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Simple Summary: Numerous biotechnological applications exist that have been obtained from
marine organisms. Nonetheless, despite their diversity and potential for massive growth, marine
microalgae have been less studied than other groups. The aim of the present study was to add
new information about microalgae to the existing research that shows the bioactivity of marine
microalgae in diverse assays conducted by our research group. First, we selected representative
species from different algal groups available in our laboratory and then their biomass was harvested
to perform several bioactivity tests. Several strains yielded positive results for antibacterial, antiviral
and anti-inflammatory activities. These findings act as an essential indicator for future work tar-
geting the structural characterization of the compounds responsible and their potential application
in biomedicine.

Abstract: Marine microalgae are a rich reservoir of natural compounds, including bioactives. Nonethe-
less, these organisms remain fairly unexplored despite their potential biotechnological applications.
Culture collections with diverse taxonomic groups and lifestyles are a good source to unlock this
potential and discover new molecules for multiple applications such as the treatment of human
pathologies or the production of aquaculture species. In the present work extracts from thirty-three
strains (including twenty dinoflagellates, four diatoms and nine strains from seven other algal
classes), cultivated under identical conditions, were examined for their antiviral, antibacterial, anti-
inflammatory and anti-cancer activities. Among these, antiviral and anti-inflammatory activities
were detected in a few strains while the antibacterial tests showed positive results in most assays.
In turn, most trials did not show any anti-cancer activity. Significant differences were observed
between species within the same class, in particular dinoflagellates, which were better represented in
this study. These preliminary findings pave the way for an in-depth characterization of the extracts
with highest signals in each test, the identification of the compounds responsible for the biological
activities found and a further screening of the CCVIEO culture collection.

Keywords: microalgae; bioactive compounds; zebrafish; inflammation; antiviral activity; antibacterial
activity; anti-cancer activity

1. Introduction

Marine organisms are an important source of proteins and provide a broad range
of health-promoting bioactive compounds with multiple applications in diverse biotech-
nological and pharmacological sectors such as human health, nutraceuticals, cosmetics,
well-being and even animal production [1,2]. Microorganisms included under the umbrella
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of phytoplankton such as cyanobacteria and microalgae are underexploited as a source
of bioactive compounds [3–5]. Those microorganisms are of great interest since they are
highly taxonomically diverse, showing a complex evolutionary history (as compared, e.g.,
to land plants). Their ecophysiological diversity confers a high metabolic plasticity, al-
lowing them to respond and adapt to a changing environment by producing bioactive
secondary metabolites (reviewed in Saide et al. [6]). Marine planktonic cyanobacteria
and microalgae are able to synthetize a large number of potential bioactive compounds
including pigments, lipids, glycolipids, alkaloids, terpenoids, ribosomal and non-ribosomal
peptides, polyketides, phenolic acids, vitamins, flavonoids and macrolides, among oth-
ers [4,6–9], but in many cases the active principles are yet unknown [10,11]. A significant
advantage of using microalgae lies in their relatively easy growth and the fact that they can
build up a high level of biomass in a short generation time. The ability to produce bioactive
compounds is species-specific and depends on several factors such as the environmental
parameters (growth medium, temperature, light intensity, pH), length of the growth phase
and treatment of the biomass before the extraction [10,12–15]. Moreover, in some cases the
production and release of active metabolites occurs when microalgae are grown in mixed
crops or under specific mixotrophic conditions [16,17].

Pharmacological and biological activities have been reported for almost all secondary
metabolites produced by microalgae. Those properties included, among others, antibacterial,
antiviral, antifungal and antialgal activities [18–22], antioxidant [23,24], anti-inflammatory
and immunomodulatory activities [9,10,25–28] and anti-proliferative and anticancer activ-
ity [12,29–31]. Moreover, compounds derived from microalgae are useful for the prevention
and treatment of other human pathologies such as diabetes, hypertension, artherosclerosis
and osteoporosis [6]. Microalgae-derived products have also been applied to the aquacul-
ture industry [32,33]. These organisms are included as food supplements because of their
nutritional values and their immunomodulatory properties to mitigate stressful conditions
in crustacean and fish production [34,35].

