Supplementary Materials **Table S1.** Properties of the employed solvent. | Solvent | Properties | | | | | | | |----------------|---------------------------------|--------------------------|-----------|-----------------------------|--|--|--| | Solvent | Chemical Formula | Boling Point (°C) | REL (ppm) | Solubility in Water (wt %)* | | | | | Ethanol | C ₂ H ₆ O | 78.4 | 1000 | ∞ | | | | | Butanol | $C_4H_{10}O$ | 100 | 100 | 44.1 | | | | | n-butylacetate | C6H12O2 | 127 | 150 | 1.86 | | | | REL: Recommended Exposure Limits, the concentration not to be exceed, mediated in a 40-h working week (US legislation). * These values are reported in percentage and are expressed in weight (g/g): g of solvent in 100 g of water. The symbol ∞ indicates that the solvent is completely miscible. **Table S2.** Summary of coating results of all products, for all RH% conditions and all time intervals. | | Phase Identified with XRD/μFT-IR Analyses | | | | | | | | |----------|---|--------------|---------|--------------|-----------------------------------|--|--|--| | Sample | Portlandite | Vaterite | Calcite | Aragonite | Amorphous
Calcium
Carbonate | | | | | 2BU50 2W | _ | ✓ | _ | _ | _ | | | | | 2BU90 2W | _ | ✓ | ✓ | _ | _ | | | | | 2BU50 1M | _ | \checkmark | _ | _ | _ | | | | | 2BU90 1M | _ | ✓ | ✓ | _ | _ | | | | | 2BU50 3M | _ | ✓ | _ | _ | _ | | | | | 2BU90 3M | _ | ✓ | ✓ | _ | _ | | | | | NBU50 2W | _ | _ | _ | _ | ✓ | | | | | NBU90 2W | _ | ✓ | ✓ | _ | _ | | | | | NBU50 1M | _ | _ | _ | _ | ✓ | | | | | NBU90 1M | _ | ✓ | _ | _ | _ | | | | | NBU50 3M | _ | ✓ | _ | _ | _ | | | | | NBU90 3M | _ | ✓ | _ | _ | _ | | | | | ETA50 2W | ✓ | ✓ | _ | _ | _ | | | | | ETA90 2W | ✓ | ✓ | ✓ | _ | _ | | | | | ETA50 1M | _ | ✓ | _ | _ | _ | | | | | ETA90 1M | _ | ✓ | ✓ | _ | _ | | | | | ETA50 3M | _ | ✓ | _ | _ | _ | | | | | ETA90 3M | _ | ✓ | ✓ | _ | _ | | | | | CAL50 2W | _ | _ | _ | ✓ | _ | | | | | CAL90 2W | _ | ✓ | ✓ | | _ | | | | | CAL50 1M | _ | _ | | \checkmark | _ | | | | | CAL90 1M | _ | ✓ | ✓ | _ | _ | | | | | CAL503M | _ | _ | _ | \checkmark | _ | | | | | CAL90 3M | _ | ✓ | ✓ | _ | _ | | | | 2BU: Ca(OEt)² diluted in 2-butanol; NBU: Ca(OEt)² diluted in n-butylacetate; ETA: Ca(OEt)² diluted in ethanol; CAL: CaLoSil. 2W: two weeks; 1M: one month; 3M: three months. 50: 50% RH; 90: 90% RH. **Table S3.** Summary of the main vibrational bands associated to calcium carbonate polymorphs identified in this study by μ FT-IR. Spectral range 700-1100 cm⁻¹. | | Calcium Carbonate Polymorphs | | | | | |-----------------------------------|------------------------------|--------------|-----------------------------------|--|--| | Spectral Band (cm ⁻¹) | Calcite | Vaterite | Amorphous
Calcium
Carbonate | | | | 712 | ✓ | - | _ | | | | 741/744/747 | - | \checkmark | _ | | | | 864 | - | - | ✓ | | | | 876 | \checkmark | - | _ | | | | 873/877 | _ | \checkmark | _ | | | | 1070 | - | - | ✓ | | | | 1088/1089 | - | \checkmark | _ | | | **Table S4.