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Abstract: Metamaterials refers to a class of artificial materials with special properties. Through its
unique geometry and the small size of each unit, the material can acquire unique electromagnetic
field properties that conventional materials do not have. Based on these factors, we put forward
a kind of high absorption near-ultraviolet to near-infrared electromagnetic wave absorber of the
solar energy. The surface structure of the designed absorber is composed of TiN-TiO2-Al2O3 with
rectangles and disks, and the substrate is Ti-Al2O3-Ti layer. In the study band range (0.1–3.0 µm), the
solar absorber’s average absorption is up to 96.32%, and the designed absorber absorbs more than
90% of the electromagnetic wave with a wavelength width of 2.577 µm (0.413–2.990 µm). Meanwhile,
the designed solar absorber has good performance under different angles of oblique incident light.
Ultra-wideband solar absorbers have great potential in light absorption related applicaitions because
of their wide spectrum high absorption properites.

Keywords: surface plasmons; solar absorber; metamaterials; FDTD method

1. Introduction

Metamaterials were proposed in the nineties of the 20th century [1]. They have some
special properties such as changing the interaction of light or electromagnets with the
matter, but the materials made by traditional methods can not implement it. Metamaterials
are nothing special in the composition of matter, and their peculiar properties are due to
their unique geometry and the small size of each unit. When the scale of the microstructure
is close to the incident wavelength, the influence on the wave can be realized [2]. In the last
10 years, the absorber based on meta-material developed rapidly [3–7]. At the same time,
many researchers have also made very significant contributions in the manufacturing
process of metamaterials, such as Akinoglu et al. who report their research on BCP
(block copolymer) lithography route [8,9]. Landy et al. proposed a metamaterial that
can efficiently absorb electromagnetic radiation, with a wide absorption bandwidth and
polarization insensitivity [10]. These absorbers achieving high absorption of light can
effectively convert solar energy into heat energy, which is important for utilizing solar
energy for people [11–15]. In addition, the absorbers based on meta-materials and surface
plasmon materials have significant application in a variety of multispectral applications,
such as photon detection, spectrum sensing, photocatalysis, etc. [16–23].

Precious metals were widely used in solar absorber because of their plasmon resonance
and optical coupling behavior [24,25]. Wu et al. designed a solar absorber based on precious
metals, absorption of which is more than 90% in wavelength range of 0.4 µm to 2 µm [24].
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However, due to plasma nano-signal resonance characteristics of precious metals, multiple
layers are required to have an ideal effect. At the same time, the high cost of precious metals
improved the budget for making absorbers. Thus, refractory metals and their compounds
have received great attention because of their large imaginary part of the dielectric constant,
which can cause huge losses to electromagnetic waves [25–29]. Besides, refractory metals
have high melting points and are resistant to acids and alkalis. Titanium is a refractory
metal with a melting point as high as 1660 ◦C, and its compound also has a high melting
point. Therefore, they can work under high temperatures normally. Compared to precious
metal, titanium’s larger reserves also result in lower costs. Thus, we can say refractory
metals and their compounds have great potential for application in solar absorbers [30–32].

In this paper, we designed a solar absorber based on Ti and its compounds. According
to the reasonable design and parameter of structure, the designed absorbers that achieve
ultra-wideband high absorption to solar raditation. We verify the results by simulating the
solar absorber with FDTD. Design of the absorber within the study band performance is
good. The absorption of the designed absorber is higher than 90% in wavelength range of
2.577 µm (0.413–2.990 µm). The designed absorber’s average absorption is up to 96.32%
in the researched band (0.1–3.0) µm. Meanwhile, we evaluate its real performance by
simulating the performance of the designed absorber under the real solar spectrum. Then,
we discuss the influence of changes to geometrical parameters and various parts of the
absorber on the performance of the absorber, and explore its absorbing mechanism. Last,
the designed solar absorber can realize ultra-wideband high absorption, which fulfills the
requirement of solar cells, thermo-photovoltaics, and thermal radiation [33,34]. Besides,
small thickness of the designed absorber is one of advantages. Thus, the proposed meta-
surface as a coating of solar cells is a direction worth considering [35,36].