Bacterial and viral diseases are one of the major aquaculture challenges responsi-
ble, in some cases, for high mortalities and significant economic losses. Aquaculture fish
are affected by several groups of pathogenic viruses such as the birnavirus (IPNV), or-
thomyxovirus (ISAV), rhabdovirus (SVCV, IHNV and VHSV), adenovirus and herpesvirus
(reviewed in Kim and Leong [36]). In particular, the spring viremia of carp virus (SVCV)
is responsible for elevated mortalities in carp cultures worldwide [37] and the Office of
International Epizootic (OIE) must be notified when it is detected [38]. Although it causes
substantial economic losses to the aquaculture industry, there are no effective therapies
for its prevention and treatment [39,40]. The major bacterial diseases in aquaculture an-
imals include Aeromonas sp. and Pseudomonas sp. in many freshwater species, or Vibrio
sp. in marine ones [41–43]. In particular, Aeromonas hydrophyla infection affects different
freshwater fish species such as common carps, goldfish, eel, catfish and tilapia [44] and
is also described as an emergent pathogen for the cultured freshwater shrimp Litopenaeus
vannamei [45]. Other opportunistic bacteria such as Micrococcus luteus can also induce lethal
infections when the animal is immunologically compromised [46]. In this context, bioactive
compounds from microalgae emerge as a potential source of antiviral components [47–49]
and are also a plausible alternative to antibiotics to treat bacterial infections [10,50–52].

Microalgae also have the ability to induce immunomodulation in fish and confer
protection against bacterial infections [35,53–55]. The identification and isolation of com-
pounds with anti-inflammatory activity from microalgae are of great interest for human
health but also for aquaculture production [56–58]. The control of the inflammatory pro-
cess is relevant since it is involved in many physiological processes such as inflammatory
disorders, immune-related diseases and infections [59–61]. Microalgae compounds with
anti-inflammatory properties include carotenoids, polyunsaturated fatty acids (PUFA) such
as eicosapentaenoic and docosahexaenoic acids (EPA and DHA, respectively) and certain
sulphated polysaccharides, although other bioactive chemicals are still unknown [10,62].
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Available studies on exploring the bioactive compounds in microalgae usually employ
diatoms, green algae and dinoflagellates among other groups, but often focus on a limited
number of species or bioactivity tests [63]. The screening of a wide range of taxonomic
groups and assays is rarely found in the literature [10,13,64]. In that sense, culture col-
lections with different algal classes, life styles and habitats provide biological material of
enormous interest to identify new sources of bioactive molecules. These resources enable
the samples to undergo different assays under the same conditions, a first step towards
finding bioactive fractions and molecules with potential applications in diverse fields, such
as biomedicine or aquaculture.

The present study followed this approach. Taking advantage of the microalgal strains
maintained in the CCVIEO culture collection (IEO-CSIC, Spain), a number of phytoplank-
ton groups (nine taxonomic classes) were selected, including toxic dinoflagellate species,
and 33 strains were screened for their bioactivity. These tests comprised antiviral, an-
tibacterial, anti-inflammatory and anticancer activities. To our knowledge, many of the
organisms included in the present study have not been tested in previous similar works.
The obtained results provided some promising findings, concerning antibacterial activity in
particular, which deserve to be explored further for their potential applications for human
and animal health.

