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Abstract: In this study, monodispersed NiSe@Ni particles were successfully anchored on graphene
sheets by electroless nickel plating combined with a chemical-vapor-reaction process, in which the
nickel particles were first deposited onto graphene sheets and subsequently transformed in situ into
NiSe@Ni at an elevated temperature. The obtained product showed a unique multi-dimensional cou-
pling structure, namely, monodispersed NiSe@Ni particles (0 D) anchored on graphene sheets (2 D),
which enabled maximum synergy on the specific surface area, conductivity, and the electrochemical
activity of NiSe, Ni, and graphene multi-phases. The NiSe@Ni/graphene composite showed a specific
capacity of 302 mAh g−1 at a current density of 1 A g−1 in a potassium-hydroxide-electrolyte solution.
Meanwhile, the hybrid supercapacitor of NiSe@Ni/graphene//AC exhibited a high energy density
of 68.0 Wh kg−1 at 803.0 W kg−1 and maintained 72.53% of the initial capacity after 10,000 cycles at a
current density of 10 A g−1.

Keywords: monodispersed particles; graphene; selenide nickel; hybrid supercapacitor

1. Introduction

The exploration of renewable energy sources and the creation of sustainable energy-
storage solutions have become a highly active research areas [1–3]. Supercapacitors
have garnered significant attention as potential energy-storage systems due to their high
power density, rapid charging and discharging capabilities, extended lifespan, and eco-
friendliness [4]. The demand for high-performance energy-storage systems underscores the
urgent need to design advanced electrode materials. The inherently low energy density of
conventional supercapacitors greatly restricts their potential applications. As a result, the
assembly of asymmetric supercapacitors with two dissimilar electrode materials provides
the clear advantage of expanded operational voltage range, which greatly enhances energy
density [5]. In recent years, the main electrode materials used for supercapacitor applica-
tions included carbon materials [6] and transition-metal oxides [7], hydroxides [8], and
sulfides [9], along with their composites. Graphene has a two-dimensional structure, con-
sisting of a single layer of sp2 hybridized carbon atoms arranged in a honeycomb lattice [10].
Its remarkable electronic properties make it a highly promising and noteworthy material
for use in supercapacitors, owing to its extraordinary properties, such as its high electrical
conductivity (6000 S cm−1) and surface area (2675 m2 g−1) [11]. According to Zhang et al.,
pristine graphene exhibits an electrical double-layer capacitance of 21 mF cm−2, leading to
a theoretical specific capacitance of 550 F g−1, assuming full utilization [12]. Karaman et al.
managed to enhance the capacitive performance of GO by controlling and enhancing its
surface-nitrogen content and surface morphology. This resulted in an impressive energy
density of 39 Wh kg−1 in an acidic electrolyte of 0.1 A g−1 [13].
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A commonly accepted notion is that electrodes’ electrochemical performances can be
improved by utilizing large-area materials, or by enlarging their surface area [14]. These
approaches can augment the interfacial region between the electrode and the electrolytic
solution, consequently enhancing the energy-storage capacity of the electrode. Furthermore,
increasing the specific surface area can diminish the charge density of the electrode, leading
to better cycle stability and prolonged service life [15] Although it is a practical technique
to increase the specific surface area and active sites by integrating different materials
with diverse structures, volumes, and areas, the significant agglomeration phenomenon
that occurs during the compounding process creates dead volume by taking part in the
electrochemical reaction, which cannot be overlooked [16]. Transition-metal selenides are
excellent candidates for supercapacitors due to their high theoretical capacitance, metallic
character, exceptional electrical conductivity, and good reversibility [17]. Nanoscale Ni3Se2
on nickel foam was produced by Zhao et al., demonstrating excellent rate capability and a
capacitance of 1234 F g−1 [18]. Furthermore, Bai et al. successfully fabricated a two-phase
nickel-selenide-nanoparticle electrode material with outstanding performance, exhibiting
a capacity of 669 C g−1 [19]. While selenide-related composite materials have extensive
potential in energy storage, since the agglomeration phenomenon that arises during the
preparation process is challenging to circumvent, the improvements in the energy-storage
performance have fallen short of expectations.

