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Abstract: In most engineering applications, the coefficients of thermal expansion (CTEs) of different
materials in integrated structures are inconsistent, especially for the thin-film multilayered coatings.
Therefore, mismatched thermal deformation is induced due to temperature variation, which leads
to an extreme temperature gradient, stress concentration, and damage accumulation. Controlling
the CTEs of materials can effectively eliminate the thermally induced stress within the layered
structures and thus considerably improve the mechanical reliability and service life. In this paper,
randomly distributed fibers are incorporated into the matrix material and thus utilized to tune
the material CTE from the macroscopical viewpoint. To this end, finite element (FE) modeling is
proposed for fiber-reinforced matrix composites. In order to overcome the challenges of creating
numerical models at a mesoscale, the random distribution of fibers in three-dimensional space is
realized by proposing a fiber growth algorithm with the control of the in-plane and out-of-plane
angles of fibers. The homogenization method is adopted to facilitate the FE simulations by using the
representative volume element (RVE) of composite materials. Periodic boundary conditions (PBC)
are applied to realize the prediction of the equivalent CTE of macroscopic composite materials with
randomly distributed fibers. In the established FE model, the random distribution of carbon fibers in
the matrix makes it possible to tune the CTE of the composite material by considering the orientation
of fibers in the matrix. The FE predictions show that the volume fraction of carbon fibers in the
composite materials is found to be crucial to macroscopic CTE, but results in minor variations in
Young’s modulus and shear modulus. With the developed ABAQUS plug-in program, the proposed
tuning method for CTE is promising to be standardized for industrial practice.

Keywords: fiber-reinforced composite; finite element simulation; coefficient of thermal expansion;
representative volume element; periodic boundary conditions

1. Introduction

Fiber-reinforced matrix materials are composite materials formed by using fiber or
carbon fiber fabric as reinforcement and resin, ceramic, metal, and cement as the matrix.
Such composite materials have the advantages of convenient processing, high specific
strength, and low relative density [1–3]. Such composite materials have been widely
applied in various sectors of industries. As the core competency, the design and opti-
mization of composite materials have been attracting more attention in scientific research
and technological development. For fiber-reinforced matrix composites, it is important
to understand the relationship between the macroscopic mechanical properties and the
material microstructure. With the significant advance in computing capacity in recent
years, numerical simulations can be performed for composite materials with increasingly
complex microstructures, providing new ideas for the design of composite materials [4–6].
Based on the characteristics of fiber-reinforced matrix composites, it is difficult to accurately
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describe the mechanical properties of composites by traditional mechanical models at the
macroscopic scale. Therefore, Panin [7] proposed the concept of micromechanics, which
was also accepted by most scientific and technological workers. The advantage of this
concept is that composite materials can be divided into multiple scale levels and analyzed
individually. On the basis of Panin, Mishnaevsky [8] introduced the concept of mesoscopic
continuum mechanics and concluded that this method also involves statistical principles
and quantum mechanics.

With the rapid development of electronic packaging technology, chips are developing
in the direction of miniaturization and high power. These all put forward higher require-
ments on the mechanical properties of packaging materials [9,10]. On this basis, some
studies have been carried out on the influence of fiber materials on solder joints [11,12]. As
the thermal effect continues to expand, the thermal failure problem of composite materials
for thin-film coatings in the interconnect material in the package structure is also more
serious. However, the current study on the coefficients of thermal expansion (CTEs) of
composite materials for thin-film coatings still has great challenges.

Carbon-fiber-reinforced matrix composites have the advantages of high strength and
isotropic elastic modulus, which are widely utilized in a wide range of applications such as
aerospace and electronic packaging. However, fiber-reinforced materials are complex in
their spatial configuration so far. Despite the extremely high randomness of the material at
the mesoscopic level, it generally exhibits good property homogeneity at the macroscopic
level. At appropriate geometrical scales, this localized inhomogeneity of the material can
be manipulated and handled by mesoscale units, which are usually referred to as unit cells.
In fact, there are a number of theoretical models and numerical methods for predicting the
mechanical properties of carbon-fiber-reinforced composites. When performing calculations
using mesomechanical models, Andriyana [13] considered not only the random distribution
process of fibers but also the orientation of fibers. Wan and Takahashi [14] studied the
effect of fiber aspect ratio on the tensile properties of materials by different modeling
methods and obtained the fiber aspect ratio to achieve the best tensile properties based
on the Mori–Tanaka model. However, it should be noted that the preparation process of
carbon-fiber-reinforced composites is complicated, and there is an unaffordable number of
variables involved in the preparation process. This leads to high research and development
costs. Therefore, computer-aided design has been used to optimize the distribution and
aspect ratio of fibers.

