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Abstract: In order to investigate the effect of Co contents on the structure and cavitation erosion
property, NiTiAlCrCoxN films were prepared by the magnetron sputtering system. The X-ray
diffractometer (XRD), the scanning electron microscope (SEM) and the energy dispersive spectrometer
(EDS) were used to characterize the structure and morphology of the films. The nanoindenter and
the scratch tester were used to analyze the mechanical properties of the films. Cavitation erosion
experiments were carried out by the ultrasonic vibration cavitation machine. The results show that
NiTiAlCrCoxN films with different Co contents have a simple face-centered cubic (FCC) structure and
show a preferred orientation on the (200) crystal plane. The diffraction angle on the (200) crystal plane
decreases and the interplanar spacing increases with the increase in Co content in NiTiAlCrCoxN
films. NiTiAlCrCoxN films exhibit a typical columnar crystalline structure. With the increase in
Co content, the nanohardness of the films increases and the elastic modulus of the films decreases,
while the mass loss of cavitation erosion monotonously increases except for the film with a 1.2 Co
molar ratio. The NiTiAlCrCo1.4N film has a minimum hardness of 13.264 GPa, a maximum elastic
modulus of 253.22 GPa and a minimum mass loss of 0.72 mg in the cavitation erosion experiment.
The NiTiAlCrCo1.4N film exhibits the best cavitation corrosion resistance because the addition of the
Co element enhances the solid solution strengthening effect and the NiTiAlCrCox1.4N film with the
biggest elastic modulus has better elasticity to reduce the micro jet impact.

Keywords: NiTiAlCrCoxN film; Co contents; cavitation erosion; hardness

1. Introduction

Cavitation erosion is one of the main factors causing the failure of key parts such as
ship propellers and turbine blades [1]. Coating is widely used to improve the cavitation
erosion resistance of parts [1,2]. The high-entropy alloy film is a new material with high
hardness, corrosion resistance [1,2], oxidation resistance [3], wear resistance [4,5] and
corrosion resistance [6–9]. Nonmetallic elements such as C, N and O were doped into high-
entropy alloys to form high-entropy nitride or carbide films, which have better properties
than high-entropy alloy films and can be used to improve the cavitation erosion resistance
of parts [10–13]. In high-entropy ceramic films, the metal elements share cation positions
and the nonmetallic elements occupy anionic positions, which forms a new material system
and has a unique microstructure [11,14]. Researchers studied the effect of deposition
parameters on film properties [15–20]. With the increase in bias potential on the substrate,
the hardness of (TiZrHfVNb)N coatings increases. With the increase in working gas
pressure, the hardness of (TiZrHfVNb)N decreases [12]. With the increase in the N2:Ar flow
ratio, (AlCrTiZrV)N high-entropy alloy nitride film exhibits the preferred orientation on
the (200) crystal plane. The hardness and modulus firstly increase and then decrease [21,22].
Our group studied the effect of a N2:Ar flow ratio on the cavitation erosion resistance of
NiTiAlCrN films. The results show that, when the N2:Ar flow ratio is 1:1, the NiTiAlCrN
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films have the best cavitation erosion resistance [23]. The researchers also studied the
effect of the elements on the structure and properties of HEAs [24–29]. The CoCrFeNiAl
coating shows a BCC structure accompanied by a small amount of FCC and AlCrO3
phase. The CoCrFeNiMn coating shows an FCC structure and a large amount of MnCr2O4
phase. The wear resistance of CoCrFeNiMn coating is better than the one of CoCrFeNiAl
coating [26]. With the increase in x, the structures of CoCrFeNiAlxMn(1−x) high-entropy
alloy (HEA) coatings changes from an FCC structure to dual-phase FCC + BCC structure to
BCC structure. The CoCrFeNiAl0.8Mn0.2 HEA coating with an FCC + BCC structure has the
best corrosion resistance [27]. The FeCoCrxNiAl HEA coatings have a dual phase of FCC
and BCC. The FeCoCr1.5NiAl coating has the highest hardness and the best wear resistance
and corrosion resistance because the Cr element promotes the formation of a hard phase
and a dense oxide film is formed in 3.5 wt.% NaCl solution [28]. With the increase in Si
contents, the (AlCrTiZrMo)-Six-N high-entropy films with Si contents change from crystal
to amorphous phases and the hardness and modulus first increase and then decrease [29].
Therefore, the content of the element can change the structure and improve the properties
of the films. The cavitation erosion can cause phase transformations in Co alloys and Co
shows superior cavitation erosion resistance in 304 and 316 stainless steel [30]. Therefore,
Co plays a crucial role in the cavitation erosion of films.

