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Abstract: As one core component in hydrogen fuel cells and water electrolysis cells, bipolar plates
(BPs) perform multiple important functions, such as separating the fuel and oxidant flow, providing
mechanical support, conducting electricity and heat, connecting the cell units into a stack, etc. On the
path toward commercialization, the manufacturing costs of bipolar plates have to be substantially
reduced by adopting low-cost and easy-to-process metallic materials (e.g., stainless steel, aluminum or
copper). However, these materials are susceptible to electrochemical corrosion under harsh operating
conditions, resulting in long-term performance degradation. By means of advanced thermal spraying
technologies, protective coatings can be prepared on bipolar plates so as to inhibit oxidation and
corrosion. This paper reviews several typical thermal spraying technologies, including atmospheric
plasma spraying (APS), vacuum plasma spraying (VPS) and high-velocity oxygen fuel (HVOF)
spraying for preparing coatings of bipolar plates, particularly emphasizing the effect of spraying
processes on coating effectiveness. The performance of coatings relies not only on the materials
as selected or designed but also on the composition and microstructure practically obtained in the
spraying process. The temperature and velocity of in-flight particles have a significant impact on
coating quality; therefore, precise control over these factors is demanded.

Keywords: thermal spraying; bipolar plates; coating; corrosion; fuel cells and electrolysis cells

1. Introduction

Hydrogen, as an efficient energy carrier, will play a critical role in economic decar-
bonization by substituting traditional fossil fuels in transportation, power generation,
heavy industry and other sectors [1–4]. Hydrogen fuel cells and water electrolysis cells
will form the basis of the large-scale application of hydrogen energy, with the former capa-
bility of directly converting the chemical energy of hydrogen into electricity [5,6] and the
latter splitting water to generate green hydrogen by consuming renewable electricity [7,8].
Alkaline fuel and electrolysis cells, proton exchange membrane fuel and electrolysis cells,
and solid oxide fuel and electrolysis cells are the three representative fuel and electrolysis
cell technologies. Alkaline fuel and electrolysis cells are already mature techniques and
have entered the commercialization stage [3,7,8]. The latter two are attractive types of
next-generation technologies due to their respective characteristics, such as high current
density and short respond time of proton-exchange membrane fuel cells (PEMFCs) [9] and
electrolysis cells (PEMECs) [10,11], high efficiency of solid oxide fuel cells (SOFCs) [12] and
electrolysis cells (SOECs) [13]. PEMFCs and PEMECs may be mentioned together as the
PEM cells, while SOFCs and SOECs can be referred to as the SOCs in the following text [14].
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Figure 1 shows the operating principles of these electrochemical devices. All these cells
consist of anodes, cathodes, electrolytes, sealing materials and bipolar plates (BPs), which
are the main components forming a single-cell repeating unit.
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Figure 1. Schematics and operating principles of SOFCs (a), PEMFCs (b), SOECs (c) and PEMECs (d).

The operating principle of SOFCs (Figure 1a) is described as follows [12,15]: the
cathode firstly adsorbs oxygen molecules from the oxidant (oxygen or air) and reduces
them to oxygen ions. These oxygen ions pass through the O2− conducting electrolyte,
arriving at the anode and reacting with the fuels (hydrogen, hydrocarbons, ammonia, etc.)
to generate water and electrons. Finally, electrons are transferred from the anode to the
cathode through the external circuit to produce electric power. With respect to PEMFCs,
a proton exchange membrane (PEM) is used as the electrolyte, i.e., protons (instead of
oxygen ions) serve as the charge carriers in PEMFCs, resulting in the generation of water
on the cathode side (Figure 1b) [16]. For the electrolysis cells, electrochemical reactions
occurring on each electrode are essentially the reverse processes of those occurring in fuel
cells. Effectively, the operation of SOECs (Figure 1c) [1] and PEMECs (Figure 1d) [17] is
contrary to that of SOFCs and PEMFCs, respectively. Apart from the anodes, cathodes
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and electrolyte membranes, sealing materials and BPs are also major components of these
electrochemical devices. Sealing materials play a key role in preventing gas (fuel or air)
leakage and ensuring electrical insulation [18]. BPs perform multiple significant functions,
such as separating the fuel and oxidant, electrically and thermally connecting the cells in
series to form a stack, providing mechanical support, etc. [19].

Currently, the large-scale application of hydrogen fuel cells and electrolysis cells is mainly
impeded by the high manufacturing cost of these devices [20], in which the BP components
account for a major portion. The initial BPs are conventionally made of expensive and
difficult-to-process materials (e.g., LaCrO3-based ceramics for SOC cells [21] and titanium
plates for PEM cells [2,22]), accounting for ~30% and ~53% of the cost for SOC and PEM cells,
respectively [2,23]. It is, therefore, of great interest to lower the cost by employing low-cost
and easy-to-process alternative metal materials (e.g., ferritic stainless steels for SOC cells and
stainless steels, aluminum or copper for PEM cells) [24,25]. Unfortunately, owing to the poor
chemical stability, these candidate materials are susceptible to corrosion, resulting in a
series of problems (such as Cr poisoning in SOCs, decrease in proton conductivity in PEM
cells, etc.) during the electrochemical operation [26–28]. Therefore, improving the corrosion
resistance of these BP materials is an essential prerequisite for the use of hydrogen fuel
cells and electrolysis cells.

Protective coatings, which are aimed to isolate the substrate material from external cor-
rosive environments, have been employed for the protection of BPs from corrosion [29,30].
An effective coating should possess the following features: (i) it must be inert or chemically
stable, ensuring that no continuous reaction occurs between the coating material and the
external corrosive environment; (ii) it must be dense and integral to block corrosive medium
permeation; (iii) it must be electrically conductive so as to enhance electron conducting;
(iv) it must have a similar thermal expansion coefficient with the metallic substrate, in
order to minimize formation of any micro- and macro-cracks due to thermal stress along
with temperature change. Based on the above requirements, coating materials that have
been explored for protecting metallic BPs of PEMFC or PEMEC from electrochemical cor-
rosion mainly include: (i) noble metals (Pt [31], Au [32]); (ii) transition metals (Nb [33],
Ti [34]); (iii) transition metal nitrides (CrN [35], TiN [36]). Similarly, rare-earth perovskite
oxides [37,38] and spinel oxides [29] are the most commonly used materials to protect
ferritic stainless-steels (FSS) BPs from corrosion in SOCs [14]. Apart from coating materials,
coating technology (such as physical vapor deposition [31], electroplating [32] and metal
nitriding methods [36] for PEMFC and PEMEC; slurry coating [24], magnetron sputtering
(MS) [29] and electrophoretic deposition (EPD) [29] for SOCs) is another critical factor
determining the coating performance because it directly affects the coating microstructure
and composition. Currently, some coating materials have shown potential application
prospects; for example, Nb-coated stainless steel BPs exhibited a low degradation rate
(~5.5 µV h−1) during the 14,000 h electrolysis cell test [39]. Mn-Co spinel-coated FSS BPs
showed excellent stability over the 40,000 h SOFC stack test [40]. Therefore, the current
research focuses on developing suitable coating technologies for commercial applications;
the advantages and disadvantages of different coating methods for BPs are summarized
in Table 1. Slurry coatings, electrophoretic deposition, physical vapor deposition and
electrodeposition are commonly used coating methods for SOCs; the first two use spinel
ceramic powders as feedstocks to deposit coatings, the as-prepared coatings are porous
and need to improve coating density through reduction and re-oxidation heat treatment.
The latter two are used to prepared metal or alloy coatings and also need oxidation heat
treatment to convert these coatings into spinel coating. Hence, all of these coating methods
are time-consuming and low efficiency. Metal nitriding, physical vapor deposition, chemi-
cal vapor deposition and electroplating are commonly used coating methods for PEMFCs
and PEMECs, unfortunately, all of these coating technologies are unsatisfactory due to their
respective disadvantages.
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Table 1. Advantages and disadvantages of different coating methods for BPs.