** Amount of dry matter retained after one month for all stones treated with both application procedures and all products. | Amuliantion | Quantity of Dry Matter Retained (kg/m²) | | | | | | | |-------------|---|---------------|---------------|-------------------|--|--|--| | Application | ETA | 2BU | NBU | CAL | | | | | Lecce_AP1 | 0.063-0.067 | 0.046-0.056 | 0.077-0.085 | 0.010-0.014 | | | | | Lecce_AP2 | 0.067 | 0.034 | 0.097 | 0.086 | | | | | Noto_AP1 | 0.009 - 0.079 | <0.010 * | 0.008 - 0.136 | 0.065 ± 0.103 | | | | | Noto_AP2 | 0.107 | 0.478 | 0.235 | 0.138 | | | | | Vicenza_AP1 | 00.010-0.014 | 0.034 - 0.068 | 0.062 - 0.090 | 0.170 – 0.240 | | | | | Vicenza_AP2 | 0.230 | 0.357 | 0.463 | 0.154 | | | | AP1: brush till saturation; AP2: absorption by capillarity. * For this sample, the quantity of product was very low to be measured with the available scale. **Table S5.** Ultrasound pulse velocity values obtained from Lecce stone before and after treatment. The depth profile is expressed from treated (5 mm) to not treated surface (45 mm). | Don'th (mm) | Values of Ultrasound Pulse Velocity (m/s) | | | | | | | | |-------------|---|-------------------|-------------------|-------------------|--|--|--|--| | Depth (mm) | NT | NBU_AP1 | NT | NBU_AP2 | | | | | | 5 | 3613.3 ± 55.1 | 3710 ± 17.3 | 3636.7 ± 68.1 | 3693.3 ± 28.9 | | | | | | 10 | 3546.7 ± 11.5 | 3700 ± 17.3 | 3713.3 ± 25.2 | 3706.7 ± 56.9 | | | | | | 15 | 3590 ± 0 | 3673.3 ± 56.9 | 3633.3 ± 68.1 | 3713.3 ± 25.2 | | | | | | 20 | 3563.3 ± 25.1 | 3683.3 ± 11.5 | 3670 ± 96.4 | 3786.7 ± 28.9 | | | | | | 25 | 3546.7 ± 40.4 | 3646.7 ± 63.5 | 3643.3 ± 76.4 | 3723.3 ± 41.6 | | | | | | 30 | 3580.0 ± 36.1 | 3636.7 ± 46.2 | 3626.7 ± 28.8 | 3676.7 ± 85.1 | | | | | | 35 | 3546.7 ± 51.3 | 3580 ± 17.3 | 3643.3 ± 98.7 | 3720 ± 17.3 | | | | | | 40 | 3570 ± 36.1 | 3543.3 ± 28.9 | 3633.3 ± 25.2 | 3706.7 ± 85.1 | | | | | | 45 | 3590.0 ± 0 | 3616.7 ± 92.9 | 3713.3 ± 25.2 | 3780 ± 36.6 | | | | | NT: untreated stone; NBU: Ca(OEt)2 diluted in n-butylacetate; AP1: brushing till saturation; AP2: absorption by capillarity. **Table S6.** Chromatic variation after both types of application procedures, for all stones treated with all products. | Amuliantion | ΔE^* | | | | | | | |-------------|----------------|----------------|---------------|----------------|--|--|--| | Application | ETA | 2BU | NBU | CAL | | | | | Lecce_AP1 | 2.8 ± 0.8 | 7.1 ± 0.5 | 6.1 ± 0.5 | 12.4 ± 0.2 | | | | | Lecce_AP2 | 11.2 ± 0.3 | 15.3 ± 0.2 | 7.7 ± 0.3 | 8.5 ± 0.4 | | | | | Noto_AP1 | 4.9 ± 0.5 | 8.7 ± 0.4 | 5.3 ± 0.4 | 16.6 ± 0.2 | | | | | Noto_AP2 | 9.9 ± 0.2 | 13.9 ± 0.3 | 6.5 ± 0.4 | 11.4 ± 0.2 | | | | | Vicenza_AP1 | 2.1 ± 1.3 | 1.1 ± 0.5 | 3.3 ± 1.9 | 6.9 ± 0.3 | | | | | Vicenza_AP2 | 1.9 ± 0.9 | 0.6 ± 2.1 | 1.0 ± 1.6 | 7.2 ± 0.3 | | | | AP1: brush till saturation; AP2: absorption by capillarity. **Table S7.** Ultrasound pulse velocity values obtained from Noto stone before and after treatment. The depth profile is expressed from treated (5 mm) to not treated surface (45 mm). | Depth | | Values of Ultrasound Pulse Velocity (m/s) | | | | | | | |-------|------------------------------|---|--------------|--------------|--------------|-----------------|--------------|-----------------| | (mm) | NT | NBU_AP1 | NT | NBU_AP2 | NT | 2BU_AP2 | NT | ETA_AP2 | | 5 | 3016.7 ± | 3033.3 ± | 3080 ± | 3303.3 ± | 2020 + 0 | 3033.3 ± | 3253.3 ± | 3286.7 ± | | 