We synthesized NiSe@Ni/graphene composites through a novel preparation method
involving the embedding of metallic nickel particles on graphene sheets to form convex con-
tacts, followed by the calcination of precursors and selenium powders via chemical-vapor
deposition under an inert gas. This method effectively prevents large-area agglomeration
during NiSe nucleation, resulting in a composite material that combines 2D flake graphene
with monodisperse 3D NiSe particles. The presence of metallic nickel in the composite
serves as a bridge, resulting in a multicomponent structure with a higher specific sur-
face area, more active sites, and easier channels for ion diffusion. The electrochemical
performance of the composite is significantly improved, as evidenced by our results.

2. Experimental Methods
2.1. Chemicals and Reagents

The Harbin Institute of Technology was the source of the graphene used in this
study. Other reagents, namely C6H5Na3O7·H2O, PbCl2, SnCl2, NaH2PO2·H2O, and
C12H25SO4Na, were procured from Yantai Shuang Chemical Reagent Co., Ltd. (Yantai,
China).

2.2. Surface Pretreatment of Graphene

An electroless plating method was utilized to produce nickel-coated graphene sheets
(Ni/graphene). Graphene sheets obtained by the liquid-phase exfoliation method are
highly chemically inert. The graphene sheets underwent a three-step treatment process
consisting of acid oxidation, sensitization, and activation prior to the nickel deposition [20].
A total of 0.4 g of graphene was mixed with a solution of 30 mL nitric acid and 10 mL
sulfuric acid. After 1 h of sonication, the mixture was heated for 5 h at 80 ◦C in a water bath.
The pH of the samples was adjusted to 7, and they were washed with deionized water. To
reduce the oxygen functional groups on graphene oxide to organic functional groups, such
as hydroxyl and carbonyl groups, graphene oxide and 10 g SnCl2 were combined in 0.12 M
hydrochloric acid. After ultrasonic stirring for 20 min, the sample was repeatedly washed
with deionized water until the pH value was 7 to obtain sensitized graphene. Finally,
sensitized graphene and 0.05 g PbCl2 were mixed in 0.24 M hydrochloric acid, and stirred
under ultrasound for 20 min to form lead catalyst core on the surface of graphene. The
samples were washed with deionized water to pH 7 and dried at 60 ◦C for 12 h to obtain
pretreated graphene.



Coatings 2023, 13, 885 3 of 14

2.3. Preparation of Ni/Graphene

The Ni/graphene were prepared according to a modified method [21]. Firstly, 3 g
NiSO4·6H2O and 7.2 g NH4Cl were dispersed in 100 mL of deionized water. Next, 1.8 g
NaH2PO2, 2 g C6H5Na3O7, and 0.5 mg C12H25SO3Na were added to the mixed solution
in sequence. During the process, Ni2+ ions were reduced to metallic nickel through a
redox reaction catalyzed by the highly reducing NaH2PO2, which was immobilized on the
pretreated graphene. The main reactions in electroless plating bathe were as follows:

Ni2+ + 2H2PO−2 + 2H2O Pd→ Ni + 2HPO2−
3 + H2 + 2H+ (1)

As a complexing agent, C6H5Na3O7 improves the dispersion and coverage of metallic
nickel [22]. The C12H25SO3Na (SDS) is an anionic surfactant, which improves the adsorp-
tion capacity of metallic nickel on the surface of graphene and prevents the formation of
pinholes on its surface, as well as the generation of H2 [23]. The solution was simplified
by vigorously stirring in NH3·H2O solution until the pH value reached 10. Next, the pre-
treated graphene was introduced into the solution, which was then transferred into an oil
bath and heated at 85 ◦C for 15 h. Once the reaction had finished, the mixture was allowed
to cool to room temperature, and the resulting powders were gathered by high-speed
centrifugation and washed with de-ionized water until a neutral pH was achieved. The
sample powder was placed in a drying oven at a constant temperature of 60 ◦C, with a
pressure of 0.06 MPa, for 12 h.

