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Abstract: The friction and wear response of hard coatings is complex, which largely depends on a
good combination of hardness and toughness, and their service life is difficult to predict. Hence,
in this work, hard yet tough TiN coatings were deposited using high-power impulse magnetron
sputtering at 5–10 kW. With increasing sputtering power, the coatings showed a transition in crystal
texture from (200) to (111), along with a refinement in microstructure, leading to an improvement
in hardness (H) of 29.8–31.2 GPa and an effective Young’s modulus (E*) of 310–365 GPa. The
hard yet tough TiN coatings deposited at 6.5 kW exhibited the highest H/E* and H3/E*2 ratios of
0.097 and 0.29, respectively, as well as the highest fracture toughness of 2.1 MPa·m1/2 and elastic
recovery of 42.5%. Accordingly, the coatings possessed an enhanced adhesion and cohesion, in terms
of micro-scratch critical load (LC3 = 19.67 N) and HF Rockwell HF1 level. The friction and wear
response of hard yet tough TiN coatings under the normal load of 1–10 N were investigated to explore
their durability and predict their critical load up to failure. Wear mechanisms changed from oxidative
to severe abrasive wear, with load increasing from 1 to 10 N. At 2–5 N, a combination of oxidative
and abrasive wear was observed. The coatings maintained their integrity up to the critical load of
9.4 N before failure event, with a maximum wear track depth of 1.8 µm, indicating their durability
under the loading conditions.

Keywords: hard yet tough; TiN coatings; high-power impulse magnetron sputtering; wear response

1. Introduction

As the first-generation of hard ceramic coatings, TiN coatings still show a unique
performance in terms of high hardness, good wear, and corrosion resistance, especially
for the advancing coating preparation technologies [1–4]. Based on the special needs of
different fields, the optimized thickness, density, and microstructure of TiN coatings are
deposited on a variety of substrates, to enhance their performance and lifetime, such as
cutting tools, mechanical components, and the metal bipolar plates used in hydrogen
fuel cells [3,5]. As usual, hard coatings are prone to brittle failure and a lower durability,
whereas toughened coatings often compromise on strength. Hard yet tough coatings
possess both good hardness and toughness, which exhibits an excellent performance in
complex working conditions [6]. It is reported that TiN-based and CrN-based coatings are
synthesized as hard yet tough or superhard yet tough coatings by precisely controlling
chemical composition and microstructure [7]. TiN coatings, in particular, maintain a broad
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phase stability under sufficient nitrogen conditions, offering a versatile range of hardness
and toughness [8,9].

The friction and wear response of hard coatings is complex and their failure events are
always hard to predict. Thus, it is highly expected that crack initiation and propagation are
reduced in hard yet tough coatings, via unique nanostructure mechanisms [10]. In addition,
coatings with high hardness and toughness would be beneficial for mild oxidation wear,
because of oxide lubricants forming on the sliding contact surface [11]. Finally, the increased
thickness of coatings would have a higher bearing capacity during the friction and wear
process [6]. Hard yet tough CrN/Si3N4 multilayer coatings showed only mild oxidation
wear and high cracking resistance during friction measurements, thanks to the block of
well-defined CrN/Si3N4 interfaces to crack propagation [12]. The tribological behaviors
of hard coatings have close relationship with hardness, fracture toughness, and scratch
adhesion [13–15]. Zhang et al. [16] reported that hard coatings with good coordination
between strength and toughness presented excellent scratch toughness, characterized
by critical loads of adhesion failure events in micro-scratch tests. Philippon et al. [17]
found that coefficients of friction, wear rates, and endurances were correlated with the
mechanical properties, residual stress, and adhesion of the coatings. The improvement
in toughness and cohesion/adhesion related to critical loads, LC3, strongly influenced by
compressive residual stress promoted a reduction in crack initiation and propagation, as
well as oxidative wear during dry sliding tests [4].

The endurance of hard yet tough coatings is affected by the loads applied, mechanical
properties, residual stress, etc., resulting in a complex wear response. In this work, TiN
coatings were deposited using high-power impulse magnetron sputtering (HiPIMS) at an
average target power of 5–10 kW. The effect of the average target power on microstructure,
residual stress, mechanical properties, and adhesion were investigated in detail. Moreover,
wear responses were further studied to explore the endurance and related mechanisms of
coatings at 6.5 kW.