Coating Method for BPs of SOCs

Coating method Advantages Disadvantages Structure feathers

Slurry coatings Simple, low cost Low efficiency,
post-treatment needed Porous and nonuniform

Electrophoretic deposition Low cost, non-line-of-sight process Post-treatment needed Porous

Physical vapor deposition Dense coating
Time-consuming for a thick coating, high
vacuum condition, unsuitable for mass

production, post-treatment needed
Dense and uniform

Electrodeposition Lost cost, uniform coating thickness Difficulty for binary or ternary alloy
deposition, post-treatment needed Dense and uniform

Atmospheric plasma spraying Simple, cost-effective, suitable for
mass production

Dependent on line-of-sight, some
porosities and micro-cracks in the coating Dense

Coating method for BPs of PEMFCs and PEMECs

Metal nitriding Coating with low incidence
of pinhole defects High-temperature operation Dense and uniform

Physical vapor deposition Coating with good adherence BP size limited by vacuum chamber,
pitting corrosion, high vacuum condition Dense and uniform

Chemical vapor deposition Suitable for mass production, coating
with good corrosion resistance

High-temperature operation, high
vacuum condition Dense and uniform

Electroplating Coating with uniform thickness Suitable for conductive materials,
poor adherence Dense and uniform

Vacuum plasma spraying high deposition rate,
thick film

micro-cracks and open pores, dependent
on line-of-sight, high vacuum condition Dense

High-velocity oxygen fuel spraying High deposition rate,
thick film

Dependent on line-of-sight, suitable for
alloy or non-oxide ceramic materials with

low melting point
Dense

Among various coating technologies, thermal spraying [41,42] is the most promising
and cost-effective method due to its high deposition rate, suitability for mass production
and relatively low cost, which has attracted great interest, especially from the industry.
Thermal spraying is a direct melt–spray–deposition process in which the raw powders are
fed into a high-temperature flame, heated to a molten or semi-molten state and propelled
toward a pre-treated substrate with high velocity. Then, the coating is built up through
continuous impingement and rapid solidification of the droplets. The deposition principle
of thermal spraying is shown in Figure 2a [43]. According to the differences in energy
sources, thermal spraying can be divided into a few categories, as shown in Figure 2b [44].
Among these technologies, atmospheric plasma spraying (APS), vacuum plasma spraying
(VPS) and high-velocity oxygen fuel (HVOF) spraying are commonly used technologies
for coating BPs. These technologies are very suitable for rapidly preparing coatings with
micron-sized dimensions rather than nano-scaled thin films. Both APS and VPS use a
high-velocity plasma jet to melt coating materials. The differences between them are that
the former deposits coating in an air atmosphere, and the latter operates in an inert and low-
pressure/vacuum atmosphere. Unlike APS and VPS, HVOF uses a high-temperature flame
originating from the combustion of fuel (e.g., propane, acetylene, kerosene or propylene)
to melt down the coating materials. The characteristics of these technologies are shown
in Figure 2c [45]. Due to significant differences in the atmosphere, flame temperature and
flame speed among these three spraying technologies, the appropriate coating materials for
spraying vary significantly as well. Figure 2d–f illustrates the spraying mechanisms (inset
maps) and the photographs of APS, VPS and HVOF, respectively. In addition, various
bipolar plates used in SOCs and PEM cells are shown in Figure 2g–j.

The key to obtaining high-quality thermal sprayed coatings (such as uniform thickness,
good electrical conductivity, excellent corrosion resistance, etc.) lies in precise control of
the coating composition and micro-structure, which mainly depends on the spraying
parameters. One of the consequences caused by improper spraying parameters is powder
overheating, which results in powder decomposition and composition deviation from
its initial stoichiometric ratio. Therefore, the high-temperature oxidation resistance and
conductivity of the as-sprayed coating may be unsatisfactory [46]. Moreover, a mismatch
in the coefficients of thermal expansion (CTE) between coatings and substrates will induce
thermal stresses, leading to the formation of defects (such as micro-cracks or pores) in
coatings [47–49]. The defects could provide channels for the corrosive medium to penetrate
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the substrate material, leading to deterioration of the oxidation/corrosion resistance of
the as-sprayed coatings. Therefore, a better understanding of the relationship between
the spraying process, coating characteristics and coating performance is critical for further
improving the coating quality. This review focuses on the characteristics and applicability
of three different thermal spraying technologies, including APS, VPS and HVOF, which
have been intensively studied for coating BPs in several major categories of hydrogen fuel
cells and electrolysis cells. The technological features, strengths and limitations of these
methods are summarized and analyzed. The effect of spraying parameters on detailed
coating composition and microstructure, as well as the corrosion resistance and electrical
conductance, are reviewed for the individual thermal spraying technologies.
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2. Atmospheric Plasma Spraying
2.1. Features and Strengths of Atmospheric Plasma Spraying

During the APS process, plasma is used to heat the feedstock in air atmospheres.
Therefore, materials that are sensitive to oxygen or unstable at high temperatures (such as
metals, alloys or non-oxide ceramics) are not used in APS coating processes. APS is mainly
applied to prepare oxide coatings. In SOCs, typically rare-earth perovskite oxides and
spinel oxides are used, which decrease the growth rate of thermally grown oxide (TGO)
and limit the outward migration of Cr species [50].