The N2:Ar flow ratio has been determined in our previous research. On this basis, the
NiTiAlCrCoxN films with different Co contents were deposited by a magnetron sputtering
system. The effect of Co contents on the microstructure, nanohardness, elastic modulus
and cavitation erosion resistance of the NiTiAlCrCoxN films are studied.

2. Materials and Methods
2.1. Materials

The 304 stainless steel (Juncheng Co., Ltd., Tianjin, China) is a widely used chromium–
nickel stainless steel. Therefore, it is selected as the substrate, which is mirror-polished.
The element contents of 304 stainless steel are shown in Table 1. The dimensions of the
substrate are Φ20 mm × 3 mm.

Table 1. Element contents of 304 stainless steel.

Elements Fe Cr Ni Mn Si C S P

Contents/wt.% 67~71 17~19 8~11 ≤2.0 ≤1.0 ≤0.08 ≤0.03 ≤0.035

According to the definition of the high-entropy alloys, the content of every element
ranges from 5 at.% to 35 at.%. Therefore, NiTiAlCrCox alloys with a Co molar ratio of 0.6, 0.8,
1, 1.2 and 1.4 are selected as targets. The contents of Ni, Ti, Al and Cr in NiTiAlCrCox targets
are in equimolar ratios. The NiTiAlCrCox targets are fabricated by powder metallurgy
technology with a temperature of 900 ◦C and a pressure of 40 MPa. The purity of the targets
is 99.99%. The dimensions of the targets are Φ50.4 mm × 4 mm.

2.2. Film Deposition

The NiTiAlCrCoxN films with different Co contents were deposited on 304 stainless
steel by the magnetron sputtering system. The vacuum degree of the chamber is pumped
to 3 × 10−3 Pa. The target was pre-sputtered for 15 min to clear impurities and oxide in the
target surface. The surface impurities and oxide of the substrate were etched by Ar+. The
nitrogen argon flow ratio was 3:4. In order to strengthen the adhesive strength between the
substrate and NiTiAlCrCoxN film, the TiN layer was deposited for 60 min on the substrate.
The NiTiAlCrCox target was controlled by a DC power of 110 W. The NiTiAlCrCoxN
films with different Co contents were deposited by changing the NiTiAlCrCox targets
with a different Co molar ratio. The deposition time was 180 min and the thickness of
NiTiAlCrCoxN film is about 2 µm.
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2.3. Film Characterization