2. Experimental Procedures
2.1. Coating Depositions

The high-power pulse magnetron sputtering technique is a coating preparation method
that utilizes high-energy pulse voltages to excite inert gas, creating a plasma that accelerates
ions to impact the target material surface, causing sputtering. The high-energy sputtered
atoms or molecules deposit on the substrate surface, forming dense, uniform thin films. This
method is used to produce high-quality thin films with special functionalities. TiN coatings
were deposited on AISI 304 austenite stainless steel substrates using a commercial high-
power impulse magnetron sputtering (HiPIMS, Huettinger, Highpulse 4001 G2, Ditzingen,
Germany) supply, by sputtering the Ti cylindrical target in an Ar/N2 mixture gas at a
power of 5–10 kW. During the deposition process, the flow rate of Ar gas was 120 sccm and
the negative bias voltage was −60 V. The steel substrates (3 mm × 20 mm × 20 mm) were
polished with SiC sandpaper up to 5000#, followed by mirror polishing with 0.5 µm micron
diamond polishing paste to achieve a surface roughness of 8–10 nm. Before deposition,
the substrates were cleaned using denatured acetone and an ultrasonic ethanol bath for
15 min each, followed by drying with N2 gas. In order to remove the surface contaminants,
the substrates were subjected to a two-step etching process consisting of a 15 min Ar gas
ion etching with a duty cycle of 4% and a 5 min HiPIMS etching at 2 kW and 6 kW. The
Ti layer was deposited on substrates for 5 min at 5 kW and a −60 substrate bias in an Ar
atmosphere, in order to enhance the bonding force. The typical process parameters are
shown in Table 1. The substrates were mounted in the chamber at a distance of 100 mm
from the cylindrical target. The schematic diagram of HiPIMS and the pulse shapes of the
target current and voltage during the deposition process are shown in Figure 1.
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Table 1. Typical process parameters in the coating deposition process.

Cathode Sources Substrate Bias (V) Duty Ration Frequence (Hz) Power (kW) Pulse (µs)

Pure Ti target −60 40% 100 5/6.5/8/10 30
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Figure 1. Schematic diagram of HiPIMS (a) and pulse shapes of the target current and voltage during
coating depositions (b).

2.2. Morphology and Structure

The phase composition and crystal structure of the coatings were characterized using
X-ray diffraction (XRD, X’Pert PRO MPD, PANalytical) (PANalytical, Almelo, The Nether-
lands) in a 0–2θ configuration, with Cu Kα radiation. The morphology of the films at
various target powers was examined using an atomic force microscope (AFM, ToscaTM
400) (Anton Paar, Graz, Austria) in tapping mode. For observing the cross-sectional mor-
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phologies of the coatings, field emission scanning electron microscopy (FESEM, Hitachi
S-4800) (Hitachi, Tokyo, Japan) was utilized. Additionally, the compositional depth profiles
of the coatings’ cross sections were analyzed using a glow discharge optical emission
spectrometer (GDA750HR, Spectruma) (Spectruma Analytik GmbH, Bayern, Germany).

2.3. Mechanical Properties and Adhesion

The hardness (H), elastic modulus (E), and elastic recovery (We) of the TiN coatings
were measured using a nano-indenter (Nanoindenter XPTM, MTS Systems Corporation,
Eden Prairie, MN, USA), equipped with a diamond indenter. To minimize the influence
of the substrate, the indentation depth was consistently set to less than 10% of the total
coating thickness. Coating–substrate adhesion was evaluated using a Rockwell hardness
tester (HR-150A, HRA, MTS Systems Corporation, Eden Prairie, MN, USA) with an applied
load of 1471 N (150 kg). The morphology of the indentations was examined using SEM to
assess the adhesion level.

The fracture toughness was calculated using the length of radial cracks of Vickers
indentations made using the microhardness tester (MMT-X, Matsuzawa, Okaya, Japan),
under an applied load of 0.1 N. The fracture toughness, KIC, of the coating was calculated
using the following formula [18]: KIC = α(E/H)1/2(P/c3/2), where α is the empirical
constant (α = 0.016 for Vickers indenter). H, E, P and c are hardness, Young’s modulus,
applied max load, and the length of radial cracks, respectively. The depth of Vickers
indentations is less than 10% of the coating thickness. Indentation tests were carried out
six times in different regions of the film and the average values were calculated.