APS is more suitable for the rapid preparation of dense coatings without post-heat
treatment compared to traditional wet chemical methods (such as brush painting [50],
screen printing [51,52] and wet powder spraying [53]). Therefore, APS is more attractive
than traditional wet chemical methods in depositing rare-earth perovskite oxide and spinel
oxide coatings for BP protection. In traditional wet chemical methods, slurries composed of
raw powder, solvent, dispersant and binder are deposited onto substrates to form a green
coating, which is subsequently dried and sintered to form the desired coating structure [54].
However, these coating preparations are time-consuming due to the additional drying and
sintering processes [55–57] compared to APS. Furthermore, several parallel production lines
are usually needed to reach a high production capability, leading to increased equipment
costs [58]. In contrast, APS offers a cost-effective option for producing BP coatings. Varied
materials, e.g., rare-earth perovskite oxides, spinel oxides, etc., can be directly deposited
on BP substrates using one single APS equipment (no need for extra sintering treatment).
Meanwhile, APS has the ability to achieve BP coatings within a few minutes due to the high
deposition rate (a few kilograms of feedstock per hour) [58]. In addition, the microstructure
and composition of coatings can be precisely controlled by adjusting spraying parameters
except for some special specimens (such as extremely dense or porous coatings).

2.2. Application of APS-Sprayed Coatings in SOFCs

Ferritic stainless steels containing 17–25 wt.% Cr (e.g., Crofer 22 APU, SUS 430 and 441,
SMG 232) are often used as BP substrate materials for SOFCs and SOECs due to appropriate
CTE, excellent mechanical properties and high electrical conductivity [50,59,60]. FSS BPs
are exposed to both reducing atmospheres (SOFC anode and SOEC cathode) and oxidizing
atmospheres (SOFC cathode and SOEC anode) [61,62] during the cell operation. Oxidation
corrosion of FSSs mainly occurs in the oxidizing atmosphere to form metal oxides (such
as Fe2O3, Cr2O3 and MnCr2O4) [63–66], resulting in performance degradation and life-
shortening of SOFCs and SOECs. The cross-sectional morphology of the oxide scales grown
on the air side of FSS BPs, which was exposed to fuel–air dual atmospheres, is shown in
Figure 3a. The degradation mechanisms of FSSs are listed as follows: (i) Ohmic resistance
increase [29], where the growth of oxide scale with low conductivity is one of the important
reasons for the increase in ohmic resistance in BPs. Oxidation of FSSs leads to the formation
of a low-conductivity oxide layer composed of Cr2O3 (0.006–0.16 S·cm−1) (inner layer) and
MnCr2O4 (0.02–0.4 S·cm−1) (outer layer) [29]. With the time increasing, the oxide scale
(mainly Cr2O3) thickens and thereby increases the ohmic resistance of BPs. Moreover, the
iron oxides, which tend to destroy the originally dense layer of Cr2O3 and MnCr2O4 and
promote inward diffusion of oxygen, will further accelerate the growth of the Cr2O3 layer
and thereby increase the ohmic resistance of BPs [63,67]. S. Fontana et al. [68] investigated
the electrical behavior of bare Crofer 22 APU and found its area-specific resistance (ASR)
value exceeded the maximum target (100 mΩ·cm2) [69] for BP materials after 7700 h in
air at 800 ◦C. (ii) Air electrode poisoning [26], where chromium oxide (Cr2O3), which is
thermodynamically unstable at the cathode of SOFCs or anode of SOECs, can react with
oxygen and/or water to generate gaseous high valence Cr species (CrO3 or CrO2(OH)2) [26].
Subsequently, these gaseous Cr species are transported towards the cathode of SOFCs or
anode of SOECs. They are finally reduced to form solid Cr2O3 or Mn-Cr spinel at the air
electrode–electrolyte–gas triple-phase boundary when La1−xSrxMnO3 is used as the air
electrode. Because the air electrode–electrolyte–gas triple-phase boundary is the critical
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active site where the O2 reduction reaction occurs, Cr2O3 or Mn-Cr spinel deposited at
this place will severely inhibit the O2 reduction reactions [26]. A scheme of the reaction
steps of oxygen reduction on the La0.72Sr0.18MnO3 electrode in the presence of FSSs BPs is
shown in Figure 3b [67]. Similarly, migration of Cr species also poisons (La-Sr)CoO3 and
(La-Sr)(Co,Fe)O3 electrode materials by forming SrCrO4 [26].

Through the above introduction, it can be concluded that the degradation of FSS BPs
could be mitigated by limiting the growth rate of Cr2O3 and enhancing the thermodynamic
stability of Cr2O3. Rare earth perovskite oxides [46] and spinel oxides [50,70], which have
excellent high-temperature oxidation resistance and electrical conductivity, can be adopted
to cope with these challenges. Therefore, these materials are frequently used for coating
the FSS BPs of SOFCs and SOECs.
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Figure 3. Cross-sectional morphology (a) [64] of the oxide scale on the air side for an FSS BP sample
tested in fuel/air dual atmospheres; schemes of the reaction steps (b) [67] for oxygen reduction
on the La0.72Sr0.18MnO3 electrode in the presence of FSSs BPs; surface and cross-sectional images
(inset) (c) [71] of APS-sprayed La0.8Sr0.2MnO3 coating; thickness of TGO scale (d) [72] for uncoated
and La0.7Sr0.3MnO3-coated samples as a function of oxidation time at 800 ◦C; temperature depen-
dence of ASR for as-sprayed and post-treated samples (e) [71]; temperature–velocity map of the
(La0.8Sr0.2)0.99MnO3 in-flight particles in APS process (f) [46]; temperature-dependent in-plane elec-
trical conductivities of the samples (g) [46]; corresponding SEM/EDX analysis (h–l) [46] after 600 h
oxidation at 800 ◦C. Reprinted from [64,67,72] with permission from IOP Publishing, from [46,71]
with permission from Elsevier.
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2.2.1. Application of APS-Sprayed Rare Earth Perovskite Oxide Coatings

Rare-earth perovskite oxides, e.g., the La1−xSrxMnO3 (Figure 3c), are attractive coating
materials due to their high electrical conductivity, suitable CTE and oxidation resistance at
high temperatures [71–74]. Baik et al. [72] produced La0.7Sr0.3MnO3 feedstock powder with
near-spherical morphology and a mean powder size of 25 µm through solid-state reaction
and spray drying, deposited La0.7Sr0.3MnO3 on 430 by APS, and investigated the effective-
ness of this as-sprayed La0.7Sr0.3MnO3 coatings (Figure 3d) for improving high-temperature
oxidation resistance and ASR of FSS BPs [72]. After a 1200 h oxidation test at 800 ◦C in air,
the Cr2O3 growth was only 1.5 µm in thickness for the coated FSS sample. Accordingly,
a low ASR of 10 mΩ·cm2 was obtained, almost one order of magnitude lower than the
uncoated sample. Moreover, a SOFC stack test using APS-Ni80Cr20/(La0.75Sr0.25)0.95MnO3
coated BPs also proves the coating effectiveness in protecting FSS substrates from oxidation,
as no performance decay was detected. In contrast, the stack equipped with uncoated BPs
showed a degradation rate of 4.4% per hundred hours [73].