2.4. Preparation of NiSe@Ni/Graphene

Based on theoretical calculations, the synthesis of NiSe required 100 mg of selenium
powder. However, during the nickel-selenide experiments, selenium powder occurred in a
gaseous state at 700 ◦C, leading to a significant loss of gaseous selenium powder in the vac-
uum tube with high flow rate, which did not participate in the reaction. Therefore, we added
0.4 g of selenium (Se) powder in the upstream ceramic boat and 100 mg of Ni/graphene
in the downstream ceramic boat [24]. Under the protection of inert gas, the powder was
heated at 700 ◦C (increase rate: 10 ◦C min−1) for 1 h. A further NiSe@Ni/graphene com-
posite was generated after natural cooling to room temperature. The production process of
the NiSe@Ni/graphene is illustrated in Figure 1.
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Figure 1. A diagrammatic representation of the process for producing NiSe@Ni/graphene.

2.5. Characterization of Materials

The structural characterization of the composites was performed using XRD (Bruker
D8, ADVANCE, Billerica, MA, USA) with Cu Kα radiation (λ = 1.54178 Å). The elemental
composition of the composites was analyzed using XPS (AXIS Supra, Thermo Fisher
Scientific Inc., Walsham, MA, USA) with monochromatic Al Kα radiation. Identification
of chemical constituents in composites was carried out using a Raman spectrometer with
an excitation wavelength of 532 nm (Lab RAM HR Evolution, HORIBA Jobin Inc., Paris,
France). The SEM (JSM-6701F, JEM2010, JEOL Ltd., Tokyo, Japan) and TEM (TF20, JEOL
Ltd., Tokyo, Japan) were used to observe the specific appearance and structural features of
the composite samples.
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2.6. Electrochemical Measurements

An electrochemical analysis was conducted using a CS350H work-station from Wuhan
Corrtest Instrument, China. The performance test utilized a three-electrode configuration,
in which the active material served as the working electrode, platinum foil acted as the
counter electrode, and Ag/AgCl served as the reference electrode. A 2-M KOH aqueous
solution was used as the electrolyte, and the test was carried out at room temperature.
The active material was evenly spread on the surface of foamed nickel (1 × 1.5 cm2) in a
ratio of active materials (2.0 mg):super P:PVDF = 8:1:1 after thorough mixing. The specific
capacitance (Q, mAh g−1) of the sample was calculated using the electrochemical test
results and the following formula [25]:

Q =

∫ ∆t
0 Idt

m
(2)

The constant discharging current and constant discharge time, along with the mass of
active material, are denoted by the symbols I, ∆t, and m, respectively.

For the hybrid capacitor, the composite material (1.0 mg) and activated carbon (AC,
5.0 mg) in 2-M KOH aqueous solution were used as positive and negative electrodes,
respectively, to assemble a coin cell. Calculation according to formula of energy and power
density [26]:

E =
I
∫

Vdt
3.6×m

(3)

P =
3600× E

∆t
(4)

The variables in the equation above are as follows: the current of discharge (I), the
working potential (V), the time of discharge (t), and the mass (m) of the active material.