2.4. Wear Response and Endurance

The wear response and endurance of TiN coatings deposited at 6.5 kW were assessed
using a reciprocating friction tribometer (MFT-5000, Huahui Instrument Technology Co.,
Ltd., Lanzhou, China), against a 6 mm diameter Si3N4 ball. Tests were conducted under
normal loads ranging from 1 to 10 N. The sliding speed was maintained at 60 mm/s for a
duration of 30 min, with the wear tracks measuring 5 mm in length. The morphology of
the wear tracks was examined using FESEM, while the composition of the wear debris was
analyzed using a Raman spectrometer. The specific wear rates were calculated using the
following formula [19]: k = V/LN, where V is the wear volume of the wear track, N is the
load, and L is the sliding distance.

Scratch testing of the coatings was performed using a micro-scratch tester (CSM
Instrument, CSM Instruments, Peseux, Switzerland), with a progressive load from 0 to
30 N at a rate of 50 N/min over a scratch length of 3 mm. The wear tracks’ profiles were
measured with a surface morphology instrument (Talysurf 5P-120, Taylor Hobson, Leicester,
UK). The abrasive debris and marks were further examined using a Raman spectrometer
(HR-800, Jobin-Yvon, Jobin-HORIBA, Paris, France) equipped with an Ar-Kr laser at a
wavelength of 532 nm. The spectrometer was used to scan in the range of 100–2000 cm−1,
to identify the composition and structural changes of the wear debris.

3. Results and Discussion
3.1. Surface Integrity and Microstructure

The phase structure of the coatings deposited using HiPIMS, with target powers
ranging from 5 to 10 kW, were characterized using X-ray diffraction (XRD) analysis, as
depicted in Figure 2a. These TiN coatings exhibited a monophasic face-centered cubic
(fcc) structure. A notable shift in texture evolution from the (200) to the (111) orientation
was observed with increasing target power. This shift in texture is intimately associated
with the interplay between strain energy and surface energy within the fcc-structured
TiN. Furthermore, this indicates a transition in the dominance from surface energy to
strain energy [8]. The intensity indices of the (111) and (200) planes demonstrated inverse
trends, varying within the ranges of 0.32–0.89 and 0.01–0.65, respectively, as shown in
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Figure 2b. Additionally, diffraction peaks originating from the 304 stainless steel substrate
were detected and are denoted as ‘SS’ in the XRD patterns.
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Figure 2. The XRD spectra of the HiPMS-sputtered TiN coatings (a) and the value of Ii/I (b) at
5–10 kW.

Surface integrity, including low surface roughness, a highly dense microstructure,
and high uniformity, is essential for the mechanical and corrosion-resistant properties
of coatings [20,21]. An atomic force microscope (AFM) was employed to examine the
surface morphologies and surface roughness (Ra) of TiN coatings deposited at various
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target powers, as illustrated in Figure 3a–d. The scanning area for AFM measurements is
1 µm × 1 µm, using tapping mode with a scanning speed of 70 nm/s. The coatings applied
at 5 kW and 6.5 kW exhibited denser, smoother, and more uniform macrostructures. At
5 kW, a few large particles were observed on the coating surface. As the target power
increased to 8 and 10 kW, numerous large particle clusters appeared on the surface, leading
to a greater surface roughness compared to those deposited at 5 and 6.5 kW, as indicated in
Figure 3e.
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This increase in roughness can be attributed to the higher sputtering yield of target
species atoms at elevated powers (8 and 10 kW), which generated a more substantial plasma
ion flux and an enhanced ion bombardment onto the substrate, promoting grain growth.
Additionally, the intense ion bombardment during film growth induced a re-sputtering ef-
fect, contributing to the increased surface roughness. Similar outcomes have been observed
in other studies [20,22,23] conducted at higher sputtering powers, using HiPIMS.

Therefore, the coatings deposited at 5–6.5 kW demonstrated superior surface unifor-
mity and density, which are anticipated to enhance the coatings’ mechanical properties.