Mirkhalaf [15] carried out model design and nonlinear calculation using the reinforced
matrix composite material module in the finite element (FE) software, and obtained the
effects of different fiber volume fractions, fiber length–diameter ratios and orientation
distributions on the macroscopic mechanical properties of composite material. Similarly,
by using the Digimat-FE, Díaz [16] investigated the thermal conductivity of wood and
Trzepieciński [17] completed the studies on the failure characteristics of composite materials.
In addition, Chao et al. [18] found that chopped carbon fibers also have the characteristics
of a negative thermal expansion coefficient in a certain direction. However, in the field
of electronic packaging, there are few related studies on the contribution of carbon fibers
to the mechanical properties of thin-film coating materials and the coefficient of thermal
expansion of composites. Therefore, this paper investigates the tunable thermal expansion
coefficient of composite materials for thin film coating.

In this study, a three-dimensional mesomechanical model of fiber-reinforced materials
is developed by using the parameterized preprocess in ABAQUS. In this process, the ap-
plication of the random distribution of carbon fibers in composites is realized through the
secondary development script of the ABAQUS software, and the randomness of the direc-
tion of carbon fibers is included at the same time. In order to more deeply reveal the effect
of carbon fiber microscale on the macroscopic mechanical properties of composites, the
macroscopical coefficients of thermal expansion (CTEs) of carbon-fiber-reinforced matrix
composites are calculated by using the representative volume element (RVE) method. Fur-
thermore, the influence of the volume fraction of chopped carbon fibers on the macroscopic
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CTE based on the RVE responses is explored, and it also provides a more reliable basis
for the in-depth research and comprehensive application of thin-film coating materials.
Accordingly, the study contents of this paper can be outlined as follows:

1. A simulation model of RVEs is established based on the theory of mesomechanics,
and the process and difficulties of its establishment are described in detail.

2. The random distribution of the position and direction of the fiber material in the com-
posite materials for thin-film coatings is realized by the calculation method combined
with the relevant development script file of ABAQUS.

3. The close integration of periodic boundary condition theory and finite element simu-
lation software is realized, and constraints are imposed on the corresponding nodes
of the RVEs.

4. The macroscopic mechanical properties and CTE in RVEs are calculated based on the
randomness of the fiber distribution.

Finally, the trend in the linear elastic properties and the CTE of the composites with
fiber volume fraction are further analyzed, and it is found that there is a certain negative
correlation, that is, with the increase in fiber volume fraction, the elastic modulus, shear
modulus and CTE decrease gradually.

2. Modeling of Representative Volume Elements for Composite Materials

To perform efficient FE modeling for the fiber-reinforced matrix composites, the
homogenization modeling approach is proposed on the basis of RVEs for analyzing the
mesoscale mechanical properties of composites [19–22]. To represent the macroscopic
material behavior and scale down the computational cost, periodic boundary conditions
are applied on the RVE as well. Therefore, the equivalent CTE of the composites can be
tuned through the adjustment of fiber properties [23–25]. In particular, the establishment
of FE models involves the characteristics of the random distribution of fibers in the matrix
and also considers the orientation of fibers inside the matrix, which is also a difficulty in
establishing a mesomechanical model.

The mechanical properties of fiber-reinforced composites, including but not limited to
the equivalent elastic properties, CTE, and volume fraction of fibers, can be investigated
efficiently using RVE [26–28]. However, for composite materials with internally structured
and randomly distributed fibers, it is important to reduce the computational cost by sensibly
selecting numerical models, which should also be as large as possible by taking full account
of the interaction between fibers and the matrix material. Thus, using a mesoscale RVE
approach ensures both computational accuracy and efficiency. In order to adequately
balance these contradictions, a mesomechanical approach is adopted in this paper to create
three-dimensional numerical models of random fiber-reinforced matrix composites.