2. Results
2.1. Antiviral Activity of the Extracts

A total of 17 out of the 33 extracts analyzed showed significant effects against SVCV
replication. A significant reduction in the viral titer was obtained at 6 days post infection,
although the magnitude of the decrease was always lower than 1 log (Figure 1). The
increment in the extract concentration from 10 to 25 µg mL−1 did not significantly increase
the antiviral activity. Extracts that showed a moderate antiviral activity (PI between 90
and 50%) were obtained from six species of dinoflagellates (genera Alexandrium (E33),
Dinophysis (E5, E29), Gambierdiscus (E30, E31), and Prorocentrum (E24)) and one diatom of
the genus Nitzschia (E14). Also, species from other taxonomic classes such as Chlorophyceae
(Tetraselmis, E20), Cryptophyceae (Guillardia E21, and Teleaulax E02) and Euglenophyceae
(Eutreptiella, E26) showed moderate antiviral activity (Figure 1). Finally, extracts from the
diatom genus Chaetoceros (E13), the dinoflagellates Alexandrium (E23), Gymnodinium (E12),
Karlodinium (E17) and Ostreopsis (E27) and the cryptophyte Falcomonas (E22) showed a
strong antiviral activity and significantly reduced the viral titer by up to 90% (PI > 90%)
(Figure 1).
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Biology 2024, 13, 255 4 of 19

infection of 50% of the cell line (TCID50). Results were expressed as the mean and SD of four
titrations. A T-test was used to determine significant differences at p-value < 0.05 (*) between control
(SVCV infected cells) and cells treated with the extracts at day 6 post-infection. Using the calculated
percentage of inhibition (PI), the antiviral activity was scored as strong (PI > 90%), moderate (PI
between 50 and 90%) and weak (PI < 50%) according to Monteiro et al. [57].

2.2. Antibacterial Activity of the Extracts

The antibacterial activity of the extracts was assayed against both Gram (+) and (−)
bacteria using 10 µg mL−1 of the extract. The treatment of bacteria with 1% DMSO did
not affect the bacterial growth. The evaluation of the OD600 nm during 24 h allowed us
to determine the times where the extracts significantly reduced the bacterial growth. The
results obtained using extract 9 isolated from the dinoflagellate Prorocentrum lima were
selected as the representative results (Figure 2A). The growth of the Gram (−) A. hydrophila
showed logarithmic kinetics and almost reached the highest level after 16 h of incubation.
In contrast, an exponential growth was observed in the Gram (+) M. luteus (Figure 2A). Only
10 out of 33 extracts significantly reduced the growth of A. hydrophila at specific time points
and the percentage of reduction was always lower than 13%. The highest antibacterial
activity was registered in extracts isolated from the dinoflagellates A. minutum (E01) and P.
lima (E09) after 7 and 8 h of incubation, respectively (Figure 2B).
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Figure 2. The antibacterial activity of extracts (10 µg mL−1) against Gram (−) bacteria. The different
algal groups selected are indicated. The bacterial growth was evaluated by measuring the OD600 nm
for 24 h; (A) The kinetics obtained in samples treated with the extract 9 was selected as representative
result. T-test was used to determine significant differences at p-value < 0.05 (*). (B) Tables show the
sampling points where the differences in OD600 nm were statistically significant at p < 0.05 against A.
hydrophyla. The percentage of bacterial growth reduction is specified in each sampling point.

The antibacterial activity against the Gram (+) M. luteus was generalized and main-
tained during all the bacterial incubations (Figure 3). A total of 31 extracts induced signifi-
cant a reduction in the bacterial growth with an average percentage of reduction close to
30% after 24 h of incubation. The highest percentage of bacterial reduction was registered
at 16 h of incubation with the extract isolated from the cryptophyte Teleaulax amphioxeia
(E02; Figure 3).
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Figure 3. The antibacterial activity of extracts (10 µg mL−1) against Gram (+) bacteria. Table shows
the sampling points where the differences in OD600 nm were statistically significant at p < 0.05
against M. luteus. The percentage of bacterial growth reduction is specified in each sampling point.
T-test was used to determine significant differences at p-value < 0.05.