The performance of La1−xSrxMnO3 coating can be significantly influenced by spray-
ing parameters, such as gas ratios, torch current and spraying distance, as shown in
Table 2. Owing to high plasma flame temperature (above 10,000 K), phase decomposition
of La1−xSrxMnO3 caused by overheating of powder particles is almost inevitable during
the spraying process. This results in the selective evaporation of Mn, which reduces the
electrical conductivity of the as-sprayed coating (Figure 3e) [71]. Fortunately, the loss of
Mn could be effectively limited by adjusting the spraying parameters. Han et al. [46] used
commercial (La0.8Sr0.2)0.99MnO3 (LSM) powder (particle size range: 20–53 µm) to deposit
coating and investigated the spraying processes. They found that plasma flame temper-
ature and velocity had significant impacts on coating composition and microstructures,
which ultimately determined the oxidation resistance and electrical properties. Figure 3f
presents a temperature–velocity map of the (La0.8Sr0.2)0.99MnO3 in-flight particles. A higher
flame temperature and lower flame velocity indicated that the (La0.8Sr0.2)0.99MnO3 particles
would absorb more heat, favoring a denser coating structure. On the other hand, it may
result in the decomposition of LSM and loss of the Mn and O contents in the as-sprayed
coating. The loss of Mn promoted the formation of low-conductivity La2O3. With an
increase in the La2O3 amount, the electrical conductivity of coatings reduced from 55 to
6 S cm−1 (Figure 3g). Moreover, the hygroscopic La2O3 promoted the water absorption
and its diffusion within the coating, increasing the growth rate of the Cr2O3 layer through
Equations (1) and (2) [46], which are listed as follows:

Cr2O3 (s) +3/2O2 (g) + 2H2O (g) → 2CrO2(OH)2 (g) (1)

2CrO2(OH)2 (g) + 6e− → Cr2O3 (s) + 2H2O (g) + 3O2− (2)

Therefore, after 600 h oxidation at 800 ◦C, the TGO layer reached 30 µm in thickness for
the samples with 44 wt.% Mn loss, while the samples with only 0.7 wt.% Mn loss showed
limited growth of TGO below 3 µm. Cross-sectional SEM images and the corresponding
EDS line profiles of different samples are shown in Figure 3h–l. The loss of O also caused a
decrease in the electrical conductivity of the as-sprayed coating. However, O-loss could
be recovered through thermal exposure in the oxidizing atmospheres after the startup of
SOCs. Therefore, reducing the loss of Mn through spraying parameter optimization is
of critical importance to limit the destructive effect of La2O3 and obtain a high-quality
La1−xSrxMnO3 coating.
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Table 2. Deposition parameters of different thermal sprayed coatings.

Atmospheric Plasma Spraying

Powder Torch Ar
/L·min−1

H2
/L·min−1

I
/A

Power
/kW Particle Velocity/m·s−1

Particle
Tempera-

ture
/◦C

Conductivity
/S·cm−1

Thickness of
Thermally

Grown
Oxide/µm

Ref.

LSM

F4
8 mm

35 10 650 42.9 139 2276 6 30

[46]
60 6 700 47.3 198 2425 17 2
60 3 400 23.5 171 2192 38 2

F4 6 mm 60 3 550 29.7 242 2137 43 2
SG100 90 35 (He) 590 39.2 350 1725 55 2

MCO
F4 8 m

35 10 650 42.9 127 2281 11 52

[75]
60 3 400 23.5 154 2087 19 36
60 6 700 47.3 212 2318 7 1

F4 6 mm 60 3 550 29.7 345 2251 22 6
SG100 90 35 (He) 590 39.4 580 2360 38 1

Vacuum plasma spraying

Powder Plasma enthalpy (MJ·kg−1) Leak rate (mbar·cm−2 s−1) Ref.

Ti
14.62 12.6

[34]14.66 10.5
21.27 4.3

2.2.2. Application of APS-Sprayed Spinel Oxide Coatings

Electrically conductive spinel oxides, such as Mn-Co [74,76] and Cu-Mn [77,78] spinels,
exhibit superior performance in obstructing outward migration of Cr and inward migration
of O (compared to rare-earth perovskite oxides) [79], are typically used to protect FSS BPs
from high-temperature oxidation in solid oxide cells. An example of Mn1.5Co1.5O4 coating
prepared via APS technology is illustrated in Figure 4a [80]. However, during the spraying
process, selective evaporation of Mn with spinel decomposition may occur, resulting in
a deviated coating composition from that of the feedstock [71]. Furthermore, thermal
reduction occurring under high temperatures could promote the structure transformation
of Mn-Co spinel into the (Mn,Co)O rock salt phase, an insulator (8.2 × 108 ohm) significantly
impairing the electrical conductivity of the coating [81]. Fortunately, both the selective
evaporation of Mn and the content of (Mn,Co)O rock salt phase can be controlled by
optimizing the spraying parameters. In addition, the (Mn,Co)O rock salt phase could be
transformed into a spinel phase through heat exposure in air atmosphere.

Han et al. [75] used commercial Mn1.5Co1.5O4 (MCO) powder as feedstock (particle
size range: 15–45 µm) to deposit coating and investigated the effect of the APS characteristic
operating parameters on MCO coatings; a detailed summary of spraying parameters is
shown in Table 2. The plasma flame characteristics (temperature and velocity) were adjusted
by controlling plasma H2 content, overall gas mass flow rate, applied power and spray
hardware configurations. The temperature and velocity map of flying particles is shown
in Figure 4b. They found that increasing the absorbed heat of MCO particles resulted in a
higher content of rock salt phase ((Co,Mn)O), providing longer electron hopping distance
and thereby decreasing the conductivity of the coating from 40 to 6 S cm−1 (Figure 4c,d).
At the same time, a higher thermal stress was generated due to a faster cooling rate,
which in turn led to micro-cracks in the coating. These micro-cracks provided channels for
the inward diffusion of oxygen in the coating, whereby the high-temperature oxidation
resistance deteriorated. The growth of chromium oxide scale ranging from 1 to 50 µm in
thickness is shown in Figure 4e–i for BP samples with different coatings [75]. Properly
absorbing the heat of particles by using appropriate power and flame velocity is critical
to restrain the formation of rock salt phase and micro-cracks, thereby being beneficial to
achieve a high-quality spinel coating.