5 | 25.2 | 41.6 | 20 | 58.6 | 3020 ± 0 | 30.5 | 23.1 | 30.5 | | 10 | $2980 \pm$ | 2042 + 47.2 | $3120 \pm$ | $3336.7 \pm$ | $3033.3 \pm$ | 3063.3 | 2240 + 0 | 2220 + 24 6 | | 10 | 26.5 | 3043 ± 47.3 | 20 | 47.3 | 23.1 | ± 25.2 | 3240 ± 0 | 3220 ± 34.6 | | 15 | 2050 + 0 | 2953.3 ± | $3033.3 \pm$ | 3313.3 ± | $3033.3 \pm$ | $3063.3 \pm$ | $3166.7 \pm$ | $3186.7 \pm$ | | 15 | 2950 ± 0 | 90.7 | 11.5 | 11.5 | 23.1 | 25.2 | 11.5 | 11.5 | | 20 | 2906.7 ± | $3026.7 \pm$ | 3033.3 ± | 2220 . 0 | $3053.3 \pm$ | 2040 - 20 | 3100 ± | $3093.3 \pm$ | | 20 | 11.5 | 30.5 | 23.1 | 3220 ± 0 | 11.5 | 3040 ± 20 | 34.6 | 46.2 | | 25 | 2900 ± | 2040 - 70.2 | 3013.3 | $3266.7 \pm$ | 3033.3 ± | $3043.3 \pm$ | 3133 ± | $3146.7 \pm$ | | 25 | 52.9 | 2940 ± 79.3 | ±25.2 | 30.5 | 23.1 | 25.2 | 23.1 | 61.1 | | 20 | 2906.7 ± | 2963.3 ± | 2953.3 ± | $3266.7 \pm$ | 2996.7 ± | 2000 - 17.2 | $3166.3 \pm$ | $3126.7 \pm$ | | 30 | 11.5 | 11.5 | 15.3 | 11.5 | 37.9 | 2990 ± 17.3 | 30.5 | 23.1 | | 25 | 2936.7 ± | 2000 + 247 | $2956.7 \pm$ | $3146.7 \pm$ | 2990 ± | $3033.3 \pm$ | $3146.7 \pm$ | $3153.3 \pm$ | | 35 | 5.3 | 2980 ± 34.6 | 11.5 | 80.8 | 26.5 | 11.5 | 30.5 | 41.6 | | 40 | 2936.7 ± | 2000 264 | $2986.7 \pm$ | $3146.7 \pm$ | $3026.7 \pm$ | 3070 ± 36.1 | 3120 ± | $3126.7 \pm$ | | 40 | 28.9 | 2990 ± 36.1 | 35.1 | 41.6 | 11.5 | | 52.9 | 57.7 | | 45 | 2920 ± 0 2980 ± 26.5 | $3016.7 \pm$ | $3073.3 \pm$ | $3070 \pm$ | 3093.3 ± | $3180 \pm$ | 3226.7 ± | | | 45 | | 2980 ± 26.5 | 5.7 | 61.1 | 36.1 | 47.3 | 34.6 | 30.5 | NT: untreated stone; NBU: Ca(OEt)₂ diluted in n-butylacetate; 2BU: Ca(OEt)₂ diluted in 2-butanol; ETA: Ca(OEt)₂ diluted in ethanol. AP1: brushing till saturation; AP2: absorption by capillarity. **Table S8.** Ultrasound pulse velocity values obtained from Vicenza stone before and after treatment. The depth profile is expressed from treated (5 mm) to not treated surface (45 mm). | Donth (mm) | Values of Ultrasound Pulse Velocity (m/s) | | | | | | | |------------|---|-------------------|-------------------|-------------------|--|--|--| | Depth (mm) | NT | 2BU_AP1 | NT | NBU_AP2 | | | | | 5 | 3293.3 ± 45.1 | 3380 ± 20 | 3053.3 ± 23.1 | 3280 ± 52.9 | | | | | 10 | 3256.7 ± 23.1 | 3276.7 ± 11.5 | 3053.3 ± 41.6 | 3316.7 ± 42.3 | | | | | 15 | 3263.3 ± 23.1 | 3210 ± 34.6 | 3086.7 ± 30.5 | 3293.3 ± 11.5 | | | | | 20 | 3196.7 ± 30.5 | 3223.3 ± 11.5 | 3023.3 ± 15.3 | 3190 ± 0 | | | | | 25 | 3210 ± 34.6 | 3243.3 ± 11.5 | 3046.7 ± 11.5 | 3246.7 ± 30.6 | | | | | 30 | 3230 ± 20 | 3250 ± 20 | 3086.7 ± 80.8 | 3246.7 ± 11.5 | | | | | 35 | 3210 ± 20 | 3256.7 ± 23.1 | 3026.7 ± 80.8 | 3123.3 ± 76.3 | | | | | 40 | 3256.7 ± 11.5 | 3183.3 ± 11.5 | 3033.3 ± 41.6 | 3126.7 ± 41.6 | | | | | 45 | 3236.7 ± 11.5 | 3230 ± 20 | 3073.3 ± 50.3 | 3053.3 ± 61.1 | | | | NT: untreated stone; 2BU: Ca(OEt)2 diluted in 2-butanol; NBU: Ca(OEt)2 diluted in n-butyalcetate; AP1: brushing till saturation; AP2: absorption by capillarity. **Figure S1.** Lecce stone treated with ETA applied by brushing till saturation AP1 (L_ETA_AP1): (a) drilling resistance and (b) UPV profile. NT: untreated part of the stone for DRMS and untreated stone for UPV. **Figure S2.