2.3. Anti-Inflammatory Activity of the Extracts

The anti-inflammatory properties of the extracts (at 25 µg mL−1) were assayed in vivo
using the transgenic zebrafish larvae Tg(lyz:DsRed2). This animal shows the lysozyme-
expressing cells (neutrophils) marked in red, allowing for their detection in live animals
(Figure 4A). The inflammation was induced by a transversal sectioning of the caudal fin
and the number of neutrophils was measured after 2 h, 24 h and 48 h (Figure 4B). The
number of neutrophils that migrated to this site increased quickly at 2 h reaching a mean
value of seven (±3) cells (Figure 4C). The number of cells significantly decreased in the
following sampling points at 24 and 48 h post injury (Figure 4C).

Eighteen out of the thirty-three extracts induced significant changes in the number of
neutrophils in any of the sampling points (Figure 4D). At 2 h post injury only six extracts
significantly reduced the number of neutrophils. The extract isolated from the raphidophyte
Heterosigma akashiwo (E18) induced the highest reduction in the number of migrating cells
(up to 70%). Moreover, the extracts isolated from P. lima (E09), Ostreopsis siamensis (E06) and
Dinophysis caudata (E29) reduced the number of neutrophils by around 60% (Figure 4D).
At 24 h, only eight extracts modified the number of cells. The extracts isolated from O.
siamensis (E06), P. lima (E09) and H. akashiwo (E18) showed a significant reduction in the
number of cells which was maintained from 2 h to 24 h post injury. At this last point (24 h)
the extracts reduced the number of cells by around 80% and 60%, respectively (Figure 4D).
Interestingly the larvae treated with extracts 27 (O. fattorussoi), 28 (O. ovata), 29 (D. caudata)
and 32 (Gambierdiscus australes) showed a significant increment in the number of neutrophils
at 24 and 48 h. At the end of the experiment (48 h), larvae treated with the extracts isolated
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from A. minutum (E01), T. amphioxeia (E02), O. siamensis (E06), Lingulodinium polyedra (E07),
Heterocapsa minima (E08), H. akashiwo (E18), Pyramimonas sp. (E19) and Kryptoperidinium
triquetrum (E25) showed a significant reduction in the number of cells (Figure 4D).

Biology 2024, 13, 255 6 of 19 
 

 

 

Figure 4. In vivo evaluation of the anti-inflammatory activity of the extracts (at 25 µg mL−1) using 

zebrafish larvae. The different algal groups selected are indicated. (A) The transgenic zebrafish lar-

vae Tg(lyz:DsRed2) was used. The lysozyme-expressing cells (neutrophils) are marked in red and 

can be analyzed in live animals. Scale bar = 500 µm; (B) Control animals were injured in the tail and 

the number of neutrophils was measured at 2 h, 24 h and 48 h. Scale bar = 100 µm; (C) Evolution in 

the number of neutrophils at the injury in control fish. The graph was created using information 

obtained from 50 animals. (D) Effect of the extracts on the number of neutrophils at the injured fin. 

Results represent the mean and SD. (*) asterisks represent significant differences (p < 0.05) compared 

to controls. 

Eighteen out of the thirty-three extracts induced significant changes in the number of 

neutrophils in any of the sampling points (Figure 4D). At 2 h post injury only six extracts 

significantly reduced the number of neutrophils. The extract isolated from the raphi-

dophyte Heterosigma akashiwo (E18) induced the highest reduction in the number of mi-

grating cells (up to 70%). Moreover, the extracts isolated from P. lima (E09), Ostreopsis sia-

mensis (E06) and Dinophysis caudata (E29) reduced the number of neutrophils by around 

60% (Figure 4D). At 24 h, only eight extracts modified the number of cells. The extracts 

isolated from O. siamensis (E06), P. lima (E09) and H. akashiwo (E18) showed a significant 

reduction in the number of cells which was maintained from 2 h to 24 h post injury. At 

this last point (24 h) the extracts reduced the number of cells by around 80% and 60%, 

respectively (Figure 4D). Interestingly the larvae treated with extracts 27 (O. fa�orussoi), 

28 (O. ovata), 29 (D. caudata) and 32 (Gambierdiscus australes) showed a significant incre-

ment in the number of neutrophils at 24 and 48 h. At the end of the experiment (48 h), 

larvae treated with the extracts isolated from A. minutum (E01), T. amphioxeia (E02), O. 

siamensis (E06), Lingulodinium polyedra (E07), Heterocapsa minima (E08), H. akashiwo (E18), 

Pyramimonas sp. (E19) and Kryptoperidinium triquetrum (E25) showed a significant reduc-

tion in the number of cells (Figure 4D). 