R. Vaβen et al. [82] deposited Mn-Co-Fe spinel powder (chemical composition:
23.5 wt.% Mn, 47.6 wt.% Co, 2.4 wt.% Fe and 26.5 wt.% O) on Crofer 22 APU substrate
and systematically studied the effect of phase transformation on the coating microstruc-
ture, high-temperature oxidation resistance and Cr diffusion resistance. Oxygen content
(22.2 ± 0.3 wt.%) in the as-sprayed coating was significantly lower than that in the feed-
stock powder (26.4 ± 0.7 wt.%) and almost completely recovered (26.7 ± 0.1 wt.%) after
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heat-treatment, indicating that the appearance of (Mn,Co,Fe)O rock salt phase was due
to oxygen loss during the spraying process and the recovery of Mn-Co-Fe spinel phase
was caused by the chemical reaction between (Mn,Co,Fe)O rock salt phase and oxygen
during the heat treatment [83]. The oxygen uptake in the heat treatment process resulted in a
volume expansion of the coating, which improved the coating integrity and continuity by crack
healing. A schematic diagram of the crack-healing process in air is shown in Figure 4j–l [82].
Therefore, the high-temperature oxidation resistance and Cr diffusion resistance of the
coating after crack healing had been greatly improved compared to the as-sprayed coating.
According to the data of a SOFC stack equipped with Mn-Co-Fe spinel-coated BPs after
33,000 h operation, the degradation rate of this stack was only 0.2% per 1000 h [84], which
basically meets the technical requirements of the U. S. Department of Energy [85].
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Figure 4. Surface morphologies (a) [80] of the APS-sprayed Mn1.5Co1.5O4 coatings; temperature–
velocity map (b) [75] for the in-flight particles in APS process; phase content (c) [75] in the coating
as-sprayed or annealed at 700 ◦C for 2 h; temperature-dependent electrical conductivity of A–E
coatings (d) [75] up to 800 ◦C; Inset: bulk material and as-sprayed coatings (d); cross-sectional
SEM (e) [75] and EDX (f) [75] results of sample B; SEM (g) [75] and EDX (h) [75] results of sample
E after 600 h oxidation at 800 ◦C; growth of oxide scales of the as-sprayed coatings under different
spray parameters of (b) at 800 ◦C in 20 h (h) and 600 h (i) [75]; schematic diagram of the crack-healing
process in air: as-sprayed coating (j); phase transformation from MeO rock salt structure to spinel
structure (k); coating after the cracks are closed (l) [82]. Reprinted from [75,80,82] with permission
from Elsevier.
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2.3. Application of APS-Sprayed Coatings in SOECs

As mentioned in Section 2.2, high-temperature oxidation of the FSS BPs mainly occurs
on the SOFC-cathode and SOEC-anode sides [86]. Although both cases are exposed to
oxygen-containing gases, the latter is actually experiencing a more harsh oxidizing con-
dition, which can be explained in two aspects: (i) A high temperature is conducive to
improving the hydrogen production efficiency; therefore, the SOECs’ operating tempera-
ture is usually higher than that of SOFCs, bringing more stringent technical demands on
the coating stability throughout its lifespan [45]. (ii) The water vapor content in the intake
of SOECs is much higher than that of SOFCs. Also, the oxygen partial pressure of the SOEC
anode (e.g., pure oxygen) is normally much higher than that of the SOFC cathode (air).
Therefore, a better high-temperature oxidation resistance is demanded for BPs operating in
SOECs compared to SOFCs [87].

La1−xSrxMnO3 coating prepared by APS on FSS BPs has been proven to be effective in
oxidation resistance during SOFCs’ operation. Also, the same coating has been attempted
to protect FSS BPs from oxidation in SOECs. Lorenzo et al. [88] deposited La1−xSrxMnO3
coating on the surface of Crofer 22 APU through APS and slurry, respectively, and evaluated
the performance of these samples in pure water vapor and pure oxygen at 850 ◦C and
30 bar. The high-temperature oxidation resistance of the APS-sprayed La1−xSrxMnO3
coating was inferior to that of the slurry-coated one due to the breakaway oxidation (i.e.,
the rapid growth of Fe-rich oxides on alloys initially forming protective Cr-rich oxide
scales). The author speculated that the failure of APS-sprayed La1−xSrxMnO3 coating
might be due to the Cr depletion of the substrate, although they did not provide direct
evidence [88]. Hence, further verification is needed for the APS-sprayed La1−xSrxMnO3
coatings to be used in SOECs. Figure 5a illustrates the cross-sectional morphology of an
APS-La1−xSrxMnO3 coated sample and its corresponding EDX mapping after exposure at
850 ◦C and 30 bar in dry pure oxygen for 3000 h [88].
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Figure 5. Cross-sectional SEM/EDS of La1−xSrxMnO3-coated sample (a) [88] after exposure at
850 ◦C and 30 bar in dry pure oxygen for 3000 h, oxidation kinetics (b) [89] and ASR values (c) [89] of
the uncoated and coated samples as function of time. Reprinted from [88,89] with permission from
Springer Nature.

The applicability of APS-spinel coatings for BPs working under SOEC anode condi-
tions is also explored. According to the study of Cheng et al., [89] APS-sprayed Mn-Co
spinel coatings significantly improved the high-temperature oxidation resistance and con-
ductivity of the substrates (AISI 441). It has been found that the oxidation kinetics coefficient
of the coated samples (MnCo2O4-30 kW, MnCo2O4-35 kW and MnCo2O4-38 kW) was two
orders of magnitude lower than that of the uncoated sample, resulting in an oxide layer
much thinner for the coated samples (1.5–2 µm) than the uncoated sample (80–168 µm).
Oxidation kinetics for uncoated and coated samples are shown in Figure 5b [89]. Mean-
while, the ASR of coated samples (MnCo2O4-30 kW: 89.73 mΩ cm2, MnCo2O4-35 kW:
27.33 mΩ cm2, MnCo2O4-38 kW: 30.08 mΩ cm2) was lower than that of the uncoated sam-
ple (1.58 Ω cm2). ASR values of uncoated and coated samples are shown in Figure 5c [89].
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3. Vacuum Plasma Spraying
3.1. Features and Strengths of Vacuum Plasma Spraying

Vacuum plasma spraying (VPS) is a unique and advanced thermal spraying technology
distinguished from the common atmospheric plasma spraying (APS). The key characteristic
of VPS is that the spraying is conducted in low-pressure inert atmospheres (e.g., Ar), which
prevents metal feedstock from being oxidized, ensuring a high electrical conductivity of
the as-sprayed coating. Therefore, VPS can be used to prepare metallic coatings for BPs of
PEM fuel cells or electrolysis cells.