2.1. Representative Volume Element Design Steps

Traditional methods of designing fiber-reinforced matrix composites suffer from time-
consuming design cycles and high manufacturing cost, which limit the efficiency of updat-
ing and iterating composites. This section realizes the rapid modeling of fiber-reinforced
matrix composites through a Python program script file based on ABAQUS. On this basis,
the influence of the material properties and geometric dimensions of the fibers and the
matrix on the equivalent thermal expansion coefficient is studied.

In order to accurately simulate the distribution of three-dimensional fiber units in
the matrix, the random distribution of fibers in the matrix is simulated according to the
microstructure characteristics of fiber-reinforced matrix composites. Through the random
generation algorithm, the initial coordinates of the fibers are determined, and the collective
growth process of the fibers is determined by the placement algorithm. Based on this fiber
placement algorithm, the accuracy of fiber placement can be significantly improved and
the time required for model creation is reduced. When using the Python program script file
to generate the model, the following issues should be paid attention to. The spatial position
of the fiber inside the matrix usually includes fiber spatial coordinates, fiber radius, fiber
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length, fiber spatial orientation, and fiber-to-fiber distance judgment. Based on the above
problems, using the Python program script based on ABAQUS, the creation process of
RVEs of fiber-reinforced matrix composites in ABAQUS can be divided into the following
five steps.

Step 1: Creation of a single fiber
As the fiber units are all solid units with the same radius and length, a fiber unit is

first generated, and a specific number of fiber aggregates can be obtained by repeatedly
repeating the operation. The resulting single fiber element is a solid element with a radius
of 1.5 µm and a length of 10 µm.

Step 2: Generation process of fiber starting point coordinates
Generating a randomly distributed fiber usually includes the following parameters:

the coordinates of the center of the fiber base, the radius of the fiber base, the total fiber
length, and the fiber spatial orientation. Therefore, according to the uniform distribution of
fibers in space, the function library of ABAQUS is used to generate a specific number of
random numbers within a limited spatial range. Each group of random numbers represents
the coordinates of the starting point of the fiber. The spatial distribution problem in the
actual fiber formation process can be better simulated through this method, as shown in
Figure 1.

Figure 1. Three-dimensional coordinates of fibers randomly distributed in space.

Step 3: Generation process of fiber endpoint coordinates.
Assuming that the fiber is straight in the actual production process and the fiber does

not bend during the growth process, the difference between the ending coordinate of the
fiber and the starting coordinate of the fiber is the length and the spatial orientation value
of the fiber. When a fiber rotates in three-dimensional space, it contains two parameters:
the in-plane angle θ of the fiber, and the out-of-plane angle ϕ, as shown in Figure 2.

Figure 2. Angle parameter of fiber distribution in space.
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The values of the spatial angles θ and ϕ of the fibers are randomly selected in the range
of [0, 2π] to ensure that the generated overall fibers have macroscopic isotropic properties
in statistics. In order to further study the probability distribution of fiber orientation in
space, a second-order tensor Aij was introduced, which was decomposed into the product
of eigenvalues and eigenvectors, and represented as a three-dimensional ellipse in space,
as shown in Figure 3.

Figure 3. Definition of fiber orientation in three-dimensional space.

The direction vector formed from the center of the circle to any point on the ellipsoid
can represent the distribution probability of the spatial fiber at this point. The direction
distribution of each fiber is expressed by the angles θ and ϕ; then, the fiber distribution
within a specific range can be expressed by

aij =

 sin2θcos2θ sin2θsinθcosϕ sinθcosθcosϕ
sin2θsinϕcosϕ sin2θsin2 ϕ sinϕsinθcosθ
cosϕsinθcosθ sinϕsinθcosθ sin2θ

 (1)

where aij is the orientation distribution, and through the above coordinate analysis and the
analysis of fiber orientation in the fiber space, M and N can be used to represent the starting
and end coordinates of the fiber; then, the starting point coordinates M

(
Mx, My, Mz

)
and

the end point N
(

Nx, Ny, Nz
)

can be expressed as

Mx = random.rand(a, b)
My = random.rand(a, b)
Mz = random.rand(a, b)

(2)