The microstructures of the NiTiAlCrCoxN films were analyzed by Rigaku Ultima
IV X-ray diffraction (Tokyo, Japan) with Cu-Kα, a wavelength of 0.154 06 nm, a current
of 40 mA, a voltage of 40 kV, a test step of 0.02◦, a scanning speed of 8◦·min−1 and an
angle range from 10◦ to 80◦. The surface and cross-section morphologies of NiTiAlCrCoxN
films and the wear track were analyzed with a Cart Zeiss Sigma-300 scanning electron
microscope (SEM). The chemical compositions of NiTiAlCrCoxN films and the wear track
were analyzed with the Ultim Max energy spectrometer (Oberkochen, Germany) (EDS).
The nanohardness and elastic modulus of NiTiAlCrCoxN films were measured with the
Anton Parr UNHT nanoindenter (Graz, Austria) with a Berkovich indenter (Graz, Austria),
which has a curvature radius of the tip of 100 nm, a maximum load of 40 mN and loading
and unloading rates of 20 mN·min−1, with an indentation depth of 300 nm. A total of
5 points were selected to test the nanohardness and elastic modulus. The adhesive force of
the NiTiAlCrCoxN film was measured with a WS-2005 automatic scratch meter (Zhongke
Kaihua Technology Co., Ltd., Lanzhou, China) with a load of 30 N, a loading rate of
30 N·min−1 and a scratch length of 3 mm. The scratch test was repeated 3 times in every
sample. The cavitation erosion experiment was carried out with the ultrasonic vibration
cavitation machine with a power of 1200 kW and an amplitude of 25 µm, which is shown
in Figure 1. The diameter of the vibrating head was Φ20 mm. The 3.5 wt.% NaCl solution
was selected as the cavitation erosion medium. The distance between the sample surface
and the vibrating head was 0.5 mm. The ice was added into the circulating water in the
bath to keep the samples at 0 ◦C. The sample was taken out and the mass loss of the sample
was measured with a high-precision electronic balance for every 2 h of the cavitation
erosion experiment. The total duration of the cavitation erosion experiment was 12 h. The
cavitation rate is defined as the mass loss per hour. The cavitation erosion experiment was
repeated 3 times for every NiTiAlCrCoxN film.
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Figure 1. Diagram of the ultrasonic cavitation erosion machine.

3. Results and Discussion
3.1. Film Structure

Figure 2 shows the XRD patterns of NiTiAlCrCoxN films with different Co contents.
The films exhibit a face-centered cubic (FCC) structure and have a preferred orientation
on the (200) crystal plane. The phases consist of TiN, AlN, CrN, Co3Ti and Co5.47N. When
the molar ratio of Co in the targets is bigger than 1.0, the diffraction peak of (111) plane
disappears. The diffraction angle on the (200) crystal plane shifts to the bigger angle and
the interplanar spacing decreases with the increase in Co contents.
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Figure 2. XRD patterns of NiTiAlCrCoxN films.

Table 2 shows the diffraction angle, the interplanar spacing and the full-width half
of the maximum (FWHM) on the (200) crystal plane. Except for the NiTiAlCrCoN film
with equimolar ratios, the diffraction angle decreases and the interplanar spacing increases
with the increasing of Co content. But the NiTiAlCrCoN film with equimolar ratios has
the maximum diffraction angle and FWHM and the minimum interplanar spacing, which
means that the NiTiAlCrCoN film has higher crystallinity and a finer grain size. The reason
for this is that the film with equimolar ratios has the lattice distortion effect and the slow
diffusion effect.

Table 2. Diffraction angle, interplanar spacing and FWHM.

Co Content Diffraction Angle 2θ/(◦) Interplanar Spacing d/nm FWHM B/rad

NiTiAlCrCo0.6N 43.399 2.0833 0.119
NiTiAlCrCo0.8N 43.342 2.0859 0.152

NiTiAlCrCoN 43.381 2.0842 0.193
NiTiAlCrCo1.2N 43.340 2.0860 0.122
NiTiAlCrCo1.4N 43.338 2.0861 0.115

With of the increase in Co content, the FWHM of NiTiAlCrCoxN films first increases
and then decreases, which means that the Co element can improve the peak quality. When
the Co element is in an equimolar ratio, the peak quality of the XRD pattern is the best. The
NiTiAlCrCoN film with equimolar ratios is more likely to generate multicomponent crystals
in an alloy structure, which greatly increases entropy value and easily generates a crystal
structure. Due to the different sizes of each atom in the site, the lattice position changes and
the lattice distortion is intensified, which reduces the diffraction peak intensity and increases
the FWHM of the NiTiAlCrCoN film on the (200) crystal plane. The NiTiAlCrCoxN films
with unequal molar ratios have a lower entropy which weakens the unique microstructure
caused by the “cocktail” effect. Therefore, the NiTiAlCrCoN film with equimolar ratios
exhibits specificity in XRD patterns.