3. Results and Discussion
3.1. Morphology Analysis

Figure 2a,b display the SEM of the Ni/graphene composites. It can be seen that due
to the reduction of the NaH2PO2 and the action of the anionic surfactant, C12H25SO3Na,
50-nm metallic nickel particles were firmly attached to a sleek graphene surface through
anchoring. Although the complexing agent, C6H5Na3O7, can enhance the dispersion of
metallic nickel, it can still be seen that part of the metallic nickel was agglomerated on the
graphene surface. This phenomenon limited the charge-transport efficiency. When the
sample was selenized at a high temperature, the nickel layer of graphene gradually trans-
formed into NiSe, which wrapped around the metallic nickel to form a NiSe@Ni. As shown
in Figure 2c,d, when the Ni/graphene was selenized by the chemical-vapor deposition, the
metal nickel on the graphene surface had obvious agglomeration before selenization, but
the agglomeration was obviously weakened after the selenization. The NiSe nanoparticles
with rough surfaces and an average diameter of 180–210 nm were uniformly immobilized
onto the surface of the graphene, thereby forming a NiSe@Ni/graphene composite material.
The anisotropic growth of the NiSe@Ni/graphene increased the particle size and surface
area, leading to more active sites. The nucleation of the NiSe particles uniformly dis-
persed on the graphene surface provided an excellent interface structure and improved the
electron-transfer efficiency. A strong explanation was therefore provided for the enhanced
electrochemical performance. It can be seen from the HRTEM images (Figure 2c,d) that
the surfaces of the graphene sheets were roughened by the immobilization of a substantial
quantity of NiSe particles onto them. The lattice fringes with interlayer distances of 0.27
and 0.2 nm in the HRTEM (Figure 2c) correspond to the (101) and (001) planes of the NiSe
particles. The corresponding SAED pattern (Figure 2d) presented discrete diffraction spots,
representing multiple facets of the NiSe structure, including (101), (102), (110), and the cubic
Ni (111) plane (PDF # 04-0850). The distribution of the elements in the sample is shown in
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Figure 2e. The Ni (green), C (red), and Se (blue) elements were uniformly distributed on
the graphene. The EDS shows that the NiSe@Ni/graphene was composed of C, Ni, and Se
elements. The observed O and Cu elements were derived from air mixed in the sample
preparation and the copper column used in the test sample, respectively [27]. Section 2.4
provides the explanation for the use of excess selenium powder in the samples’ preparation.
To synthesize the NiSe, only 100 mg of selenium powder was used, despite the requirement
of 400 mg for chemical-vapor deposition. This resulted in a different Se-content ratio from
that which we expected based on the SEM mapping. In fact, the actual ratio was closer to
Mgraphene:MNi:MSe = 2:3:3.
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3.2. Phase Analysis

The X-ray diffraction results (Figure 3a) show that the diffraction peaks of the NiSe@Ni/
graphene can be accurately identified as originating from the NiSe (JCPDF # 02-0892)
and the face-centered cubic Ni (JCPDF # 04-0850). The XRD pattern showed character-
istic peaks of Ni/graphene at 44.5◦, 51.8◦, and 76.4◦, which corresponded to the (111),
(200), and (220) planes of the face-centered cubic Ni. These results suggest that the Ni
coating exhibited exceptional crystalline properties [24]. After the selenization of the
Ni/graphene samples, we can see that the (100), (101), (102), (110), (103), (201), (202),
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(004), (203), and (211) corresponded well to the characteristic peaks of the NiSe with-
out excrescent impurity peaks, which suggests that the high-purity nickel-selenide crys-
tals were distributed across the surfaces of the graphene sheets. The crystallite sizes of
the Ni/graphene and NiSe@Ni/graphene were calculated using the Debye–Scherrer for-
mula [28], and they were found to be 11.8 nm and 75.0 nm, respectively. The Raman
spectrum of the NiSe@Ni/graphene is shown in Figure 3b. The classical D, G, and 2D
peaks of the graphene appeared at 1300, 1580, and 2700 cm−1. The Raman image of the
NiSe@Ni/graphene was used to analyze the state of the graphene after the recombination
(Figure 3b). As the D band was derived from the vibration of the sp3 hybridized carbon
atoms present in the disordered domains and defect regions [24], the intensity ratio of the D
band to the G band at a high temperature of 700 ◦C, which was 0.1, indicated the presence
of a higher number of defects in the composite sample. This can be advantageous in terms
of exposing more active sites and accelerating mass transport during the electrochemical
process. In contrast to the single-layer graphene, in which the 2D peak had a single peak
form as it was formed by the direct intersection of two equal-energy-band electrons, the
2D peak in the multilayer graphene was a result of the interaction between the layers. As
the number of layers increased, the interaction between the layers weakened, resulting
in a decrease in the intensity of the 2D peak. Based on these findings, the 2D peak in the
single-layer graphene in this study was expected to be more pronounced.
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3.3. XPS Analysis