2.4. Cytotoxic Activity of the Extracts in the Cancer Lines 

The cytotoxic activity was assayed in vitro using the human cell lines HCT 116, 

HepG2 and MG-63. None of the extracts showed anti-cancer activity. No significant 

Figure 4. In vivo evaluation of the anti-inflammatory activity of the extracts (at 25 µg mL−1) using
zebrafish larvae. The different algal groups selected are indicated. (A) The transgenic zebrafish larvae
Tg(lyz:DsRed2) was used. The lysozyme-expressing cells (neutrophils) are marked in red and can
be analyzed in live animals. Scale bar = 500 µm; (B) Control animals were injured in the tail and
the number of neutrophils was measured at 2 h, 24 h and 48 h. Scale bar = 100 µm; (C) Evolution
in the number of neutrophils at the injury in control fish. The graph was created using information
obtained from 50 animals. (D) Effect of the extracts on the number of neutrophils at the injured fin.
Results represent the mean and SD. (*) asterisks represent significant differences (p < 0.05) compared
to controls.

2.4. Cytotoxic Activity of the Extracts in the Cancer Lines

The cytotoxic activity was assayed in vitro using the human cell lines HCT 116, HepG2
and MG-63. None of the extracts showed anti-cancer activity. No significant reduction
in the viability of the cells was observed after a 48 h exposure to the extracts at 5, 25 and
50 µg mL−1 (Figure 5).
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3. Discussion

Microalgae represent an interesting source of bioactive compounds [10,13,64] since
at least one third of the thirty-three analyzed extracts showed significant effects in some
of the bioactivity tests. However, further exploration to identify the responsible fractions
and compounds involved in these effects is needed. This work could consider different
culture setups, including culture media with certain nutrient limitations, to check if major
differences in bioactivity are observed under stressed conditions. Different culture condi-
tions were not examined in the present work and strains were collected at the end of the
exponential phase when dense cultures were obtained. However, we cannot provide any
clues about the limiting conditions, if any, in our cultures.

3.1. Antiviral Activity of the Extracts

The antiviral effect of the extracts is related to the presence of several bioactive molecules
such as phenolic and flavonoid components and sulphated polysaccharides [49,57,65,66].
It is suggested that the fatty-acid molecules penetrate the host cell and break down the
lipid coat of enveloped viruses, inducing the inactivation of the viruses at their point of
entry [67]. The antiviral activity of algae extracts has also been related to the inhibition of
the viral RNA polymerase [68]. However, additional studies are required to analyze the
mechanisms of action of the algal extracts, focusing on the specific compounds of interest.

In the present study, a total of 17 extracts showed moderate to strong activity against
fish SVC virus. This information is in agreement with a similar antiviral activity against
fish viruses (IPNV and VHSV) registered for extracts isolated from other marine microalgae
species [69]. Our results suggest that the microalgae extracts could persist on the cell
surfaces, interfering with the viral replication as was previously proposed by several
authors [49,69].

Antiviral activity has been observed in several species of dinoflagellates. The different
composition of the extracts between three species of the same genera could explain why
the extracts from Alexandrium mediterraneum (E23), A. tamarense (E33) and A. minutum (E01)
showed strong, moderate and weak antiviral activity, respectively. The potential antiviral
effects of bioactive compounds produced by Alexandrium on marine viruses has already
been observed by a reduction in the prevalence of infection with the herpesvirus OSHV-1
µVar in Crassostrea gigas when the A. pacificum was present [70]. This differential antiviral
activity between close species was also observed in Ostreopsis fattorussoi (E27) (strong
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activity) and O. ovata (E28) and O. siamensis (E06) (no antiviral activity). The differences
in the phenolic composition of the extracts or their interaction with other compounds
may affect their antiviral activity, as was previously suggested [71]. A strong anti-SVCV
activity was also observed in the extract obtained from Gymnodinium impudicum (E12). This
dinoflagellate has previously been reported to display antiviral activity against several
viruses such as the non-enveloped encephalomyocarditis (EMCV) virus that causes death
in animal production [19] and against the influenza A virus [72].

