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Abstract: The results of a secondary ion mass spectrometry (SIMS) study on Ag and ZrN decorative
coatings on nickel and white bronze substrates for fancy goods accessories are presented. It was
found that for Ag coatings, an intense diffusion of Cr from the adhesion layer between the coating
and the substrate is observed, and corrosion testing in an acetic salt (CH3COOH+NaCl) atmosphere
leads to the almost complete degradation of such coatings. ZrN coatings on white bronze turned out
to be the most resistant to Cr diffusion and corrosion processes.

Keywords: decorative coatings; secondary ion mass spectrometry (SIMS); silver; zirconium nitride;
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1. Introduction

Decorative coatings based on precious metals are quite widely used in the modern
fashion industry to improve the quality of accessories for haberdashery products from
the world’s leading manufacturing companies (see, for example, [1]). As an alternative,
more economical coatings made from nitride compounds of non-jewelry metals, such as Ti
and Zr, should be put forward. ZrN imitates the color of silver and white gold quite well,
which is why it is often called mock silver. Nitride coatings came to the fashion industry
from industrial metalworking, where they had long been successfully used to produce
wear-resistant coatings for metal-cutting tools.

At present, the main technologies for the production of decorative coatings are electro-
plating and physical vapor deposition (PVD). Electroplating [2] is a well-developed and
approved technology, but at the same time, it is quite energy-intensive and environmentally
unsafe, both for operating personnel and for the environment. PVD provides an application
of decorative coatings [3] comparable in hardness and corrosion resistance to electroplating
and is an environmentally friendly technology.

The main goal of our work was to demonstrate the potential of secondary ion mass
spectrometry (SIMS) [4,5] for studying the degradation of thin decorative coatings made of
925-assay silver and mock silver (ZrN) on Ni and white bronze substrates under the corro-
sion test in an acetic salt (CH3COOH+NaCl) atmosphere. SIMS was chosen as the research
method since it has proven itself to be a highly sensitive technique for the determination of
elemental composition, with the unique possibility of carrying out sputter depth profiling
of the near-surface region of the samples studied. This technique is widely used in micro-
and nanoelectronics, the semiconductor industry, geology, criminalistics, etc., and in our
view, it could also be successfully applied in traditional handicraft technologies like jewelry
and fancy goods production.
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2. Materials and Methods

Two sets containing two samples were studied, which were Ag and ZrN coatings on
Ni and white bronze substrates (Cu 60%, Sn 39%, Zn 1%). The coatings were deposited by
PVD, but the details of the technological process were commercial know-how and were
not divulged by the manufacturer of the fancy goods accessories (Top Finish, Florence,
Italy). According to the data provided to us by manufacturer, the thickness of the silver
coating was 0.02 µm, and the thickness of ZrN was 0.2 µm. To improve adhesion between
the metal substrate and the decorative coating, a thin layer of Cr with a thickness of about
0.01 µm was deposited to each sample via PVD. The corrosion test was carried out in a
special chamber for 24 h in an acetic salt atmosphere (CH3COOH+NaCl) in accordance
with ISO 9227:2022 [6].

SIMS measurements were carried out under high-vacuum conditions (10−6 Pa) by
means of a dedicated instrument based on the standard commercial components. A detailed
description of this setup can be found, for example, in [7,8]. Briefly, a DP50B duoplasmatron
(VG Fison, London, UK) was used as an ionbeam source, which generated a mass-separated
beam of primary 16O2

+ ions (3 keV, 200 nA). This beam was scanned on the sample surface
within a rectangular raster of 0.5 mm2, and the crater effect, i.e., the influence of the walls
of the sputtering crater on the useful signal, was suppressed by an “electronic diaphragm”,
which ensured the collection of the secondary ions only from the central part of the crater
(15% of the raster area). Secondary ions were analyzed using an EQS 1000 Mass Energy
Analyzer (Hiden, Manchester, UK), and the depth of the sputtering craters was measured
using a Stylus Profiler P-10 (Tencor, Milpitas, CA, USA).

3. Results and Discussion

Three measurements in the randomly selected points were carried out for each sample.
In Figures 1–4, the representative SIMS depth profiles of Ag and ZrN coatings on Ni and
white bronze are presented before and after the corrosion test. The mass peaks of positive
ions 107Ag+, 53Cr+, and 58Ni+ (for Ni substrate) and 107Ag+, 90Zr+, 14N+, 53Cr+, 63Cu+, and
152(SnO2)+ (for white bronze substrate) were chosen as characteristic of the coatings and
substrate materials, and the surface and near-surface contamination was monitored by
the intensity of the 23Na+ mass peak. The depth profiles, which are dependencies of the
maximal mass peak intensities versus time of sputtering, were automatically measured
using EQS MASsoft Ver. 3 control software (Hiden, Manchester, UK).
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Figure 2. SIMS depth profiling of ZrN coatings (mock silver) on Ni substrate: (a) initial sample;
(b) after corrosion test.
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Figure 3. SIMS depth profiling of Ag coatings on white bronze substrate: (a) initial sample; (b) after
corrosion test.
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Figure 4. SIMS depth profiling of ZrN coatings (mock silver) on white bronze substrate: (a) initial
sample; (b) after corrosion test.

It is worth recalling that the intensities of the mass peaks are related to the concen-
tration of the corresponding chemical elements, but their magnitude in the SIMS method
is drastically influenced by the efficiency of the ionization of the sputtered atoms, which
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depends on the ionization potential of these atoms. This explains the high intensity of
23Na+ (the ionization energy of Na is 5.139 eV [9]). The depth scale in all figures was
calculated from the sputtering times, and crater depths were measured by a Stylus Profiler
P-10 (Tencor, Milpitas, CA, USA) after the end of the SIMS analysis, assuming a constant
sputtering rate over the whole analyzed depth.