Nx = random.rand(a, b) + Lsinϕcosθ
Ny = random.rand(a, b) + Lsinϕsinθ

Nz = random.rand(a, b) + Lcosϕ

(3)

where θ is the in-plane angle, ϕ is the out-of-plane angle, L is the length of the fiber, a
is the left boundary of the coordinate distribution, b is the right boundary of the coor-
dinate, and random is the random distribution function inline in Python. According to
Equations (2) and (3), the coordinates of the starting and end points of the fiber are deter-
mined, and the radius parameter R of the fiber is added to determine the relative position
of the entire fiber inside the matrix.
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Step 4: Interference determination of fibers based on spatial distance.
Since the starting point and end point coordinates of fibers are randomly generated,

the phenomenon of fiber intersection inevitably occurs, and interference determination
is required when the spatial position of the fiber is finally determined. When the phe-
nomenon of fiber intersection occurs, the distribution law of fibers in the matrix cannot
be well simulated, and also the intersected fibers lead to contact problems resulting in
numerical divergence and also significantly increasing computational time. Therefore, in
FE simulations, when the three-dimensional model of the fiber-reinforced matrix composite
material is finally generated, it is also necessary to check the interference between the fibers.

The method of checking fiber interference is to determine the shortest distance between
the centerlines of each fiber, which is usually greater than the diameter of the fiber’s bottom
surface. The center line of the fiber is a straight line in space, and the shortest distance
between the two straight lines in space is the length of the common perpendicular. However,
this paper needs to determine the shortest distance between the two lines in space, even if
the distance of the common perpendicular is smaller than the fiber diameter. If the distance
between the two ends of the fiber is ensured to be greater than the diameter, the fiber that
meets the requirements may also be generated, as shown in Figure 4.

Figure 4. Determination of the distance between fibers.

When calculating the shortest distance between M1N1 and M2N2 of interspace line, it
is necessary to obtain the common perpendicular line segment Dv of the different plane
lines, and it is also necessary to calculate the lengths DM1 M2 , DM1 N2 , DM2 N1 and DN1 N2

of the lines between the four endpoints, and then compare with the diameter and length
of the fiber, respectively, when Dv, DM1 M2 , DM1 N2 , DM2 N1 and DN1 N2 are smaller than the
fiber diameter. It is determined that a fiber that meets the conditions has been generated,
and the distance determination is calculated by

DM1 M2 =
√
(M1x −M2x)

2 +
(

M1y −M2y
)2

+ (M1z −M2z)
2

DM1 N2 =
√
(M1x − N2x)

2 +
(

M1y − N2y
)2

+ (M1z − N2z)
2

DM2 N1 =
√
(M2x − N1x)

2 +
(

M2y − N1y
)2

+ (M2z − N1z)
2

DN1 N2 =
√
(N1x − N2x)

2 +
(

N1y − N2y
)2

+ (N1z − N2z)
2

Dv =

∣∣∣∣( →M1 N1×
→

M2 N2)·
→

M1 M2

∣∣∣∣∣∣∣∣ →M1 N1×
→

M2 N2

∣∣∣∣

(4)
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where DM1 M2 is the distance between points M1 and M2, DM1 N2 is the distance between
points M1 and N2, DM2 N1 is the distance between points M2 and N1, DN1 N2 is the distance
between points N1 and N2, and Dv is the distance between vertical line segments of
interspace line M1N1 and M2N2.

Step 5: Generating fiber solid model based on ABAQUS python function library.
Through the script interface of ABAQUS, all the fiber space parameters that meet the

requirements are processed into data and further reconstructed in ABAQUS, as shown
in Figure 5. The reconstructed functions used can call the function library included in
ABAQUS.

Figure 5. Randomly distributed fibers.

2.2. Periodic Boundary Conditions for the RVE

Fiber-reinforced matrix composites have local randomness. When using RVEs to
carry out finite element numerical simulation of reinforced matrix composites, it is nec-
essary to ensure the continuity between elements. There are three realization methods
in numerical simulation to achieve this consistency on the boundary, given surface force,
given displacement, and imposed periodic boundary conditions. However, for the model
adopted in this paper, giving a surface force and displacement is unrealistic, so RVEs are
applied in the periodic boundary conditions (PBC) [29]. In addition, Chen [30] applied
each of the above boundary conditions using commercial FE software when investigating
the equivalent mechanical properties of 2D porous materials and compared the final finite
element analysis results with experiments. After comparison, it is found that when the PBC
is applied to the representative element, the obtained FE analysis results are the closest to
the actual properties of the material, and when the boundary conditions of a given surface
force and a given displacement are used, the obtained finite element analysis results are
obtained. There is often a large deviation in the numerical value between the analysis
results and the real mechanical properties of the material. In addition, Chen et al. [30]
also mentioned that if the real material model to be simulated has irregular shapes on
the boundary surface, the real situation of the material can be more accurately predicted
by using PBC by eliminating interfacial effects on irregular hole boundaries, as shown in
Figure 6. Therefore, PBC is applied to the RVE boundary according to the research object
and the above research results.
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Figure 6. Schematic diagram of PBC for an RVE.