Antiviral activity has already been observed in diatoms. Previous studies reported
that most species of Chaetoceros are rich in fatty acids, such as oleic acid, linoleic acid
and alpha-linolenic acid [73]. Although we did not determine the lipid composition of C.
dichatoensis (E13) their most likely enriched composition in fatty acids could contribute to
its strong anti SVCV activity.

Other extracts with antiviral activity belonged to the Cryptophyceae and Chloro-
phyceae classes. For example, Falcomonas sp. (E22) is less known and has recently been
explored for bioactive compounds [74]. In contrast, the moderate anti SVCV activity
obtained in T. convolutae (E20) could be expected since activity against another fish rhab-
dovirus (VHSV) has already been described in T. suecica [75].

3.2. Antibacterial Activity

The use of microalgae as sources of natural antibiotics has been extensively explored as
an alternative to conventional ones to limit microbial infections in aquaculture. Marine and
freshwater microalgae included in different taxonomic groups showed a potent bactericidal
activity against both Gram (+) and Gram (−) bacteria [10,50,52]. This activity has been
associated with the presence of several metabolites, including sulfated polysaccharides,
fatty acids, alkaloids and phenolic compounds [69,76]. For example, extracts containing
large amounts of polyunsaturated fatty acids (PUFAs) or saturated fatty acids with 14, 16 or
18 carbons (SFAs) are reported to be more effective against Gram (+) and Gram (−) bacteria,
respectively [77]. However, other studies using medicinal plant extracts enriched in SFAs
described an antibacterial activity against both bacterial types [78]. In this study, a limited
effect against the Gram (−) A. hydrophyla and a generalized antibacterial activity against the
Gram (+) M. luteus were observed. It is necessary to analyze the composition of the extracts
to understand the observed results, although there is not a sole compound responsible for
the biological activity of the extracts.

The antimicrobial activity of several groups of marine diatoms has been extensively
reported [10,20,79,80]. In the present work, the extracts from all the selected diatoms (C.
dichatoensis (E13), Nitzschia sp. (E14), Pseudo-nitzschia australis (E15) and Thalassiosira delicat-
ula (E04)) presented activity only against the Gram (+) M. luteus. This lack of bactericidal
effect against Gram (−) bacteria was also described in Chaetoceros gracilis [16]. In contrast,
other species such as C. muelleri, C. affinis, Nitzschia sp., P. pseudodelicatissima, T. rotula and T.
weissflogii showed activity against both bacterial groups [10,79–82].

Antimicrobial activities of bioactive metabolites, including shellfish toxins of dinoflag-
ellate origins, have also been reported [10,80,83,84]. Only the extracts obtained from the
dinoflagellates A. minutum (E1) and P. lima (E9) showed bactericidal effects against both
bacteria (M. luteus and A. hydrophyla). This result is in line with a strong antibacterial
activity of extracts being reported for other dinoflagellates (P. lima, Dinophysis fortii and
Gambierdiscus sp.) against several bacteria and fungi (Aspergillus niger, Penicillium funiculo-
sum, Candida rugosa, Escherichia coli, Bacillus megaterium and Staphylococcus aureus) [84,85].
The extracts obtained from H. minima (E08) and Karlodinium veneficum (E17) also showed
a higher activity against the Gram (+) M. luteus than the Gram (−) A. hydrophyla, as was
previously found for H. circularisquama and K. micrum using other bacterial species [86,87].
Only bactericidal activity against M. luteus was observed in the extract isolated from L.
polyedra (E07), although an extensive activity against both Gram (+) and Gram (−) bacteria
has been reported [88].
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In this study, antibacterial activity has also been observed in other taxonomic groups
such as Chlorophyceae (T. convolutae, E20) and Prymnesiophyceae (Emiliania huxleyi, E16),
in line with previous publications [89,90]. Interestingly, our result suggests an interest in
strains from other classes such as Dictyochophyceae, Euglenophyceae, Prasinophyceae and
Raphidophyceae as potential reservoirs for antibacterial compounds, as has been suggested
for the class Cryptophyceae [74].