3.2. Morphology

Figure 3 shows the elements map, the surface and the cross-section morphologies
of the NiTiAlCrCoxN films with different Co contents. The NiTiAlCrCoxN films exhibit
the typical columnar crystalline structure which is perpendicular to the substrate. The
morphologies are sequentially the NiTiAlCrCoxN layer, the TiN transition layer and the



Coatings 2024, 14, 603 5 of 11

substrate from top to bottom. The interfaces between layers are clear. The surface is smooth,
flat, with no pores and no peel.
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Table 3 and Figure 4 show the element contents of NiTiAlCrCoxN films with different
Co contents, which was observed by EDS. The N contents in NiTiAlCrCoxN films are
about (39 ± 0.6) in percentage. The Co contents in NiTiAlCrCoxN films increase from 9.4%
to 22.53% with an increase in the Co molar ratio in the NiTiAlCrCox targets. The other
elements such as Ni, Ti, Al and Cr in NiTiAlCrCoxN films are approximately equal.

Table 3. Element contents in NiTiAlCrCoxN films.

Ni Ti Al Cr Co N

NiTiAlCrCo0.6N 14.85 10.92 11.56 14.59 9.4 38.68
NiTiAlCrCo0.8N 13.86 10.7 11.36 13.82 10.72 39.54

NiTiAlCrCoN 12.15 10.64 12.16 13.29 11.88 39.88
NiTiAlCrCo1.2N 11.52 9.6 10.86 11.37 17.89 38.76
NiTiAlCrCo1.4N 10.35 8.21 9.05 10.74 22.53 39.12

Figure 5 shows the element distribution of point scanning, which was taken five points
from top to bottom in the cross-section of the NiTiAlCrCoxN film. In the NiTiAlCrCo0.6N
film, the metal elements are more easily concentrated near the substrate and the N element
increases from bottom to top, which increases the nitride content near the surface. With
the increase in Co content in the NiTiAlCrCo1.4N film, the metal elements increase and
the N element decreases near the surface. The solid solution strengthening effect increases
significantly between metal elements and nitrides near the substrate, resulting in an increase
in nitrides near the substrate.
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3.3. Mechanical Properties

Figure 6 shows the average nanohardness and the elastic modulus of NiTiAlCrCoxN
films. With the increase in Co content, the nanohardness of the NiTiAlCrCoxN films
decreases and the elastic modulus of the NiTiAlCrCoxN films increases, expect for the
ones of the NiTiAlCrCo1.2N film. When the Co molar ratio is 1.4, the film has a minimum
hardness of 13.264 GPa and a maximum elastic modulus of 253.22 GPa. When the Co
molar ratio is 0.6, the film has a maximum hardness of 14.178 GPa and a minimum elastic
modulus of 229.40 GPa.
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When the Co molar ratio is lower, the elements with larger atomic radii concentrate
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causes the higher nanohardness of the film. With the increase in the Co element, the solid
solution phase increases near the transition layer and AlN, TiN and CrN concentrate near
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Figure 7 shows the adhesive force of NiTiAlCrCoxN films. The adhesive force firstly
increases and then decreases with the increase in Co content. When the Co molar ratio is 1.0,
the film has a maximum adhesive force of 24.2 N. The reason is that AlN, TiN and CrN are
concentrated near the substrate and have a better adhesive force with a TiN transition layer.
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3.4. Cavitation Erosion Resistance

Figure 8 shows the relationship between the mass loss and the cavitation erosion time
of NiTiAlCrCoxN films with different Co contents. The mass loss increases monotonically
with the cavitation erosion time. The accumulative mass loss firstly decreases and then
increases with the increase in Co content. When the Co content has a molar ratio of 1.4,
the accumulative mass loss is the minimum of 0.72 mg and the cavitation erosion rate is of
0.12 mg/h.
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There are two reasons for the improvement in the cavitation erosion resistance of the
films. First, when the Co content has a 1.4 molar ratio, the addition of the Co element
enhances the solid solution strengthening effect [30]. Secondly, the film with the biggest
elastic modulus has better elasticity to reduce the micro jet impact, which improves the
cavitation erosion resistance of the film.