2. Structural Design of Absorber with Wide Spectrum and High Absorption

The structure of the designed solar absorber is shown in Figure 1a. The substrate of
the absorber is a Ti-Al2O3-Ti three-layer structure, and its surface structure is composed
of disks and rectangles of TiN-TiO2-Al2O3. The front view of the absorber is shown in
Figure 1b. The period of each unit is T = 0.4 µm, and the surface of each period is composed
of four groups of equally sized bars of Ti-Al2O3-Ti. W = 0.06 µm and L = 0.21 µm are the
width and length of the strip structure, respectively. The disk structure is located in the
center of the absorption unit of the absorber, which is also composed of TiN-TiO2-Al2O3
and has a radius of R = 0.06 µm. H1 = 0.08 µm, H2 = 0.105 µm and H3 = 0.05 µm are the
heights of TiN, TiO2 and Al2O3 layers, respectively. H4 = 0.025 µm, H5 = 0.125 µm and
H6 = 0.275 µm are the thickness of the top Ti layer, Al2O3 layer and bottom Ti layer of the
substrate, respectively.
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Figure 1. (a) The principle diagram of the ultra-broadband solar energy absorber. (b) Front view of
the absorber.

For simulating the absorption performance of the absorber, we adopt the FDTD (Finite
Difference Time Domain) method to simulate the designed solar absorber [37–39]. We use
plane light of wavelength of 0.1 µm to 3.0 µm illuminated from above the Z axis of the
absorber, and simulating the actual scattering of electromagnetic waves by using PML
(Perfect Match Layer) boundary conditions above Z direction outside the structural region.
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In X and Y direction, we adapt period boundary condition to reproduce the array pattern
of the designed absorber. We place the detector on the bottom and above the absorber to
measure the transmission (T) and reflection (R) of the absorber, respectively. Absorption
(A) = 1 − T − R [40–43]. The TiO2, Ti, TiN and Al2O3 used in simulation calculation come
from Palik [44].

3. Simulation Results and Discussion

Figure 2a shows the reflection (R), transmission (T) and absorption (A) spectrum
diagram of designed solar absorber in normally incident electromagnetic wave. In whole
researched wavelength (0.1–3.0 µm), the range wavelength of absorption is higher than
90% at 2.577 µm, and the average absorption is 96.32%. At the same time, the absorption
reached 95.6%, 99.45% and 98.97% in the absorption peak at λ = 0.4442 µm, 0.8407 µm
and 1.7294 µm, respectively. Due to the goal of designing a solar absorber that absorbed
solar radiation, we study the absorption of solar radiation by the designed absorbers. The
absorption spectrum of the absorber under AM1.5 spectrum is shown in Figure 2b. The
AM1.5 spectrum refers to the atmospheric mass of AM1.5 when θ = 48.2◦. This refers to a
typical sunny day when the sun’s rays illuminate the general ground, which is closer to
the actual situation of human life, and its irradiance is 1000 W/m2. AM 1.5 is often used
as the incident light energy standard to evaluate the performance of ground-based solar
energy conversion devices and modules [45]. We can see the energy of solar radiation is
concentrated in the near-ultraviolet to near-infrared. Thus, the designed absorber must be
within the scope of the electromagnetic wave that has high absorption ability, to realize
the strong absorption of solar energy absorber. According to Figure 2b, the designed
absorber only has a small amount of energy loss in near-ultraviolet to near-infrared in the
solar energy’s absorption, so the designed absorber has a good performance under AM1.5
sunlight. According to Figure 2, we know the designed absorber has good performance in
solar absorption. In Table 1, we also compared several reported solar absorbers to show
that the advantage of the designed absorber.
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Figure 2. (a) the reflection (R), transmission (T) and absorption spectra of the solar absorber designed
for normal incidence; (b) absorption effect under AM1.5 spectrum.