3.3. Anti-Inflammatory Activity

The anti-inflammatory activity of microalgae extracts has been classically measured
in vitro using cell cultures [10,64]. Nevertheless, in the last decade, zebrafish (Danio rerio)
has emerged as an in vivo model for the screening of anti-inflammatory natural prod-
ucts [91,92]. This in vivo model has proved to be suitable for the investigation of the
kinetics of inflammation [93–95]. In the present study, a mechanical injury in the fin was
performed on zebrafish larvae to attract leukocytes to the damaged area. To our knowledge,
this is the first work using this procedure in a zebrafish model to evaluate in vivo the
anti-inflammatory activity of several marine microalgae extracts.

Several species of diatoms are known to produce molecules with anti-inflammatory
properties [10,11,13,62,81]. In this study only the extract isolated from T. delicatula (E04) led
to a decrease in the number of neutrophils at 24 h. Although previous information about
this species was not available, Asha shalini et al. [81] reported the potent anti-inflammatory
activity of a close species (T. weissflogii) when assayed in vitro.

The anti-inflammatory activity of dinoflagellates was also described in the litera-
ture [10,64], but this activity was previously reported in only two species out of twenty
tested in this study (A. minutum E01 and Ostreopsis ovata E28). Extracts from A. tamarense
(E33); D. caudata (E29); O. fattorussoi (E27); O. siamensis (E06); and P. lima (E09) showed an
anti-inflammatory activity as early as 2 h post injury. Those last two extracts (extracts 6
and 9) also maintained their anti-inflammatory state at 24 h post injury. In this context,
Lauritano et al. [10] and Asha shalini et al. [81] reported anti-inflammatory activity in
closely related dinoflagellate species such as Coolia malayensis, Heterocapsa psammophila,
Prorocentrum rhathymum and P. gracile. In this study, the anti-inflammatory activity was also
observed in extracts from other groups such as the raphidophyte H. akashiwo (E18), already
described as a beneficial anti-inflammatory agent [92], and the class Cryptophyceae which
has recently been targeted in the search for bioactive compounds [74].

3.4. Anti-Cancer Activity

Marine microalgae are a reservoir for the discovery of new anti-cancer drugs [12,96–99].
Preliminary evaluations of the anti-cancer activity of natural extracts are frequently car-
ried out the colorimetric-based MTT/MTS in vitro cell proliferation assay since this is a
reliable and economic method to evaluate whole-cell cytotoxicity. However, additional and
specific anti-cancer assays can be conducted on positive extracts [100,101]. This method-
ology has been widely used in the analysis of extracts obtained from several microalgae
groups [10,13,64,96,102–105].

In this work, anti-cancer activity was assessed in vitro on 11 extracts isolated from
dinoflagellates and diatoms using different cell lines of human cancers, including colorectal
cancer (HCT116), hepatocellular carcinoma (HepG2) and osteosarcoma (MG63). Negative
results in all these assays evidenced the lack of any anti-cancer activity, at least under
our culture settings and concentrations. This outcome is completely different to previous
publications in which anti-cancer activity has been reported in diatoms and dinoflagellates
in general [12,97] and particularly in some species closely related to those in our study, such
as Chaetoceros calcitrans [104], C. furcellatus and C. socialis [13], Nitzschia palea [106], Pseudo-
nitzschia delicatissima, Thalassiosira rotula [97,107], Coolia malayensis, Heterocapsa psammophila,
Prorocentrum rhathymum and P. gracile [10,64]. In addition to the composition of the extracts
with bioactive compounds, it is reported that the anti-cancer activity is dose-dependent
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and specific for a particular cancer cell line [10]. All those factors could partially explain
the discrepancy between the negative results in this work and those from the literature.

