Oil, Carvacrol and Their Combination with Imipenem on P.
aeruginosa, A. baumannii and Their Co-Culture Biofilms on Endotracheal Tubes

Biofilms were formed in 1 cm long portions of an endotracheal tube (Laboratorios
Jayor, S.A. de C.V, Mexico City, Mexico) (14 mm); these fragments were aseptically placed
into test tubes containing 5 mL of LB broth. The essential oil was added to each tube at
concentrations ranging from 0.15 to 7.5 mg/mL, mixed with 4% DMSO. For carvacrol,
concentrations of 0.15–6 mg/mL were used [91], while for the plant compound–antibiotic
combination, the results obtained from the checkerboard technique were taken as a basis.
Subsequently, bacterial inoculum previously incubated for 19 h at 37 ◦C in LB broth was
adjusted in the tubes to a final concentration of 1 × 106 CFU/mL and incubated for 24 h
at 37 ◦C. After the time had elapsed, the endotracheal tube portions were removed from
the medium, washed with distilled water and placed in 5 mL of saline to be subjected to
ultrasound (42 KHz) for 5 min at 25 ◦C. Serial dilutions were performed with the resulting
material to determine the number of bacteria adhered per unit area (Log CFU/cm2),
for which they were inoculated on LB agar for 24 h at 37 ◦C. The minimum inhibitory
concentration of biofilm formation (MICB) was established as the lowest concentration of
the antibacterial agent that inhibits bacterial adhesion without affecting the viability of
planktonic cells.

4.5. Fluorescence Microscopy of Treated Biofilms

The variations in the morphological constitution of the biofilms exposed to essential
oil, carvacrol and their combinations with imipenem were visualized by fluorescence
microscopy [89,91]. To achieve better visualization, 1 cm2 glass surfaces (coverslips) were
used to form the biofilms. This material was placed in a sterile container with LB broth.
A bacterial inoculum was first added by adjusting the concentration to 1 × 106 CFU/mL,
to incubate at 37 ◦C for 24 h. These biofilms developed while exposed to a concentration
lower than the MBIC of each plant compound or its combination with the antibiotic. A
biofilm formed without adding the antibacterial compounds was used as a reference.
Once the proposed time had elapsed, the glass surfaces were washed with distilled water
and stained with Syto 9 at 0.001% (Invitrogen, ThermoFisher, Waltham, MA, USA) for
30 min to visualize viable bacteria. The Axio Vert 1 fluorescence inverted microscope
(Carl-Zeiss, Hebron, KY, USA) was used to observe the preparations with 40× objective
Alexa Fluor filter.
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4.6. Molecular Docking of OXA-51 and IMP-1 Enzymes from A. baumannii and P. aeruginosa
with Carvacrol and Thymol

For this analysis, molecular docking was performed by contemplating the competitive
landscapes to evaluate the probable interaction sites between the OXA-51 and IMP-1
proteins expressed in A. baumannii and P. aeruginosa, respectively, with carvacrol, imipenem
and thymol. For this, the interactions of the receptor proteins OXA-51 (PDB 4ZDX) and
IMP-1 (PDB 1DDK) proteins, with imipenem (PubChem 104838), carvacrol (PubChem
10364) and Thymol (PubChem 6989) were analyzed with the AutoDocvina program version
1.1.2., in the UCSF Chimera version 1.16 software as a visualizer. For this, the active sites
were pointed out by the coordinates shown in Table S1 for each enzyme in “x”, “y” and “z”.
These sites were determined based on key amino acids and their neighbors, considering
previous crystallographic structures and their relevance in enzymatic activity [92,93].

With the above information, using the AutoDocvina program, the affinity energies
(Kcal/mol) were estimated to determine the most favorable positions between the potential
inhibitors and the enzymes in each interaction. Subsequently, Discovery Studio 2021
Client software was used to determine the interactions between the ligand and the enzyme
and the amino acids and atoms participating in them. Finally, to analyze the behavior
of the enzyme–ligand complex over time and the changes in its stability, a molecular
dynamics simulation was performed using GROMACS software (version 2023.4) [94].
The topologies of ligands and proteins were obtained using the CHARMM-GUI server
(https://www.charmm-gui.org/ (accessed on 28 November 2023)), using the CHARMM
force field parameters. The rectangular box system was defined within 1 nm distance of the
protein–ligand complex in each plane, solvated with TIP3P water model and neutralized
with Na+ and Cl− ions (0.15 M).