Table 1. Absorption range of different structures with an absorption rate of more than 90%.

Reference Structure Absorption Range Wavelength Range with
Absorption More than 90% Average Absorption

This work Ti-Al2O3-Ti 0.413–2.990 µm 2.577 µm 96%

[46] TiN and TiO2 disk 0.316–1.426 µm 1.11 µm 93%

[47] Si–Cr–Al three-layer 0.4–1.8 µm 1.4 µm 97%

[48] SiO2-Ti-MgF2-Al 0.405–1.505 µm 1.1 µm 95.14%
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Then we try to research the physical mechanism of absorption of solar radiation
by absorbers. The designed absorber is strongly coupled with incident light in several
wavelengths, which results in the absorption peaks appearing in spectrum. Thus, we can
research the physical mechanism of absorption by simulating and analyzing the electric
field contribution of the absorber at absorption peak. The results are shown in Figure 3.
In Figure 3a,b, electricity is mainly limited in the top disk and surface of rectangle at
λ = 0.4442 µm. The scattering between adjacent structures is strongly suppressed, and the
field at the gap is highly localized. The LSPR (Localized Surface Plasmon Resonance) excited
makes the main contribution to the absorption at this wavelength [49–51]. Figure 3b,f show
the electric diagram of the absorption peak at λ = 0.8407 µm. We can find that the electric
field is mainly concentrated in the middle disk structure of the surface structure at this
wavelength. Similarly, the electric field being bound to the disks on the surface indicates
that the LSPR is excited, and at the interface between the bottom of the middle disk and the
bottom disk, the electric field is constrained in the vertical direction and decays rapidly. The
SPPs (Surface Plasmon Polaritons) are excited by a coupling of electromagnetic and electron
plasma oscillations in the material [52–54]. The electric field distribution in Figure 3c,d,g,h
is similar to Figure 3b,f. The difference is that the absorption peak at the wavelength
λ = 1.7294 µm and the electric field at the long wavelength band λ = 2.7100 µm are also
distributed between the gaps of adjacent unit structures. This part of the LSRP enhances
the absorption capacity of the long wavelength band. Because of these factors, the designed
solar absorber has good performance in the whole band.
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changing the disk’s radius of structure does not have significant effect on the absorption 
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Figure 3. Simulated electric field diagrams. (a) X-Y plane at λ = 0.4442 µm; (b) X-Y plane at
λ = 0.8407 µm; (c) X-Y plane at λ = 1.7294 µm; (d) X-Y plane at λ = 2.7100 µm; (e) X-Z plane at
λ = 0.4442 µm; (f) X-Z plane at λ = 0.8407; (g) X-Z plane at λ = 1.7294 µm; (h) X-Z plane at λ = 2.7100 µm.

To research the influence of structural parameters changed on absorber, we try to adjust
the surface structure’s parameters. The simulation results are shown in Figure 4a; changing
the disk’s radius of structure does not have significant effect on the absorption spectrum
of the absorber because it has less electric field distribution in the gap between disk and
rectangle structure. Figure 4b show the absorption spectrum with changing the width of
rectangles. Each absorption peak is generated by the strong coupling between incident
photon and material. In Figure 3, we analyze the electric field distribution diagram of each
coupling absorption peak. Because the electric field is mainly localized between adjacent
units, LSPR excited and SPP excited between adjacent rectangles are formed. Therefore,
changing the width of W will have a great influence on the coupling band and intensity.
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With the increase in W, the effect on the long wavelength is most significant. The absorption
peak of the long wavelength appears to have a red shift, and the resonance absorption peak
of 1.7 µm disappears gradually, while the resonance intensity of the absorption peak of
2.7 µm becomes stronger. When W exceeds 0.07 µm, the absorption of electromagnetic
waves by the absorber decreases rapidly because the excitation mode begins to change.
We change the length of the rectangle W in Figure 4c. We predict that the absorption near
λ = 0.4442 µm will not be greatly affected in the short-wave band because the intensity of
the excited SP (surface plasmon) has little correlation with the length of the rectangular
structure in the band [55,56]. In the long wave band, the intensity of SP excitation is
obviously affected by the length of L, so the absorption spectrum of the long-wave band
will have obvious changes in the change of L. The resonant absorption peaks (λ = 1.7 µm
and λ = 2.7 µm) show red shift and intensity change with the increase in L. In Figure 4d,
what has changed is the size of the period T of the absorber absorption unit. By changing
the parameter of the period T, we can foresee the greatest impact on the surface plasmons
excited between adjacent cells. We can see that for the long wavelength band where the
absorption is very dependent on the local surface plasmon resonance, even if the amplitude
of T is changed in a very small range, the effect on the absorber’s absorption spectrum is
significant [57].
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Figure 4. The simulated absorption spectrum of the designed absorber after changing the structural
parameters of the surface. (a) Absorption spectra at different R; (b) Absorption spectra at different W;
(c) Absorption spectra at different L; (d) Absorption spectra at different T.