The surface-element compositions and chemical states of the NiSe@Ni/graphene
composite were analyzed using XPS, as depicted in Figure 4. Based on the survey spectrum
of the XPS (Figure 4a), the primary components of the NiSe@Ni/graphene composites
were found to be C, Se, and Ni elements. The O 1s peak observed in the spectrum was
attributed to contamination resulting from the exposure of the sample to ambient air [29,30].
Figure 4b displays the C 1s spectra that were separated into three distinct peaks, with
binding energies of 284.8 eV, 285.5 eV, and 286.7 eV, which corresponded to the C-C, C-O-C,
and O=C-O bonds, respectively [31]. The XPS spectrum of the Ni 2p in Figure 4c indicates
the presence of Ni 2p3/2 and Ni 2p1/2, as well as their associated satellite peaks [32]. The
weak peaks observed at 856.4 eV and 873.7 eV were identified as the Ni3+ the in Ni3Se4,
while the sharp peaks at 855.3 eV and 872.6 eV were identified as the Ni2+ in the NiSe.
Furthermore, the intense peaks at 861.1 eV and 878.8 eV were observed as shakeup satellites
for the Ni 2p3/2 and Ni 2p1/2 levels (represented as “Sat.” in the spectrum) [33]. Notably,
the characteristic peaks observed at 852.5 eV and 869.8 eV originated in the metallic nickel,
which provides solid evidence for metallic nickel as an effective medium for ion transport
between graphene and NiSe. The peaks deconvoluted at binding energies of 53.61 eV and
54.47 eV can be attributed to the Se 3d5/2 and Se 3d3/2 spin-orbit levels of the Se-Ni in
the NiSe, respectively. This suggests that chemical bonding occurred between the NiSe
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particles and the graphene sheets with large surface areas [34]. The peaks centered at
58.4 eV represent the related oxides of the Se [35].
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3.4. Electrode-Electrochemical-Performance Test

We tested the electrochemical performance of the NiSe@Ni/graphene and Ni/graphene
in a three-electrode configuration, with KOH as an electrolyte. Figure 5a,c show the CV
curves of the NiSe@Ni/graphene and Ni/graphene at the same scan speed (50 mV s−1)
and different scan speeds (5–50 mV s−1). Based on the observations in Figure 5a, it can be
concluded that the integral area of the CV curve showed an increase within the voltage
range of −0.2–0.6 V for the NiSe@Ni/graphene composite, and that the peak current of
this composite was larger than that of the pristine Ni/graphene with similar mass. These
findings indicate that the hybrid electrode of the NiSe@Ni/graphene composite exhibited
a greater charging-storage capacity and higher specific capacitance. Furthermore, the
NiSe@Ni/graphene hybrid electrode displayed almost no shift in the reduction in the
potential peak compared to the pristine NiSe electrode. A slight shift was observed in the
oxidation-potential peak, but it was very minor. This can be attributed to the fact that the
NiSe@Ni/graphene hybrid electrode had a lower internal resistance, resulting in a more
reversible redox reaction. The results obtained from the GCD measurements at a current
density of 1 A g−1 (Figure 5b) support this conclusion, and the larger capacity area obtained
from the GCD curve was consistent with the results obtained from the CV curve. Finally,
Figure 5c shows the CV curves of the NiSe@Ni/graphene composite in a potential window
of −0.2–0.6 V for scanning rates in the range of 10–50 mV s−1. The apparent reduction and
oxidation reactions observed in the CV image suggest that the conversion of the nickel ions
between the different oxidation states can be attributed to the faradic reaction [24,33,36].
The electron-transfer-construction processes were:

NiSe + OH− ↔ NiSeOH + e− (5)
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NiSeOH + OH− ↔ NiSeO + H2O + e− (6)
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Therefore, we speculate that two-step oxidation reactions occurred during the charge-
transfer process: NiSe oxidation to NiSeOH and NiSeOH oxidation to NiSeO. When
we plotted the GCD curves for the NiSe@Ni/graphene in the voltage range of 0–0.4 V
(Figure 5d), we found that the redox reaction between the electrode material and the
electrolyte had excellent reversibility at the same scan rate in Figure 5c [37,38]. Based
on the discharge curve, the electrode exhibited specific capacities ranging from 308 to
89 mAh g−1, across a current-density range of 1 to 20 A g−1. The enhancement of the
electroconductivity can be attributed to the increase in the active sites after the selenization,
as well as the addition of the graphene. Furthermore, the diffusion of active species
was more favorable due to the corresponding increase in the diffusion coefficient [39].
These results significantly surpassed those obtained on transition-metal nickel selenide in
recent years (Table S1). The Nyquist plot of the NiSe@Ni/graphene electrode in Figure 5f
exhibits a quasi-semicircular shape, along with a straight line. Moreover, in the high-
frequency range, both the Ni/graphene and the NiSe@Ni/graphene electrodes exhibited
small semicircular shapes, indicating the low interfacial charge transfer resistance of both
electrodes [40]. However, compared with the radius of the semicircle of Ni/graphene,
the obvious reduction in the semicircle radius of the NiSe@Ni/graphene meant that the
charge-transfer resistor of the sample decreased. Therefore, the calculated Rs and Rct of the
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NiSe@Ni/graphene were 0.83 Ω and 0.52 Ω, respectively; these values were lower than
those of the Ni/graphene, which were 0.88 and 1.07 Ω. These results suggest that the sample
after selenization had lower resistance and better capacitance performance. Therefore,
based on the electrochemical tests, we speculated that the reasons for the performance
improvement after the selenization were as follows: (a) The number and distribution of
active sites on the Ni/graphene surface were altered following the selenization. Resolving
the agglomeration issue enabled more inactive areas to be transformed into active sites
and exposed, leading to an enhancement in the electrochemical reactions. (b) Moreover,
the selenization process induced modifications in the nanostructure of the Ni/graphene
surface, whereby not only did the NiSe particles enhance the electrodes’ surface area but,
furthermore, the novel ternary structure comprising graphene, metallic nickel, and NiSe
further amplified the energy-storage capacity.

According to the three-electrode data of the composite sample of NiSe@Ni/graphene,
the composite material’s total current was the result of two factors: the current generated
by the slow diffusion-control process (idi f ), and the current resulting from the double layer
charge at the electrolyte interface caused by the Faraday effect or the current on the exposed
electrode surface (icap). Therefore, the capacitive contribution and the diffusion-controlled
contribution were calculated according to the following equation [41]:

iv = idi f + icap = a× vb (7)

In particular, the b value was a key parameter in determining the kinetic information
about the electrochemical reaction. A value of b = 1 corresponded to the presence of
fast surface-redox reactions and charge/discharge processes inherent in EDLCs, and a
value of b = 0.5 corresponded to the presence of the peak current responses of battery-type
electrodes with strong redox peaks.