Compared to the traditional technologies for depositing thin metal films (a few microns
or below in thickness), such as chemical vapor deposition or physical vapor deposition
(e.g., magnetron sputtering), VPS holds a big advantage of the capability to rapidly prepare
thick protective coatings. Thin protective films, e.g., Nb films in a few microns thickness,
can hardly protect the stainless-steel substrate from corrosion, particularly for the anode
side of PEM electrolysis cells where a harsh electrochemical corrosion environment (i.e.,
high potential, oxygen saturation and acid medium) exists. A thick coating of dozens of
microns or more is beneficial to the elimination of defects like the pinhole that often impairs
the substrate with pitting corrosion [90]. Hence, coatings prepared by thermal spraying
have better corrosion resistance than those deposited through chemical vapor deposition or
physical vapor deposition. Meanwhile, the conductivity of VPS-sprayed metallic coatings is
better than that of APS-sprayed metallic coatings by preventing metallic powder oxidation.
Therefore, VPS is more suitable than APS for BP protection of PEM electrolysis cells, while
VPS equipment is more expensive than APS [91]. With a high deposition rate of a few
kilograms of feedstock per hour, VPS is advantageous in preparing thick metallic coatings
so that the corrosion resistance of BPs can be greatly enhanced, especially for the PEM
electrolysis cells.

3.2. Application of VPS-Sprayed Coatings in PEM Cells

Low-cost and easy-to-process metallic materials, such as stainless steel, copper or
aluminum, are prone to corrosion in PEM cells. Particularly when serving on the anode
side in PEM electrolysis cells, the commonly used metallic substrates of BPs are vulnerable
to electrochemical oxidation and corrosion in the harsh operating environment (high
potentials of 1.6–2.0 V and oxygen-saturated acidic medium with a low pH value of 2–4).
Performance degradation of PEMECs originating from corrosion of these metallic BPs can
be summarized as follows: (i) Metal cations poisoning: owing to the chemical instability
of stainless steels, copper and aluminum in PEMECs, the corresponding metal ions of
these metals (e.g., Fe3+, Cu2+ and Al3+) are released with anodic corrosion, followed by
migration towards the cathode (Figure 6a) [92]. The metal cations occupy ion exchange sites
both for the PEM electrolyte and the ionomers of the catalyst layer, thereby decreasing H+

conductivity and increasing the cell overpotential [93,94]. (ii) Increase in interfacial contact
resistance (ICR) for stainless steels: passivation of stainless steels promotes the formation
of the poorly conductive Cr2O3 film on the surface. Bare SS 316L BPs can be corroded even
at a relatively mild condition of 1 V (vs. standard hydrogen electrode (SHE)) [95], as shown
in Figure 6b,c. Therefore, these metallic BPs need to have their electrochemical stability
substantially improved for use in PEM-based cells. Noble metals such as Pt or Au and
transition metals like Nb or Ti, which have excellent corrosion tolerance, are commonly
used as coating materials for metallic BPs.

3.2.1. Application of VPS-Sprayed Ti Coatings

Due to the existence of coating defects like pinholes and the occurrence of pitting
corrosion, a thin film of Nb as conventionally deposited via magnetron sputtering (MS) is
still far from satisfactory for use on BPs of PEMECs [31,33]. This problem can be solved
by depositing a thicker metal interlayer via VPS (with pinholes being largely eliminated),
which acts as an additional barrier to the corrosive medium. Because of its cost-effectiveness
and capability of forming passivating films, titanium is considered a good choice for
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this interlayer. A reliable bi-layer coating strategy is therefore often adopted, which can
be described as follows: a thin top-layer possessing superior corrosion resistance and
excellent electrical conduction and a VPS-coated thick interlayer for inhibiting penetration
of corrosive medium.

The German Aerospace Center [34] first investigated the effect of VPS spraying parameters
on the microstructure and corrosion resistance of Ti coatings. Increasing plasma enthalpy
by adjusting the H2/Ar ratio (Table 2) was advantageous to enhance the coating density
by improving the molten state of Ti powders (grain size of feedstock < 45 µm). Therefore,
the highest plasma enthalpy applied (21.27 MJ kg−1) resulted in the densest microstruc-
ture and the best corrosion resistance of Ti coating on stainless steels. Figure 6d illus-
trates the potentiodynamic polarization curves of Ti coatings produced with varied en-
thalpies [34]. On the basis of optimized VPS-Ti preparation, different bi-layer coatings,
such as Au/Ti [32], Pt/Ti [31] and Nb/Ti [33,96], were further developed. Au/Ti coat-
ings deposited by electroplating initially exhibited excellent corrosion resistance, but
detachment of the Au top-layer occurred after 6 h corrosion testing at 2 V vs. SHE
(Figure 6e) [32]. To enhance the binding between noble metal top-layer and Ti interlayer,
electroplating was substituted with magnetron sputtering (MS) to deposit the top layer. As
a result, the MS-Pt coated VPS-Ti/SS samples were successfully operated for over 1000 h at
1 A cm−2 without spalling of Pt coating (Figure 6f). Moreover, the low ICR of Ti/SS,
Pt/SS and Pt/Ti/SS proved that the Pt top layer effectively prevented titanium from oxi-
dation [31]. The manufacturing cost of the coating can be reduced by replacing the noble
metal top layer with Nb. The Ti/Nb coating showed a very low corrosion current of 0.40 and
0.25 µA cm−2 (Figure 6g,h) before and after potentiostatic polarization tests (6 h,
2 V vs. SHE), respectively [33]. Moreover, being evaluated within a practical electrolysis
cell, the Ti/Nb coated SS BPs exhibited good stability during 14,000 h testing (1 A cm−2,
1 bar and 65 ◦C) with an average decay rate of 5.5 µV h−1 obtained (Figure 6i) [39]. In
sum, combining the advantages of a VPS-Ti interlayer and a functional top layer, the bi-
layered coating is a highly promising strategy for endowing BPs with excellent stability and
electrical properties.