In order to further investigate the changes in the absorber’s absorption spectrum,
Figure 5 shows the simulated spectrum of designed absorber when the thickness of the
surface structure was changed. The changing of H1 has a significant impact on absorption
in the middle band. When the H1 thickens, the intensity of absorption peak in the middle
band is weak and appears to show redshift. At the same time, the absorption between
λ = 1 µm and 1.25 µm decreases. Through Figure 3, we know the mode of exciting surface
plasmon is the difference of absorption peak at λ = 0.4442 µm and absorption peak at
λ = 0.8407 µm. We can infer that the adjacent widened absorption peaks are superimposed
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to achieve high absorption between λ = 1 µm and 1.25 µm. The thickness of the TiO2 layer is
changed in Figure 2b. The intensity of absorption peak increases. However, the absorption
peak at λ = 0.8407 µm starts blueshift and at λ = 1.7294 µm shows redshift. The tearing of
adjacent absorption peaks leads to a rapid decrease in the absorption between λ = 1 µm
and λ = 1.25 µm. Figure 5c shows the spectrum with changing H3. The phenomenon and
reasons are similar to those in Figure 5b. Through the analysis of Figures 4 and 5, it can be
concluded that we can manually adjust the absorber’s absorption spectrum by adjusting
the geometric parameters.

Coatings 2022, 12, 929 6 of 11 
 

in the middle band. When the H1 thickens, the intensity of absorption peak in the middle 
band is weak and appears to show redshift. At the same time, the absorption between λ = 
1 μm and 1.25 μm decreases. Through Figure 3, we know the mode of exciting surface 
plasmon is the difference of absorption peak at λ = 0.4442 μm and absorption peak at λ = 
0.8407 μm. We can infer that the adjacent widened absorption peaks are superimposed to 
achieve high absorption between λ = 1 μm and 1.25 μm. The thickness of the TiO2 layer is 
changed in Figure 2b. The intensity of absorption peak increases. However, the absorption 
peak at λ = 0.8407 μm starts blueshift and at λ = 1.7294 μm shows redshift. The tearing of 
adjacent absorption peaks leads to a rapid decrease in the absorption between λ = 1 μm 
and λ = 1.25 μm. Figure 5c shows the spectrum with changing H3. The phenomenon and 
reasons are similar to those in Figure 5b. Through the analysis of Figures 4 and 5, it can be 
concluded that we can manually adjust the absorber’s absorption spectrum by adjusting 
the geometric parameters. 