Based on the application method of periodic boundary conditions, deformation control
can be performed on the boundary of RVEs so that the opposite surfaces of the elements
have deformation compatibility. During the finite element simulation, each outer surface
of the RVE has consistent deformation and force so that the entire fiber-reinforced matrix
composite model conforms to the basic assumptions of continuum mechanics. The finite
element analysis has laid the foundation. Suquet [31] conducted a theoretical derivation
on the theory of periodic boundary conditions, and the specific derivation process can use
the displacement field defined as Equation (5). In addition, Xia [32] completed further
verification and application on this basis.

Ui = εikxk + u∗i (5)

where εik is the average strain of the representative volume unit, xk is any position inside the
representative volume unit, and u∗i is the periodic displacement correction of the boundary
position. The deformation coordination condition of Equation (5), u∗i , is an unknown
quantity in the deformation process, and is only related to the global load on the RVE, so
this periodic displacement field cannot be applied to the actual operation process. In the
fiber-reinforced matrix composite structure mentioned in this paper, the boundary surfaces
of this structure are parallel so that the periodic displacement field can be written as

U j+
i = εikxj+

k + u∗i
U j−

i = εikxj−
k + u∗i

(6)

where j+ and j− represent the positive and negative directions of the representative volume
unit, respectively. Since in the periodic boundary condition, the value of u∗i is the same on
the two opposite surfaces, subtracting the displacement expressions on the left and right
boundaries yields

U j+
i −U j−

i = εik(xj+
k − xj−

k ) = εik∆xj
k (7)

where ∆xj
k is the relative displacement value of the relative boundary. For a specific εik, the

displacement change on the right side of the above Equation is a constant, so the above
equation can be rewritten as

uj+
i (x, y, z)− uj−

i (x, y, z) = cj
i(i, j = 1, 2, 3) (8)
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By observing Equation (8), it can be found that the improved formula does not contain
the correction amount of the periodic displacement. ABAQUS is used to impose periodic
boundary conditions when the RVE is used for the simulation calculation. According to the
above theoretical derivation process, more MPC point constraint equations are added to
achieve stress–strain continuum conditions.

3. Equivalent CTE of Representative Volume Elements

This paper introduces three types of boundary conditions in finite element analysis.
Among them, the displacement-based analysis conditions are natural boundary conditions,
and the uniqueness of the solution is solved in the analysis process, but such boundary
conditions cannot accurately describe the RVE in the stress–strain field induced during the
deformation process. When applying periodic boundary conditions in ABAQUS, the grid
nodes on the opposite surface can be used to control the application of MPC multipoint
constraint equations. Most literature only mentions the mathematical expression of periodic
boundary conditions and does not mention the realization process in ABAQUS finite
element analysis, which is a considerable challenge for numerical analysis. This section
mainly expounds on the theoretical basis and implementation methods of applying periodic
boundary conditions in ABAQUS and then performs corresponding operations on the
corresponding nodes, edge nodes, and vertices on the parallel plane of the RVE, as shown
in Figure 7.

Figure 7. Boundary conditions for multipoint constraint equations.

In this paper, in the finite element software ABAQUS, the RVE is generated by the
Python scripts. In addition, to ensure the consistency of the deformation of the symmetrical
points and surfaces of the RVE, it is necessary to use the method of Python script files.
The equivalent linear elastic mechanical properties of fiber-reinforced matrix composites
will be studied later. The modeling process of the RVE of the fiber-reinforced matrix
composite material in the finite element software was introduced in detail above. This
paper adopts the finite element model method to calculate the equivalent linear elastic
mechanical properties of the RVE. The method for calculating the equivalent linear elastic
mechanical properties of RVEs in this paper is based on the ABAQUS plug-in program.