The anodic and cathodic peak currents in the NiSe@Ni/graphene electrode had b-
values of 0.5003 and 0.5368, respectively, as determined by the linear plots shown in
Figure 6a. These values indicated that the NiSe@Ni/graphene exhibited typical battery-
type material behavior. The contribution to the total capacity was analyzed using the
following formula [42]:

iv = k1v + k2v
1
2 (8)

where k1v is the role of the surface capacitance and k2v
1
2 is the contribution of the diffusion-

controlled intercalation.
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The surface-capacitance contribution increased, which indicated an increase in the elec-
trodes’ surface area. This resulted in more effective reaction areas on the electrode surfaces
to accommodate the additional ions. As a result, the distance for ion diffusion between the
electrode and the electrolyte was reduced, leading to a decrease in the contribution of the
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diffusion current. Moreover, when the surface-capacitance contribution increased, the total
capacitance of the electrode also increased, which slowed down the rate of the voltage drop
over time [43]. This resulted in more uniform ion diffusion between the electrode and the
electrolyte, further reducing the contribution of the diffusion current, as shown in Figure 6b.
Based on our experimental results, the excellent electrochemical energy-storage properties
of the NiSe@Ni/graphene composite can be attributed to several factors. Firstly, the metal
nickel was anchored on the large-area graphene surface and formed a crystal structure
with the graphene, introducing lattice-mismatched defects that created more channels for
ion diffusion and additional electrochemically active sites. Secondly, the electroless nickel
plates encouraged the uniform nucleation of metal selenides and created a novel interfacial
structure between the graphene and the NiSe, improving the transport efficiency of the ions
and electrons. Thirdly, the selenization reduced the agglomeration of the metallic nickel
on the graphene surface, resulting in the even dispersion of the metallic nickel and the
NiSe particles. This created more interfaces and pathways for ion diffusion, and adequate
room for structural changes during the ion insertion/extraction, along with increased
electrode–electrolyte contact. Finally, the introduction of the NiSe particles roughened the
electrode surfaces, increasing the valid surface area and capacitance. The specific capacity
and the Nyquist curve indicated that the NiSe@Ni/graphene had better conductivity and
higher charge-transfer efficiency due to the selenization.