3.2.2. Application of VPS-Sprayed Nb Coatings

Taking advantage of the better corrosion resistance of Nb than Ti, a simplified VPS
coating process using a one-step coating of an Nb single-layer to replace the two-step Ti/Met
bi-layer is proposed by the German Aerospace Center. They used the same spraying pa-
rameters as VPS-Ti coating to deposit Nb coating (particle size: 45 µm). According to their
study [97], the Nb coating with a thickness of 31 µm (Figure 6j) could provide sufficient
protection for metallic BPs (Figure 6k) with a low corrosion current < 0.1 µA cm−2 being
achieved. Furthermore, a pore-closing or sealing process (i.e., filling the open pores with
sealing materials) may be needed to improve the corrosion resistance of the VPS-sprayed
Nb coatings, considering the possibility of open pores’ existence. The Nb-coated Cu-
based BPs were also evaluated by assembling into an electrolysis cell, which demonstrated
equal i-V performance to that of a commercial electrolysis cell (Siemens). The polariza-
tion curve obtained from the electrolyzer using the VPS-Nb coated Cu BPs is shown in
Figure 6l. The VPS-Nb coatings were also prepared on stainless steel-based BPs to investi-
gate their applicability in PEMECs. The electrolysis cell operated with VPS-Nb (~130 µm)
coated stainless steel BPs showed a performance of 1.9 V ± 50 mV at 1 A cm−2 over the
14,000 h test. The average degradation rate was approx. 5.5 µV h−1, similar to another
electrolysis cell equipped with the Ti/Nb coated stainless steel BPs. The results mentioned
above demonstrate the feasibility of the VPS-Nb single-layer coatings for the metallic BPs
of PEMECs.
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Figure 6. EDX analysis (a) [92] of the impurity ion distribution at the cross-section of the contam-
inated membrane electrode assemblies; surface morphology [95] of bare SS 316L before (b) and
after aging (c) at 1000 mV vs. SHE; potentiodynamic polarization curves (d) [34] of Ti coatings
produced with different enthalpies; cross-section morphologies of Au-modified Ti/SS sample be-
fore and after corrosion test (e) [32]; cross-section of Pt-modified Ti/SS (f) [31] after 1000 h test at
1 A cm−2, 38 ◦C; potentiodynamic characteristics of different samples [33] before (g) and after
(h) the chronoamperometric measurements; Ecell (i) [39] over time of 14,000 h test measured at 1 A cm−2,
1 bar, 65 ◦C; cross-sectional morphology (j) [97] of VPS-Nb coating after test in 0.05 M H2SO4 + 0.1 ppm F−

(pH = 1.4); potentiodynamic polarization curves (k) [97] of Nb bulk and Nb coatings after test in
0.05 M H2SO4 + 0.1 ppm F− (pH = 1.4); polarization curve (l) [97] obtained using VPS-Nb coated Cu
BPs. Reprinted from [31,32] with permission from IOP Publishing and from [92,95] with permission
from Elsevier.

4. High-Velocity Oxygen Fuel Spraying
4.1. Features and Strengths of High-Velocity Oxygen Fuel Spraying

High-velocity oxygen fuel (HVOF) spraying is an advanced coating technology suit-
able for rapid preparation of dense-structured coatings of metal, alloy and ceramics without
oxidizing or decomposing. The detailed processes of HOVF spraying are described as
follows [43]: the fuel (such as propane, acetylene, kerosene or propylene) and high-pressure
oxygen are evenly mixed and violently burned in the combustion chamber to generate a
high-pressure flame, which is then accelerated into a supersonic flame stream (velocity
of 400–1000 m s−1 or even higher) [45] through the Laval nozzle. The supersonic flame



Coatings 2024, 14, 307 15 of 21

accelerates and heats the feedstock materials fed into this flame to be of a molten or semi-
molten state. These molten or semi-molten particles are then sprayed onto the substrate to
be solidified into a coating after cooling. In comparison to APS or VPS, HVOF spraying
presents two distinct features: (i) Lower flame temperature: The HVOF flame temperature
(<4000 ◦C) is significantly lower than that of APS/VPS (>10,000 ◦C). This is beneficial for
limiting decomposition of the feedstock materials [9]. (ii) Faster flame velocity: Compared
to APS and VPS, HVOF has a much faster flame velocity (Figure 2c), corresponding to
a shorter dwell time of in-flight particles. Hence, oxidation of the feedstock materials is
effectively inhibited. Further, high flame velocity is conducive to a higher coating density
and enhanced corrosion resistance [98]. Therefore, HVOF is appropriate for preparing
coatings with feedstock materials sensitive to oxygen or unstable at high temperatures
(e.g., metals, alloys or non-oxide ceramics). More importantly, HVOF spraying can offer
a significantly higher efficiency of production compared to VPS, which only operates in
a vacuum. The above merits make HVOF spraying an attractive technology for the mass
production of BP coatings for use in PEM fuel cells and electrolysis cells.

4.2. Application of HVOF-Sprayed Coatings in PEM Cells

The electrochemical corrosion of metallic BPs in PEMFCs occurs mainly on the cathode
side (i.e., acidic medium, air or oxygen gas flow and a higher potential than the anode).
Meanwhile, for PEMECs, BPs of the anode side have an even harsher operating condition
(i.e., acidic medium saturated with pure oxygen and working potentials up to 2.0 V or even
higher), making higher demands for resistance to electrochemical oxidation and corrosion.
For both PEM-based cells, performance degradation originating from metallic BPs in-
cludes [99] an increase in interfacial contact resistance (ICR) due to surface oxidation of BPs,
an increase in ohmic resistance in PEM electrolyte and polarization resistance in electrodes
due to the poisoning effect of the dissolved metal cations. In order to protect BPs from corro-
sion, a variety of low melting temperature alloys (e.g., NiCr [100], Co(Ni)CrAlY [100]) and
non-oxide ceramics (e.g., NiCrBSi [100], Cr3C2 [101]) have been used to coat the metallic
BPs by means of the HVOF spraying method.

El-Khatib et al. [102] first employed HVOF to deposit stainless steel coatings (powder
size: 20–40 µm) on aluminum substrates, obtaining a low porosity (~1.3%) coating with
corrosion resistance similar to that of bulk stainless steels. This work proved the feasibil-
ity of HVOF (alternative to vacuum deposition) for preparing dense protective coatings
against corrosion, although the inherent property of stainless-steel coating materials is
insufficient for use in PEM fuel cells or electrolysis cells. Madadi et al. [100] deposited NiCr,
NiCrBSi and CoCrAlY coatings (average grain size of three powders: 25–55 µm) to protect
Al BPs and evaluated the performance of these coatings. No metal oxides can be detected
in the coating layers, indicating hardly any oxidation occurred during the HVOF spray-
ing process. Correspondingly, all coatings showed good electrical conduction properties
(Figure 7a), with the ICR value measured to be 30, 20 and 140 mΩ cm2 for the NiCr,
NiCrBSi and CoCrAlY coating, respectively. All these dense, structured coatings exhib-
ited a low corrosion current (Figure 7b), while the lowest one was obtained on NiCrBSi
(4.95 × 10−5 A cm−2). A PEMFC single cell equipped with the NiCrBSi-coated BPs ex-
hibited the highest output power and optimal stability (Figure 7c). Similarly, in another
experiment, a PEMFC single cell tested with the HVOF-Ni65Cr15P16B4 coated BPs demon-
strated comparable i-V performances to the PEMFC cells using the conventional graphite
BPs (Figure 7d) [103]. These studies suggest that HVOF spraying is a very promising
technology for coating the BPs of PEM cells.