In this paper, the thermal expansion coefficient of the fiber-reinforced base needs to be
regulated, so for the convenience of research, the elastic material properties of the selected
two-phase materials are given in Tables 1 and 2.
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Table 1. Material properties of reinforced fibers.

Elastic
(GPa)

E1 E2 E3 G12 G13 G23 ν12 ν13 ν23
174 174 9.6 70.4 3.7 3.7 0.234 0.273 0.273

CTE
(×10−6/K)

α11 α22 α33
−0.07044 −0.07044 10.4956

Table 2. Mechanical properties of the matrix material.

Material Name Elastic Modulus (GPa) Poisson’s Ratio α (×10−6/K)

SAC305 20 0.4 24

Fiber is a transversely isotropic material. When calculating with ABAQUS, it is
necessary to assign a local coordinate system to the material, and the thermal expansion
coefficient of the fiber is also related to the direction.

According to the data in Table 2, fibers are regarded as transversely isotropic materials,
each of which has an elastic axis of symmetry. The elastic constitutive relationship at any
two positions with this axis as the axis of symmetry is all the same. Therefore, when a
plane is perpendicular to the elastic symmetry axis, all directions in the plane are exactly
symmetrical to the elastic symmetry axis, and the elastic constitutive relationship is the
same. In transversely isotropic materials, the in-plane constitutive relation has in-plane
isotropy. The typical representative in nature is the flaky distribution of rocks. In this paper,
the elastic constitutive relation of the fibers in the isotropic plane is the same.

The elastic symmetry axis of the fiber is the radial direction of the fiber, so the direction
of the Z axis is taken as the elastic symmetry axis of the fiber, and the coordinate axes X and
Y establish an isotropic symmetry plane, as shown in Figure 8. In the isotropic symmetry
plane, when the X and Y coordinates are exchanged, the elastic constitutive relation of the
material does not change. In order to satisfy this condition, the elastic constitutive Jacobian
matrix coefficient must satisfy

c11 = c22
c13 = c23
c55 = c66

(9)

Figure 8. Elastic constitutive properties of fibers.
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Additionally, according to the invariant principle of the shear stress–strain relationship
given by:

c44 =
1
2
(c11 − c12) (10)

Through the above analysis, the elastic material properties of fibers can be described
only by five independent elastic constants, and the elastic matrix of fibers can be written as

c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c13 0 0 0
0 0 0 1

2 (c11 − c12) 0 0
0 0 0 0 c55 0
0 0 0 0 0 c55

 (11)

When using elastic parameters in ABAQUS, it also needs to be converted into a
stiffness matrix. Invert Equation (11) to obtain Equation (12):



εx
εy
εz

γxy
γyz
γzx


=



1
E − ν

E − ν′
E 0 0 0

− ν
E

1
E − ν′

E 0 0 0

− ν′
E′ −

ν′
E′

1
E′ 0 0 0

0 0 0 1
G 0 0

0 0 0 0 1
G′ 0

0 0 0 0 0 1
G′





σx
σy
σz
τxy
τyz
τzx


(12)

For transversely isotropic materials, the elastic axis of symmetry for each fiber needs
to be defined in ABAQUS, as shown in Figure 9. However, the direction of each fiber
is random. When the number of fibers reaches dozens or hundreds, how to accurately
apply an elastic axis of symmetry to each fiber is a technical problem that needs to be
solved urgently.

Figure 9. Material orientation of fibers.

In this paper, the Python script based on ABAQUS preprocessing is used to realize
the assignment of the local coordinate system to all random fibers. In ABAQUS, a local
coordinate system needs to be applied to each fiber first. For fibers, the application of
the local coordinate system is often related to the bottom surface and bottom surface
circumference of the fiber. The bottom surface is selected to define the isotropic surface
of the fiber, and the bottom surface circumference is selected to define the elastic axis of
symmetry of the fiber. Since the bottom surface and bottom surface circumference of each
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fiber are different, it is necessary to use the preprocessing script to define the set of bottom
surface and bottom surface circumference each time random fibers are generated to lay
the foundation for the subsequent automatic addition of material directions, as shown in
Figure 10. Figure 10 highlights the local coordinate direction of each fiber in the model, and
uses 1, 2, and 3 displayed in different colors to represent the three axes of x, y, and z of the
spatial coordinate system.