3.5. Electrochemical-Performance Test of Hybrid Supercapacitor

Electrochemical investigations were performed on an asymmetric supercapacitor de-
vice, specifically NiSe@Ni/graphene‖AC, so as to explore the practical applications of
the NiSe@Ni/graphene. The electrochemical parameters of the AC electrode are shown
in Figure S1 for comparison. The CV graphics of the optimized device were obtained
in unequal potential windows, ranging from 0.0–0.9 V to 0.0–1.9 V, revealing distinct
anodic and cathodic peaks within the tested voltage range. The redox reaction was sus-
tained even when the operating voltage was raised to 1.7 V. These results demonstrate
the practical utility of NiSe@Ni/graphene in this type of device. Figure 7a provides a
visual representation of the CV curves. When the voltage continued to rise, the CV curve
was obviously deformed, indicating an irreversible reaction [44]. The electrochemical
performance of the NiSe@Ni/graphene‖AC device remained stable within a potential
range of up to 1.6 V. This was demonstrated by the typical CV curves of the device, shown
in Figure 7b, which were obtained at scan rates ranging from 5 mV s−1 to 50 mV s−1.
Therefore, the NiSe@Ni/graphene‖AC ACS device can operate in a potential window of
up to 1.6 V for stable electrochemical performance. No obvious distortion was observed
in the shapes of the CV curves, even at higher scan rates, indicating that the ASC device
had a good transient-current response and capacitive performance [45]. Figure 7c displays
the discharge curves, which illustrate the ASC’s discharge performance as the current
density gradually increased. The GCD curves obtained at diverse densities of current,
from 1 to 20 A g−1, exhibited remarkable electrochemical reversibility, as evidenced by
their excellent symmetry. Based on the GCD curves obtained at various current densities
(as shown in Figure 7d), the device was found to exhibit a specific capacitance of up to
170 F g−1 at a current density of 1 A g−1. Interestingly, even at a significantly higher
current density of 20 A g−1, the specific capacitance was observed to remain constant at
55 F g−1. Figure 7e shows that the device’s charge–discharge rate and power density
can be improved, as the values obtained of electrochemical impedance spectroscopy (EIS)
at the open circuit potential with an amplitude of 10 mV for the Rs and the Rct of the
NiSe@Ni/graphene‖AC were 1.41 and 0.85 Ω, respectively, which were considered favor-
able. When the NiSe@Ni/graphene‖AC device was detected at 10,000 charge–discharge
cycles at a current density of 10 A g−1, the coulombic efficiency consistently remained
above 98%, as shown in Figure 7e. However, the capacitance initially decreased signifi-
cantly in the early cycles due to the loss of electrode capacity resulting from the electrolyte
decomposition and the formation of an irreversible SEI layer [46]. After 2000 cycles, the
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specific capacity of the NiSe@Ni/graphene electrode gradually increased. The device ex-
hibited excellent long-term cycle stability, with a capacitance retention of 72.53% even after
10,000 cycles. The increase in specific capacity was primarily due to the reversible formation
of a gel-like protective layer by the nanoparticles on the surface of the NiSe@Ni/graphene
electrode, which exhibited “pseudocapacitive behavior”, which is commonly found in
electrodes composed of graphene/transition-metal compounds [47]. These test results
demonstrate that the NiSe@Ni/graphene‖AC supercapacitor has good charge–discharge
and cycle performance, and that it is an excellent energy-storage device. Figure 7f dis-
plays the Ragone plot of the device’s energy density and power density. The results show
that the NiSe@Ni/graphene//AC asymmetric supercapacitor outperforms similar metal-
selenide energy-storage devices [48–52], with a high energy density of 68 Wh kg−1 at a
power density of 853 W kg−1 and an energy density of 22 Wh kg−1 at a power density of
16,737 W kg−1.
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4. Conclusions

Electroless nickel plating on graphene is an important step in the preparation of
NiSe@Ni/graphene composites. Adjustments were made to the thickness and dispersion of
the electroless nickel-plating layer on the surface of the graphene, as well as to the degree of
defects present in the graphene. After obtaining an electroless nickel plating on 2D graphene
sheets, selenization was performed. Throughout the reaction process, the Ni present in the
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outer layer was initially transformed into NiSe through selenization. The metal nickel and
NiSe nanoparticles that did not make full contact with the selenium-powder flow were
intricately dispersed onto a 2D graphene sheet due to the variance in their grain sizes.
As a result, they formed a 3D sandwich structure of NiSe@Ni/graphene. The material’s
ability to provide a greater number of active sites, its large specific surface area, and
the unexpected synergistic effects that arose from the combination of the three materials
collectively contributed to the material’s high performance. Graphene and Ni exhibit
superior electrical conductivity by leveraging the synergies between graphene, metallic
nickel, and NiSe particles, while the remarkable electrochemical activity of NiSe further
enhances the rate of the redox reaction. At a density of current of 1 A g−1, the material
exhibited a remarkable capacity of 302 mAh g−1 (equivalent to 2716 F g−1). Additionally,
the material performed exceptionally well when assembled as a positive activated carbon
and negative electrode in an asymmetric supercapacitor. At a density of current of 1 A g−1,
the device displayed a high capacity of 170 F g−1, while maintaining a coulombic efficiency
and capacity retention of 100% and 72.53%, respectively, over 10,000 cycles. The ASC device
achieved high energy and power densities of 68 Wh kg−1 and 16,737 W kg−1, respectively.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/coatings13050885/s1, Figure S1: The electrochemical parameters
of the AC electrode: (a) CV curves. (b) GCD curves. (c) Specific capacities.; Table S1: Comparison
between transition metal selenides and graphene composite of electrode materials.
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