The cross-sectional FESEM images of the TiN coatings deposited at the various target
powers are shown in Figure 4. The coatings are uniform and dense and the interfaces
between coating and substrate are clear and sharp. All coatings maintain a similar thickness
of about 1.6 µm. Figure 4e–h exhibit the GDOES composition depth of coatings with Ti
and N elements in the coatings and Fe, Cr, and Ni elements contained in the 304 substrates.
It can be seen that there are fewer Ti and N elements on the outer surface of the coating.
Additionally, Ti is distributed uniformly in the inner part of the coating, while N is enriched
in the coating. Both of these are beneficial for improving the hardness of the coatings. As
reported by Y. Cheng [24], A. S. Mamaev [25], and E. Amzah [26], when N content increases
within a certain range, the hardness and elastic modulus of TiN coating increases.

3.2. Mechanical Properties and Adhesion

Figure 5 illustrates the average values and distribution ranges of hardness (H), effective
Young’s modulus (E*), H/E*, and H3/E*2 ratios for TiN coatings deposited using high-
power impulse magnetron sputtering (HiPIMS) at varying target powers. As depicted in
Figure 5a, there is a slight fluctuation in the average hardness as the target power changes.
Initially, the hardness decreases from 31.3 GPa to 29.74 GPa with increasing target power,
but then it increases again to 30.61 GPa. Despite these variations, all coatings maintain a
high hardness level, averaging around 30 GPa, which indicates that they possess excellent
elevated resistance to plastic deformation.



Coatings 2024, 14, 598 8 of 15

Coatings 2024, 14, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 4. Cross-sectional SEM images and GDOES composition profiles of the TiN coatings depos-
ited at different target powers. (a,e) 5 kW; (b,f) 6.5 kW; (c,g) 8 kW; (d,h) 10 kW. 

3.2. Mechanical Properties and Adhesion 
Figure 5 illustrates the average values and distribution ranges of hardness (H), effec-

tive Young’s modulus (E*), H/E*, and H3/E*2 ratios for TiN coatings deposited using high-
power impulse magnetron sputtering (HiPIMS) at varying target powers. As depicted in 
Figure 5a, there is a slight fluctuation in the average hardness as the target power changes. 
Initially, the hardness decreases from 31.3 GPa to 29.74 GPa with increasing target power, 
but then it increases again to 30.61 GPa. Despite these variations, all coatings maintain a 

Figure 4. Cross-sectional SEM images and GDOES composition profiles of the TiN coatings deposited
at different target powers. (a,e) 5 kW; (b,f) 6.5 kW; (c,g) 8 kW; (d,h) 10 kW.

The increased toughness of hard ceramic coatings, such as TiN, is known to improve
friction and wear performance. This improvement is attributed to the coatings’ enhanced
resistance to cracking, which is a result of their surface integrity and distinctive nanos-
tructure [11,12]. The H/E* and H3/E*2 ratios are dimensionless parameters often used to
assess the wear resistance of materials; higher values typically suggest better wear perfor-
mance. These ratios follow a similar trend to that of the Young’s modulus and hardness.
They increase from 0.093 and 0.270 at 5 kW to their maximum values of 0.097 and 0.290,
respectively, at a target power of 6.5 kW. However, they then decrease to 0.084 and 0.215 at
a target power of 10 kW.
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The peak values of these ratios at 6.5 kW suggest that, at this particular target power,
the coatings have an optimal balance of hardness and elasticity, which is conducive to
better wear resistance. The subsequent decrease in these ratios at higher powers indi-
cates a relative reduction in this balance, which could potentially lead to a diminished
wear performance.

The micro-indentation images included in Figure 5c provide additional insights into
the mechanical properties of the TiN coatings, particularly their fracture toughness. Under
a load of 0.1 N, the absence of radial cracks around the Vickers indentations suggests that
the coatings have excellent fracture toughness, which is a critical property for the durability
and longevity of coatings in practical applications.
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At a HiPIMS power of 6.5 kW, the coatings exhibit smooth and smaller indentations,
which is indicative of a higher fracture toughness. Achieving a combination of high
hardness and high toughness in coatings is challenging, because these properties are
often mutually exclusive [27]. However, highly ionized reactive sputtering techniques,
such as reactive HiPIMS and deep oscillation magnetron sputtering, can achieve this
balance [20,28].