Furthermore, the system was equilibrated and minimized through two 200 ps simu-
lations at 30 ◦C, one with NVT (constant number of particles, volume and temperature)
and one with NPT (constant number of particles, pressure and temperature). Subsequently,
the simulation analysis time of the prepared protein–ligand systems was set to 50 nanosec-
onds under 1 atm pressure and 30 ◦C conditions. The generated trajectory files were used
to obtain the ligand RMSD (root mean square deviation) of the protein–ligand complex
through the tools gmx rms using the Gromacs package. The corresponding plots were
performed in qtgrace software (https://sourceforge.net/projects/qtgrace/ (accessed on 10
December 2023)).

4.7. Statistical Analysis

Statistical analyses were performed using descriptive statistics to evaluate the experi-
mental data. For the establishment of the co-culture, colony-forming units per milliliter
(CFU/mL) served as the response variable, with the inoculum ratio acting as the variable of
interest. In assessing antibacterial activity, the response variables included MIC and MBC,
with the variation factor being the differing concentrations of the antibacterial agents tested.
In examining plant compound combinations with imipenem, the analysis focused on the
interaction of various antibacterial concentrations, considering the FICI as the primary
response variable. Furthermore, investigating the effects of carvacrol, L. graveolens essential
oil, and their synergistic mixtures with imipenem on biofilm formation involved a similar
approach, where the MBIC was the response variable measured against the gradient of
antibacterial concentrations.

5. Conclusions

The study successfully established a co-culture model, providing valuable insights
into the interactions and resistance mechanisms in polymicrobial environments, a critical
aspect often encountered in infections. The synergistic effects observed between L. grave-
olens essential oil and imipenem highlight the potential of integrating natural compounds
with conventional antibiotics to combat bacterial resistance more effectively. This combina-
tion showed enhanced efficacy against individual cultures and proved to be particularly

https://www.charmm-gui.org/
https://sourceforge.net/projects/qtgrace/
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effective in co-culture settings, suggesting a novel approach to managing infections in-
volving these two pathogenic bacteria. Further, the findings emphasize the role of biofilm
formation in antibiotic resistance and the ability of L. graveolens essential oil to disrupt
these biofilms. The combination with imipenem exhibited promising results in inhibiting
biofilm formation, pointing towards a strategic method to tackle one of the key factors in
persistent bacterial infections. Future research avenues emerging from this study include
a deeper exploration of the molecular interactions between L. graveolens essential oil and
imipenem, and their combined impact on other bacterial species. In vivo analysis to assess
the safety and effectiveness of this combination would be crucial to translate these findings
into practical applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics13050444/s1, Figure S1: Macroscopic morphology of P.
aeruginosa and A. baumannii colonies in co-culture ratio 1:1000. (A) Particular colony of P. aeruginosa
with circular, punctate, small and whitish morphology. (B) Particular colony of A. baumannii with
circular, creamy, large and whitish morphology. (C) Growing patterns in different ratios of A.
baumannii and P. aeruginosa; Figure S2: Dynamic interaction of imipenem and OXA-51 (4ZDX)
enzyme over time (in nanoseconds). (a) 0 ns, (b) 3 ns, (c) 10 ns, (d) 20 ns, (e) 40 ns, (f) 50 ns; Figure S3:
Dynamic interaction of carvacrol and OXA-51 (4ZDX) enzyme over time (in nanoseconds). (a) 0 ns,
(b) 15 ns, (c) 30 ns, (d) 40 ns, (e) 50 ns; Figure S4: Dynamic interaction of thymol and OXA-51 (4ZDX)
enzyme over time (in nanoseconds). (a) 0 ns, (b) 5 ns, (c) 25 ns, (d) 34 ns, (e) 40 ns, and (f) 50 ns; Figure
S5: Dynamic interaction of imipenem and IMP-1 (1DDK) enzyme over time (in nanoseconds). (a) 0
ns, (b) 2 ns, (c) 5 ns, (d) 10 ns, (e) 15 ns, (f) 25 ns, (g) 45 ns, (h) 50 ns; Figure S6: Dynamic interaction of
carvacrol and IMP-1 (1DDK) enzyme over time (in nanoseconds). (a) 0 ns, (b) 5 ns, (c) 10 ns, (d) 19 ns,
(e) 21 ns, (f) 25 ns, (g) 47 ns, (h) 50 ns; Figure S7: Dynamic interaction of thymol and IMP-1 (1DDK)
enzyme over time (in nanoseconds). (a) 0 ns, (b) 10 ns, (c) 20 ns, (d) 30 ns, (e) 40 ns, (f) 50 ns; Table S1:
Active site coordinates of the OXA-51 (PDB: 4ZDX) and IMP-1 (PDB: 1DDK) enzymes prepared in
UCSF Chimera software version 1.16. The amino acids present in each region are included.
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