Figure 10. Schematic diagram of fiber local coordinate system definition.

Similar to the method by Chao [18], the fibers used in this paper have a negative
thermal expansion coefficient on the isotropic plane and a positive thermal expansion
coefficient in the radial direction of the fibers, which means that when the temperature
increases, the shrinkage ratio of the fibers in the circumferential direction will be greater
than the elongation ratio in the radial direction so that the overall control of the equivalent
thermal expansion coefficient can be achieved. For the electronic packaging thin-film
coating materials studied in this paper, the calculation is performed assuming that the
base material is an isotropic material. Based on the above analysis process, this paper
has studied the equivalent mechanical properties and thermal expansion coefficients of
fiber-reinforced matrix composites with different volume fractions.

4. Result Discussion

In this paper, the generation method of fibers is to control the random generation
number of the coordinates of the fiber starting point. During each iteration of the calculation,
the different volume fraction of fibers can be easily generated by modifying the number of
fibers in the model. The tetrahedral mesh is used in the generated finite element model,
and the element type is C3D10, as shown in Table 3.

According to Table 3, as the number of iterations increases, the number of fibers
increases steadily, increasing the volume fraction of fibers. Due to the strong randomness
of the spatial distribution of fibers, the generated finite element model needs to be divided
into many meshes. When the fiber volume fraction is close to 2%, it reaches more than
400,000 meshes, still in the mesh density. When more extensive, this presents a higher
challenge to finite element calculation. Through finite element calculation, the data shown
in Table 4 are obtained.
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Table 3. Fiber integration in the generated finite element models.

Fiber Numbers Volume Fraction Mesh Number Computing Time (s)

50 0.2356 149,560 430
100 0.4799 205,991 885
150 0.6646 255,566 1142
200 0.8695 302,956 1537
250 1.1039 320,125 1914
300 1.2512 348,464 2085
350 1.3916 348,464 2423
400 1.6425 367,355 2751
450 1.8191 398,205 3005
500 1.9704 412,653 3363

Table 4. Equivalent linear elastic mechanical properties of fiber-reinforced matrix composites.

Volume 0.23% 0.47% 0.66% 0.86% 1.10% 1.25% 1.39% 1.64% 1.81% 1.97%

E1(GPa) 19.989 19.971 19.968 19.953 19.942 19.935 19.926 19.909 19.902 19.886
E2(GPa) 19.988 19.974 19.965 19.955 19.942 19.933 19.926 19.913 19.899 19.895
E3(GPa) 19.987 19.972 19.967 19.954 19.939 19.936 19.925 19.910 19.901 19.890
G12(GPa) 7.819 7.804 7.784 7.771 7.765 7.751 7.737 7.722 7.712 7.705
G13(GPa) 7.814 7.799 7.787 7.779 7.761 7.757 7.748 7.733 7.720 7.712
G23(GPa) 7.812 7.803 7.787 7.776 7.769 7.756 7.753 7.736 7.726 7.721

ν12 0.277 0.277 0.276 0.276 0.275 0.275 0.274 0.274 0.274 0.273
ν13 0.278 0.277 0.277 0.276 0.276 0.275 0.274 0.274 0.274 0.273
ν23 0.277 0.276 0.276 0.276 0.276 0.275 0.275 0.274 0.273 0.273

According to Table 4, the fibers act as a transversely isotropic material, but the phe-
nomenon that makes the material properties of composites different in different directions is
due to the fibers being distributed in the matrix according to the characteristics of random
starting positions and random fiber orientations. In addition, with the continuous increase in
the fiber volume fraction, the equivalent linear elastic mechanical properties of the composite
show a decreasing trend. The values of E1, E2, and E3 are very close, and it can be found that it
can be approximated as a linear decrease. For the equivalent shear modulus of fiber-reinforced
matrix materials, the numerical differences in the three planes are not large, and it can be
approximately considered that with the increase in fiber volume fraction, the equivalent shear
modulus approximately exhibits a linearly decreasing trend. The equivalent Poisson’s ratios
in the three principal planes do not change much and can be considered consistent. Therefore,
the above-generated fiber-reinforced matrix composites can be regarded as isotropic materials,
and the calculated stress distributions are shown in Figures 11 and 12.