The coatings prepared in this study demonstrate both high hardness and excellent
toughness, particularly at 6.5 kW. This is likely due to the dense nanostructure and finely
refined grains of the coatings. At the lower target power of 5 kW, the sputtering power is
insufficient, resulting in low Ti atomic activity and film forming efficiency. As the target
power increases to 6.5 kW, the supply of atoms necessary for the growth of the TiN coating
is optimized, leading to good film–substrate adhesion and film density (see Figures 3 and 6).
However, further increasing the target power to 8 kW and 10 kW increases the tensile stress
within the coating, due to the higher energy and number of sputtered atoms, which reduces
the fracture toughness [29].
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The difference in performance between hard coatings and soft substrates is significant,
especially in response to cooperative deformation during cracking [12]. Therefore, in the
design of hard coating/substrate systems, it is crucial to prevent or delay the initiation and
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propagation of cracks to improve the cooperative deformation between the hard coating
and the soft substrate [30].

The fracture behavior of the TiN hard coatings is evaluated using Vickers indentation
tests in combination with calculated fracture toughness values. Figure 5c shows the We
and KIC values. The optical micrographs of the Vickers micro-indentations indicate that
the radial crack length first increases and then decreases, with the KIC value peaking at
6.5 kW. This peak corresponds to the best fracture toughness of the coating. As the target
power increases to 8 kW and 10 kW, the tensile stress and, consequently, the fracture
toughness decrease. The We and KIC values follow a similar trend with increasing target
power, reaching their maximum at 6.5 kW, due to the highest H/E* and H3/E*2 ratios,
which suggest high strength and resistance to crack formation and propagation under local
dynamic loads [12,14]. Therefore, the coatings deposited at 6.5 kW present an optimal
balance of hardness and toughness, making them highly resistant to wear and fracture.

The adhesion and cohesion of coatings are an important index to judge the quality of
hard coatings. The cohesion and adhesion level of TiN coatings deposited at various target
powers were evaluated using micro-scratch and Rockwell C tests. The optical morphologies
of scratch tracks and SEM images of HRC indents of TiN coatings are shown in Figure 6. As
Ti target power increased from 5 to 6.5 kW, LC1, LC2, and LC3 varied from 5.12 N to 8.17 N,
5.12 N to 8.17 N, and 7.26 N and 19.67 N, respectively. The critical load (LC1, LC2, and
LC3) showed a maximum value at 6.5 kW. Meanwhile, the coherent transition from plastic
deformation to fracture in the scratch track indicates an enhanced cooperative deformation
between the coating and the substrate system. The coating was completely peeled off and
the substrate was exposed when the load was higher than 18.37 N at 10 kW, indicating that
the coating has a poor binding force at this deposited power. The critical loads showed
a similar tendency as those of the H/E* and H3/E*2 ratios. The increased critical loads
benefited from the combined effect of the increased H/E* and H3/E*2 ratios.

According to VDI 3198 rules [31], the criteria of each level (HF1-HF4) is determined
according to the damage of the coating adjacent to the indentation boundary of hard
ceramic coatings. In general, the radial cracks are caused by the plastic deformation of
the substrate and the weak adhesion of substrate/coating interfaces [32]. In this work,
there are few radial cracks along the indentation in the coatings prepared, indicating that
the coatings have a high fracture toughness. Figure 6e–h present the SEM images with an
applied load of 150 kg of TiN coatings deposited at different target powers. According
to Heinke [33], the coatings showed an improved adhesion level of above HF1 with no
delamination or cracks in the indentation of the sample at 5 and 6.5 kW, as shown in
Figure 6e,f. The increase in the target power radial cracks can be observed at 8 kW and part
of the coating edge fell off at 10 kW; the adhesion strength was assessed as HF2 at 8 kW
and 10 kW. The enhancement of coating adhesion and cohesion is mainly determined by
the increase in coating H, H/E*, and H3/E*2 [29]. The increase in adhesion and cohesion
indicates the improved cooperative deformation between coating and softer matrix [34].