** Lecce stone treated with 2BU applied by brushing till saturation AP1 (L_2BU_AP1): (a) drilling resistance and (b) UPV profile. NT: untreated part of the stone for DRMS and untreated stone for UPV. **Figure S3.** Lecce stone treated with CAL applied by brushing till saturation AP1 (L_CAL_AP1): (a) drilling resistance and (b) UPV profile. NT: untreated part of the stone for DRMS and untreated stone for UPV. **Figure S4.** Lecce stone treated with ETA applied through absorption by capillarity AP2 (L_ETA_AP2): (a) drilling resistance and (b) UPV profile. NT: untreated part of the stone for DRMS and untreated stone for UPV. **Figure S5.** Lecce stone treated with 2BU applied through absorption by capillarity AP2 (L_2BU_AP2): (a) drilling resistance and (b) UPV profile. NT: untreated part of the stone for DRMS and untreated stone for UPV. **Figure S6.** Lecce stone treated with CAL applied through absorption by capillarity AP2 (L_CAL_AP2): (a) drilling resistance and (b) UPV profile. NT: untreated part of the stone for DRMS and untreated stone for UPV. **Figure S7.** Noto stone treated with ETA applied by brushing till saturation AP1 (N_ETA_AP1): (a) drilling resistance and (b) UPV profile. NT: untreated part of the stone for DRMS and untreated stone for UPV. **Figure S8.** Noto stone treated with 2BU applied by brushing till saturation AP1 (N_2BU_AP1): (a) drilling resistance and (b) UPV profile. NT: untreated part of the stone for DRMS and untreated stone for UPV. **Figure S9.** Noto stone treated with CAL applied by brushing till saturation AP1 (N_CAL_AP1): (a) drilling resistance and (b) UPV profile. NT: untreated part of the stone for DRMS and untreated stone for UPV. **Figure S10.** Noto stone treated with CAL applied through absorption by capillarity AP2 (N_CAL_AP2): (a) drilling resistance and (b) UPV profile NT: untreated part of the stone for DRMS and untreated stone for UPV. **Figure S11.** Vicenza stone treated with ETA applied by brushing till saturation AP1 (V_ETA_AP1): (a) drilling resistance and (b) UPV profile NT: untreated part of the stone for DRMS and untreated stone for UPV. **Figure 12.** Vicenza stone treated with NBU applied by brushing till saturation AP1 (V_NBU_AP1): (a) drilling resistance and (b) UPV profile. NT: untreated part of the stone for DRMS and untreated stone for UPV. **Figure S13.** Vicenza stone treated with CAL applied by brushing till saturation AP1 (V_CAL_AP1): (a) drilling resistance and (b) UPV profile NT: untreated part of the stone for DRMS and untreated stone for UPV. **Figure S14.** Vicenza stone treated with ETA applied through absorption by capillarity AP2 (V_ETA_AP2): (a) drilling resistance and (b) UPV profile. NT: untreated part of the stone for DRMS and untreated stone for UPV. **Figure S15.** Vicenza stone treated with 2BU applied through absorption by capillarity AP2 (V_2BU_AP2): (a) drilling resistance and (b) UPV profile. NT: untreated part of the stone for DRMS and untreated stone for UPV. **Figure S16.** Vicenza stone treated with CAL applied through absorption by capillarity AP2 (V_CAL_AP2): (a) drilling resistance and (b) UPV profile. NT: untreated part of the stone for DRMS and untreated stone for UPV.