Similar to other thermal spraying methods, HVOF should be carefully optimized in
detailed spraying processes and operation parameters in order to achieve a high-quality
protective coating. Generally, overheating of the in-flight particles would promote the
decomposition of the feedstock materials, therefore deteriorating the resultant coating
performances in terms of defective microstructure and poor electrical conduction. On the
other hand, insufficient melting of the in-flight particles can result in decreased coating



Coatings 2024, 14, 307 16 of 21

porosity and, consequently, poor corrosion resistance. Therefore, it is crucial to precisely
control the oxygen/fuel ratio and spraying distance, two factors that determine the flame
temperature and velocity of the in-flight particles during the HVOF spraying.
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Figure 7. Interfacial contact resistance of the BPs (a) [100]; polarization curves (b) [100] of the NiCr,
NiCrBSi and (Co,Ni)CrAlY coatings; I-V curves (c) [100] of the PEMFC single cell tested with graphite,
Al, NiCrBSi, NiCr or (Co,Ni)CrAlY coated BPs; I-V curves [103] of the single cell (d) tested with
carbon, Al and Ni65Cr15P16B4 metallic glass BPs after 50 repetition; cross-sectional morphologies of a
rib structure of BPs (e); cracks in coating at the rib edge (f) [9]. Reprinted from [9] with permission
from Elsevier.

However, there are still some problems to be addressed in the preparation of coatings
for BPs through the HVOF spraying process, particularly for the ones involving flow fields
with deep channels or sharp edge/corner structures. In order to evenly distribute the fuels
and oxidants throughout the entire cell area, flow fields are often fabricated in various
structural designs on the surface of BPs. The surface of BPs is, therefore, not even, which
brings additional difficulty in achieving uniform and defect-free coatings, depending on
the specific curvature of the local structure in flow fields. For example, in the preparation
of Cr3C2 coatings [101] on metallic BPs via HVOF spraying, micro-cracks occurred in the
coating at the rib edge of flow fields, impairing the structural integrity of the as-sprayed
coating. Cross-sectional morphologies of the coating defects at a rib edge of BPs are shown
in Figure 7e,f [9]. These defects will allow the corrosive medium to penetrate the vulnerable
aluminum substrate, resulting in corrosion. Therefore, the spraying process and specific
parameters (including but not limited to the flame temperature, velocity, feedstock, angle,
cycle, etc.) need to be carefully optimized further in order to make HVOF technology
appreciable for coating BPs with complicated flow-field structures.

5. Conclusions

By using low-cost and easy-to-process metal materials (such as stainless steel, alu-
minum or copper) as substrates of BPs for use in hydrogen fuel cells and water elec-
trolysis cells, the manufacturing costs can be significantly reduced, thereby promoting
the large-scale application of these green energy technologies. However, these materials
would undergo severe corrosion during cell operation, resulting in long-term performance
degradation. For SOFCs and SOECs, the formation of a poorly conductive oxide layer,
which consists of a Cr2O3 inner layer and a MnCr2O4 outer layer, will increase the BPs’
ohmic resistance and decrease the overall cell efficiency. Additionally, the solid Cr2O3
could be converted into gaseous Cr-species, which subsequently poison the air electrode
by depositing at the air electrode–electrolyte–gas triple-phase boundary (air electrode:
La1−xSrxMnO3) or other degradation mechanisms for (La-Sr)CoO3, (La-Sr)(Co,Fe)O3, etc.
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For PEMFCs/PEMECs, metal ions (e.g., Fe3+, Al3+ or Cu2+) originating from corrosion
can move towards the anode of fuel cells or cathode of electrolysis cells under the electric
field. These metal ions could seize the proton transport sites, thereby reducing the proton
conductivity of the electrolyte membrane. Meanwhile, a protective Cr2O3 layer formed
on the surface of the stainless steel substrates will increase the ohmic resistance of BPs.
Therefore, it is crucial to restrict the corrosion of BPs. Applying a protective coating is an
effective solution to address this challenge. Thermal spraying methods like APS, VPS and
HVOF spraying, etc., are the most commonly used technologies for coating metallic BPs.

APS-sprayed rare earth perovskite or spinel oxide coatings have been widely em-
ployed in protecting FSS-based BPs of SOFCs/SOECs from thermal oxidations. The coating
composition, microstructure and overall performance rely on spraying process control.
Increasing the absorbed heat of powders is advantageous to improve the coating density
of both La1−xSrxMnO3 and Mn-Co spinel. However, with an increase in the absorbing
heat, phase decomposition of La1−xSrxMnO3 powder particles will occur, resulting in
lower electrical conductivity of the as-sprayed coating. Moreover, the hygroscopic de-
composition product (i.e., La2O3) can promote absorption/transport of water molecules
and thereby raise the reaction rate from solid Cr2O3 to gaseous Cr species, deteriorating
the high-temperature oxidation resistance of the as-sprayed coating. Similarly, phase de-
composition of Mn-Co spinel will occur and decrease the electrical conductivity due to
the formation of the low-conductivity (Mn,Co)O rock salt phase. Additionally, a higher
absorbed heat normally implies a faster cooling rate and more defects in the coatings. The
defects can provide channels for corrosive medium penetration through the as-sprayed
coatings, thereby deteriorating the high-temperature oxidation resistance. Therefore, the
adoption of appropriate spraying parameters is crucial to obtaining a high-quality coating
for the protection of BPs.

VPS is commonly used to deposit metal-based coatings for BPs, particularly for
use in PEM cells. A higher plasma enthalpy will be helpful to improve the melting
state of the metal powders and enhance the coating density. Meanwhile, pore-closing
post-treatment will benefit the further improvement in corrosion resistance of the as-
sprayed coatings. The VPS-derived single-layer-Nb and double-layer-Ti/Nb coatings on
stainless steel BPs combined with pore-closing treatment have demonstrated good corrosion
resistance, electrical conductivity and stability in the practical PEM water electrolysis tests.

HVOF spraying is a cost-effective technology suitable for preparing low-melting
temperature metals or non-oxide ceramics/cermet coatings on BPs, particularly for those
of PEMFCs or PEMECs. During the spraying, the overheating and insufficient melting
of powder particles can deteriorate both the structure and performance of the coatings.
The former will lead to powder decomposition, and the latter will increase the coating
porosity. Hence, the main influencing factors, such as oxygen/fuel ratio and spraying
distance, should be optimized to obtain a desirable protective coating for the BPs.
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