Figure 9 shows the surface and cavitation pits of NiTiAlCrCoxN films after 12 h of
cavitation erosion experiment. The film with a 0.6 Co molar ratio peels off. When the Co
molar ratio is greater than 0.6, the films have no peeling, cracking or plastic deformation,
and there are a few cavitation pits in the surface of NiTiAlCrCoxN films. There is no rupture
and spallation in NiTiAlCrCoxN films, which implies a different cavitation mechanism
from TiAlN and AlTiN films [31]. When the Co molar ratio is 1.4, the size of the cavitation
pit is the minimum of 2.202 µm, which is consistence with the result seen in Figure 7.
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Figure 9. Surface and cavitation pit after 12 h cavitation erosion experiment. (a) NiTiAlCrCo0.6N;
(b) NiTiAlCrCo0.8N; (c) NiTiAlCrCoN; (d) NiTiAlCrCo1.2N; (e) NiTiAlCrCo1.4N.
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Figure 10 shows the element distribution of the cavitation pits of films with equimolar
ratios. In the cavitation pit, Ni, Ti, Al, Co and N elements disappear and Cr and Fe
elements appear, which means that the film undergoes breakdown and that the substrate
of 304 stainless steel is exposed. The O element appears in the pit edge, which means that
oxidations occur during the cavitation erosion. The Al, Co, N and O elements increase near
the cavitation pits, which means that AlN, Co5.47N enriches near the surface of the films
and reacts with O2 to form Al2O3 and Co2O3 to resist the impact of micro jets. The addition
of the Co element enhances the solid solution strengthening effect of the cavitation pits,
which improves the cavitation erosion resistance of the films.
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Figure 10. Element distribution of NiTiAlCrCo0.6N film cavitation pits. (a) Surface of cavitation pit;
(b) Ni; (c) Ti; (d) Al; (e) Co; (f) N; (g) O; (h) Cr; (i) Fe.

4. Conclusions

The NiTiAlCrCoxN films with different Co contents were deposited on 304 stain-
less steel substrates by the magnetron sputtering system. The effect of Co content on
microstructure and cavitation erosion resistance of the NiTiAlCrCoxN films was studied.

(1) The NiTiAlCrCoxN films with different Co contents have a simple face-centered cubic
structure, and the preferred orientation appears on the (200) crystal plane. With the
increase in Co contents, the interplanar spacing first increases and then decreases. The
NiTiAlCrCoN film with equimolar ratios has the minimum interplanar spacing due
to the lattice distortion effect and the slow diffusion effect.
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(2) With the increase in Co content, the nanohardness of the NiTiAlCrCoxN films de-
creases and the elastic modulus of the NiTiAlCrCoxN films increases, expect for the
ones of the NiTiAlCrCo1.2N film. The NiTiAlCrCo1.4N film has the lowest nanohard-
ness of 13.264 GPa, and the highest elastic modulus of 253.22 GPa.

(3) The NiTiAlCrCoxN films have no peeling, cracks and plastic deformation, and there
are few cavitation pits on the surface of the films, except for the NiTiAlCrCo0.6N film.
The NiTiAlCrCox1.4N film exhibits the minimum mass loss of cavitation erosion. There
are two reasons for the improvement in the cavitation erosion resistance. Firstly, the
addition of the Co element enhances the solid solution strengthening effect. Secondly,
the NiTiAlCrCox1.4N film with the biggest elastic modulus has better elasticity to
reduce the micro jet impact, which improves the cavitation erosion resistance of
the film.
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