From the SIMS depth profiles presented in Figure 1a, one can conclude that Cr is
present on the surface and throughout the whole thickness of the Ag coating of the initial
sample. The thickness of this coating was found to be within 0.1–0.15 µm, which is an
order of magnitude greater than what was indicated by the manufacturer based upon the
time of the coating deposition. Additional SEM studies showed that the surface of the Ag
coating is rough, and the arithmetic mean deviation Ra of the roughness profile measured
by a profilometer turned out to be comparable with the thickness of the coating itself. After
the corrosion test (Figure 1b), in addition to Cr, Ni was observed on the coating surface,
which diffused from the substrate material through the Cr layer. The intensity ratio of the
58Ni+ mass peaks on the coating surface before and after the corrosion test exceeded 102,
and for the 53Cr+ mass peak, this ratio was equal to 2.

As for the ZrN coating on the initial sample with the Ni substrate (Figure 2a), the
Cr penetration from the adhesion layer onto the surface of this coating was much less
pronounced than in the case of the Ag coating (Figure 1a). This can be explained by the
greater thickness of the coating, which, according to the results of SIMS depth profiling,
was found to be 0.25–0.3 µm, which approximately coincides with the data provided by
the manufacturer. The corrosion test (Figure 2b) also caused intense diffusion of Ni onto
the surface of the ZrN coating, and the intensity ratio of the 58Ni+ mass peak before and
after the corrosion test reached 103, which is approximately five times greater than for the
Ag coating on the same substrate. At the same time, the intensity of the 53Cr+ mass peak
remained at the level of the initial sample. Note that the low intensity of the 14N+ mass
peak could be explained by the low efficiency of positive ionization of the sputtered N
atoms (the ionization energy of N is 14.534 eV [9]).

For the initial sample with an Ag coating on white bronze (Figure 3a), the presence
of chromium on the surface and inside the coating was also observed. After the corrosion
test (Figure 3b), the intensity of the 53Cr+ mass peak increased by 1.5 times, and the
intensity of the 63Cu+ mass peak due to diffusion from the substrate material increased by
approximately 50 times. As for the ZrN coating on the same substrate (Figure 4a,b), the
intensity of the mass peaks of Zr+ and Cr+ ions after the corrosion test for these samples
remained at the level of the initial samples, and the diffusion of Cu from the substrate led
to an increase in mass peak 63Cu+ of approximately 8 times. Another component of white
bronze (Sn) was monitored by the molecular ion 152(SnO2)+, the intensity of which did not
change significantly after the corrosion test.

For quantitative interpretation of the SIMS data, the relative sensitivity factors (RSF)
can be used [5,10], which are experimentally determined as [5]

RSFi = Ci
Im

Ii
, (1)

where Im and Ii are the intensities of the mass peaks of the matrix and impurity ions (sum
of the isotopes), respectively, and Ci is the concentration of impurity atoms in the matrix.

The RSF method is more suitable for assessing a low concentration of impurities
(Ci < 1 at.%), but good results were also obtained for Si1−xGex (0.092 ≤ x ≤ 0.78) [11]. We
used this method to calculate the concentrations of metals on the surface of the decorative
coatings studied. The RSF values for Ag, Cr, Zr, and substrate metals (Ni, Cu, and Sn) are
given in Table 1, and the intensities of their mass peaks of positive ions were obtained from
the measured mass spectra of the samples.
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Table 1. RSF values for metals entered into the composition of decorative coatings and substrates [9].

Ag Cr Ni Zr Cu Sn

500 65 370 40 310 300

We should note that our calculation is semi-quantitative since surface contaminants
(alkali and alkaline earth metals, hydrocarbons, water, gaseous impurities, etc.) were not
taken into account and the RSF values were used for the impurities in the silicon matrix.
Estimated concentration calculations were made using the following formula [5]:

Ci =
(I·RSF)i

∑n
i (I·RSF)i

× 100 at.%. (2)

The results obtained for both types of decorative coatings before and after the corrosion
test are presented in Table 2.

Table 2. Concentration of metals Ci (at.%) in decorative coatings before and after corrosion test (wb
means white bronze).

Ag on Ni Ag on wb ZrN on Ni ZrN on wb

Initial sample Ag 20, Cr 80 Ag 10, Cr 90 Zr 83, Cr 11, Ni 6 Zr 88, Cr 12
After corrosion test Ag 2, Cr 89, Ni 9 Ag 8, Cr 88, Cu 3, Sn 1 Zr 6, Cr 2, Ni 92 Zr 84, Cr 5, Cu 8, Sn 3

4. Conclusions

Based on the results of SIMS depth profiling presented in Figures 1–4 and the metal
concentration estimates shown in Table 2, the following conclusions were made:

• Ag coatings on Ni and white bronze substrates, even for the initial samples, contain
a large amount of Cr, and the degradation of these coatings progresses after the
corrosion test.

• Initial ZrN coatings on Ni and white bronze substrates were less broken due to
Cr diffusion from the intermediate adhesion layer placed between the coating and
the substrate than in the case of Ag coatings with the same adhesion layer on the
same substrates.

• ZrN coatings on a white bronze substrate turned out to be the most resistant to the
corrosion test.

To improve the quality of decorative coatings, we recommended that the manufacturer
increase the thickness of Ag coatings, reduce the roughness of the substrates, and find a
replacement for the Cr adhesive layer to prevent the diffusion of Cr and substrate metals
(Ni, Cu, and Zn) into the coatings.
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