3.3. Tribological Behaviors

Based on the evaluation results, TiN coatings deposited at 6.5 kW exhibit high hardness,
excellent adhesion, and superior toughness. Additionally, they enable effective cooperative
deformation between the coating and the substrate under the same deposition conditions,
which is advantageous for reducing friction and wear [14,15,21]. However, as the target
power increases to 10 kW, the mechanical properties of the coating generally decline.
Consequently, we investigated the tribological and wear characteristics of the coatings
under normal loads of up to 10 N, to assess the durability of the coatings applied at 6.5 kW.
Figure 7a displays the friction coefficient (COF) of TiN coatings deposited at 6.5 kW against
Si3N4 balls under loads ranging from 1 to 10 N.
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After a prolonged period of 12 min under a 1 N load, the COF sharply rose to 0.6
and exhibited oscillatory behavior. The FESEM images of the worn surfaces, as shown
in Figure 8a–h, reveal that the coatings underwent oxidative wear, characterized by the
presence of flake-like and fine oxide films along the wear track. At applied loads of 2–5 N,
the COF rapidly stabilized at 0.4, which is indicative of a shorter run-in period compared to
the 1 N load. The coatings experienced a combination of oxidative and abrasive wear, with
fine oxides and a slight material transfer observed within and along the wear track edges.

Under an 8 N load, pronounced grooves and fine abrasive particles were detected
within and beside the wear track, leading to COF fluctuations. At this load, the primary
wear mechanism was intense abrasive wear. Increasing the sliding load to 10 N resulted in
deeper grooves within the wear track and reduced COF oscillation compared to the 8 N
load. As indicated by the wear profile in Figure 7d and the wear depth in Figure 7c, the
wear depth remained below the TiN coating thickness for loads up to 8 N. However, at
a 10 N load, the wear depth reached 1.97 µm, surpassing the coating thickness of 1.8 µm.
This suggests that the TiN coating was completely worn through and the Si3N4 ball was
in direct contact with the 304 substrate, causing only slight fluctuations in the friction
coefficient. The wear mechanism at this stage is predominantly severe abrasive wear.
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Figure 7c illustrates that both the width and depth of the wear track increase with the
normal load and this trend is seen almost throughout the entire scratch track. Figure 7b
indicates that, at loads of 2–5 N, the coating maintained a stable wear equilibrium, with
the COF consistently around 0.43. This stability can be attributed to the high H/E* and
H3/E*2 ratios of the TiN coating deposited at 6.5 kW, which confer their hard yet tough
properties. The wear resistance of the TiN coating, which is both hard and tough, has
an optimal load-bearing range of 2–5 N, as shown in Figure 7b, where the wear process
stabilizes, significantly enhancing the coating’s wear resistance and expanding its applica-
tion potential.

According to the Raman spectroscopy results presented in Figure 8h, TiO2 was de-
tected in the wear tracks under all tested loads, likely due to the oxidation of the wear
debris during the wear process. Additionally, Fe2O3 was identified at a 10 N load, with iron
originating from the 304 substrate, further confirming that the TiN coating was breached at
this load.

4. Conclusions

(1) Hard yet tough TiN coatings with single-phase face-centered cubic structures were
deposited using high-power impulse magnetron sputtering at a target power of
5–10 kW. As the target power increased, TiN coatings showed a texture evolution
from (200) to (111). The hardness (H) had a slight fluctuation of 29.8–31.2 GPa, while
the effective Young’s modulus (E*) was 310–365 GPa. The H/E* and H3/E*2 ratios
are 0.083–0.1 and 0.215–0.29, respectively, with increasing target power. The coatings
possessed a favorable toughness, without radial cracks forming in micro-indentations,
as well as a uniform failure before critical failure load, due to the increased H/E* and
H3/E*2 ratios attributed to surface integrity and texture evolution. The TiN coatings
prepared at 5 kW exhibit stable friction coefficients and wear behavior under loads
of 2–5 N, compared to those of the TiN coatings reported in the literature. The TiN
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coatings prepared at 5 kW in this work exhibit stable friction coefficients and wear
behavior under loads of 2–5 N, while they often demonstrate different tribological
behaviors under varying loads, when reported in the literature.

(2) The wear response of hard yet tough TiN coatings was investigated under loads of
1–10 N. With an increase in sliding load, the wear mechanism changed from oxidative
wear at the normal load of 1 N to severe abrasive wear at 10 N. At a load of between
2 and 5 N, the coatings suffer from a mixture of oxidative and abrasive wear. The
endurance of the coatings is regarded as the load of 9.4 N and the depth of wear track
at 1.8 µm.
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