 
Figure 5. Simulated absorption spectrograms of the thickness parameter variation of the designed 
absorber surface structure. (a) Absorption spectra at different H1; (b) Absorption spectra at different 
H2; (c) Absorption spectra at different H3 

For natural incident light, it has many polarition directions at once [58–60]. The solar 
absorber with high absorption to various polarization directions of electromagnetics is 
important [61]. When the incident light changes from TM polarized light to TE polarized 
light, the spectrum of the absorber is shown in Figure 6a. Excited surface plasmon is usu-
ally easily affected by changes in the polarization angle, but because the surface structure 
of the designed absorber is symmetrical, it is not affected by the polarization angle. It is 
also worth considering when electromagnetic waves are incident through a certain angle, 
and the result is shown in Figure 6b. With the incident angle increasing, there are cases 
where the width of the high-absorption band gradually decreases. The absorber has an 
ideal effect on the absorption spectrum where the incident light angle is less than 50°, 
which can meet the needs in most cases. Therefore, the designed absorber can be applied 
to devices operating in natural light [62–65]. 

Figure 5. Simulated absorption spectrograms of the thickness parameter variation of the designed
absorber surface structure. (a) Absorption spectra at different H1; (b) Absorption spectra at different
H2; (c) Absorption spectra at different H3.

For natural incident light, it has many polarition directions at once [58–60]. The solar
absorber with high absorption to various polarization directions of electromagnetics is
important [61]. When the incident light changes from TM polarized light to TE polarized
light, the spectrum of the absorber is shown in Figure 6a. Excited surface plasmon is usually
easily affected by changes in the polarization angle, but because the surface structure of
the designed absorber is symmetrical, it is not affected by the polarization angle. It is also
worth considering when electromagnetic waves are incident through a certain angle, and
the result is shown in Figure 6b. With the incident angle increasing, there are cases where
the width of the high-absorption band gradually decreases. The absorber has an ideal
effect on the absorption spectrum where the incident light angle is less than 50◦, which can
meet the needs in most cases. Therefore, the designed absorber can be applied to devices
operating in natural light [62–65].
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In order to further verify the effect of each part on the absorber, we explore the in-
fluence of substrate structures on the spectrum of designed absorber in Figure 7a. After
removing the titanium in the uppermost layer of the substrate and the aluminum oxide in
the middle layer, the absorber’s ability to absorb electromagnetic waves has been signifi-
cantly reduced. Although fewer electric fields contribute to the substrate of the absorber,
it is important to excite and enhance surface plasmon resonance [66,67]. In Figure 7b, we
explore the impact of different surface structure on the absorber’s absorption spectrum.
The situation A is that the disk in the center is removed. The absorption of the absorber
decreases in visible bands, and absorption band narrows but still has good performance. It
indicates we can adapt a simple structure to meet the requirement when the absorption
rate is not strict. In situation B, the rectangles in the surface structure are canceled. And the
absorption of the absorber declines rapidly, especially in mid-band and long-band. This
phenomenon can also be foreseen from the electric field diagram in Figure 3. Most of the
electric fields are distributed on the surface of the rectangle structure or between adjacent
strip structures, so the rectangle structure plays a very important role in the absorption
of the absorber [68]. Finally, we explore the contribution of substrate structure to absorp-
tion in situation C. The absorber has low absorption to the electromagnetic especially in
visible-band. Thus, the substrate needs to work with the surface structure to achieve wide
spectrum and high absorption.
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4. Conclusions

In this paper, we designed a new structure of solar absorber based on refractory
metals, the basic unit structure of which includes a substrate composed by Ti-Al2O3-Ti,
four rectangles and a disk of TiN-TiO2. According to the suitable geometry structure
and parameters, the designed solar absorber achieves high absorption of solar energy.
The absorber’s average absorption is 96.32%. In the whole research of the wavelength
band (0.1–3.0 µm), the wavelength range of the absorption is higher than 90%, as wide
as 2.577 µm (0.413–2.990 µm). We discussed its physical mechanism more systematically
from the principle and electric field distribution. Afterwards, we discussed the structure
through the adjustment of geometric parameters to artificially directionally control the
absorber’s absorption spectrum, as well as the influence of the polarization angle and
incident angle on the performance of the solar absorber. In summary, we believe that the
designed absorber in this article has broad application prospects in light-to-heat conversion
equipment, solar power generation, and optical filtering.
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