Figure 11. Equivalent linear elastic properties of RVEs.
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Figure 12. Variation trend in equivalent Young’s modulus.

As shown in Figure 12, the equivalent moduli E1, E2, E3 in the three planes are very
close. When the volume fraction is 0, it is an isotropic material with an elastic modulus of
20 GPa. At the same time, it can be found that the values of E1, E2, and E3 decrease linearly
with the fiber volume fraction. After fitting the Origin data, Equation (13) can be obtained.

E1 = 20− 0.055×Volum_F
E2 = 20− 0.053×Volum_F
E3 = 20− 0.054×Volum_F

(13)

where E1, E2, E3 are three different equivalent linear elastic moduli, and Volum_F is the
fiber volume fraction.

As shown in Figure 13, the equivalent shear modulus of the fibers in the three planes
has approximately the same value. With the continuous increase in the fiber volume
fraction, the equivalent shear modulus shows a linearly decreasing trend. The data fitting
can obtain Equation (14):

G12 = 7.833− 0.066×Volum_F
G13 = 7.828− 0.058×Volum_F
G23 = 7.825− 0.054×Volum_F

(14)

where G12, G13, G23 are three different equivalent shear moduli, and Volum_F is the fiber
volume fraction. In addition, the macroscopic thermal expansion coefficient of fiber-
reinforced matrix composites needs to be analyzed, and the results are shown in Figure 14.

Figure 13. Variation trend in equivalent shear modulus.
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Figure 14. Trend in equivalent CTE with the variation in volume fraction of fibers.

It can be seen from that as the fiber content continues to increase, the equivalent
thermal expansion coefficient of the representative volume unit continues to decrease.
It can be seen from the numerical value that the overall thermal expansion coefficient
decreases by a considerable amount, which is limited by the calculation cost and calculation
accuracy. The highest content of fiber volume fraction discussed in this paper is close to
2%, and the empirical Equation (15) is obtained by linear fitting of Origin data:

αeq = 2.47267× 10−5 − 6.94244× 10−7 ×Volum_F (15)

where αeq is the equivalent thermal expansion coefficient, Volum_F is the fiber volume fraction.
According to the change trends in the above calculation results, further analysis is

completed and it is found that the reason for the equivalent Young’s modulus and shear
modulus showing linear decreasing trends as the volume fraction of the fibers increases is
due to the linear elastic properties of the carbon fiber and base matrix material. Moreover,
the different CTEs of the carbon fiber and matrix material cause the CTE of the thin-film
coating material to change with the carbon fiber volume fraction. Additionally, the CTE
of carbon fiber is much smaller than that of the matrix material, which also causes the
CTE of the thin-film coating material to decrease with the increase in the carbon fiber
volume fraction.

5. Conclusions

This paper mainly introduced the study on regulating the coefficient of thermal expan-
sion of composite materials for thin-film coatings used in the field of electronic packaging.
Based on the advantages of convenience, efficiency, and versatility of the commercial finite
element software ABAQUS, numerical simulations of fiber-reinforced matrix composites
were achieved by utilizing the representative volume element. Additionally, according
to the theory of mesomechanics, periodic mesh division and the application of periodic
boundary conditions were realized on the finite element model. Moreover, the equiva-
lent linear elastic mechanical properties of composites were further studied, including
the equivalent Young’s modulus, equivalent shear modulus, and the variation law of the
effective thermal expansion coefficient with the fiber volume fraction.

When the volume fraction of fibers accounts for 2% of the matrix, the Young’s modulus
of the fiber-reinforced matrix composite is adjusted to 19.886 GPa, the shear modulus is
7.7 GPa, and the equivalent thermal expansion coefficient is 23.324 ppm/K. The control
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effect of linear elastic mechanical properties is noticeable. This paper mainly has the
following two conclusions:

1. The mesomechanical modeling of fiber-reinforced matrix composites is complex,
involving the random distribution and random orientation of fibers. In this paper,
the parametric modeling method based on Python program script files was used to
improve modeling efficiency significantly.

2. Through the finite element analysis of the fiber-reinforced matrix composite material
model, it was found that the equivalent thermal expansion coefficient of the material
can be effectively reduced with the continuous increase in the fiber volume fraction.
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