4. Materials and Methods
4.1. The CCVIEO Collection of Harmful Marine Microalgae

The Spanish Institute of Oceanography (IEO-CSIC, Vigo, Spain) maintains a collec-
tion of marine microalgae (CCVIEO culture collection) comprising about 250 strains and
more than 80 species of microalgae isolated from the Spanish coasts but also from other
parts of the world. The collection includes several species associated with harmful algal
blooms [108], https://vgohab.com/en/coleccion-de-cultivos/ (accessed on 1 April 2024).

A total of 33 species from 9 different classes were selected in the present study, includ-
ing strains isolated from the Atlantic coasts (e.g., Chaetoceros dichatoensis and Tetraselmis
convolutae), some of them responsible for harmful algal blooms (e.g., Alexandrium minutum
and Dinophysis acuminata). The distribution of strains in each class was as follows: Bacillar-
iophyceae (4), Chlorophyceae (1), Cryptophyceae (3), Dictyochophyceae (1), Dinophyceae
(20), Euglenophyceae (1), Prasinophyceae (1), Prymnesiophyceae (1) and Raphidophyceae
(1). The information about species and the strain codes used in the manuscript are specified
in Table 1. Strains were identified at species level whenever possible using morphological
and molecular data available from previous studies or obtained in the present work, also
detailed in Table 1.

Table 1. Microalgal strains selected in the present study and culture conditions. L1 codes for L1
medium without silicates.

Class Species
Harmful/Bloom-Forming

ID (CCVIEO)
GenBank Acc. Nº Temp (◦C) Irradiance

(µE m2s−1) Culture Medium

Bacillariophyceae

Chaetoceros dichatoensis
−/+

E13 (VGO1452)
PP565070 16 150 L1 (+Si)

Nitzschia sp.
−/−

E14 (VGO1450)
PP565095 16 150 L1 (+Si)

Pseudonitzschia australis
+/+

E15 (VGO1453)
n.a. * 16 150 L1 (+Si)

Thalassiosira delicatula
−/+

E04 (VGO1447)
PP565072 16 150 L1 (+Si)

Chlorophyceae Tetraselmis convolutae
−/−

E20 (VGO1448)
n.a. ** 16 150 L1

Cryptophyceae

Falcomonas sp.
−/−

E22 (CRY7V)
PP565085 16 150 L1

Guillardia theta
−/−

E21 (CRY22V)
PP565107 16 150 L1

Teleaulax amphioxeia
−/−

E02 (CRY13V)
PP565084 16 150 L1

Dictyochophyceae Pseudopedinella elastica
−/−

E03 (VGO1445)
PP565071 19 150 L1

Dinophyceae

Alexandrium mediterraneum
−/+

E23 (VGO1083)
n.a. 19 150 L1

Alexandrium minutum
+/+

E01 (VGO1428)
n.a. 19 150 L1

Alexandrium tamarense
−/+

E33 (VGO1085)
n.a. 19 150 L1

Coolia monotis
−/−

E10 (CM1V)
n.a. 19 150 L1

Dinophysis acuminata
+/+

E05 (VGO1411)
n.a. 19 150 L1 (/20)

Dinophysis caudata
+/−

E29 (VGO1403)
n.a. 19 150 L1 (/20)

https://vgohab.com/en/coleccion-de-cultivos/
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Table 1. Cont.

Class Species
Harmful/Bloom-Forming

ID (CCVIEO)
GenBank Acc. Nº Temp (◦C) Irradiance

(µE m2s−1) Culture Medium

Dinophyceae

Gambierdiscus australes
+/−

E32 (VGO1184)
KJ620009 25 80 K/2

Gambierdiscus caribaeus
+/−

E30 (VGO1364)
MK649659 25 80 K/2

Gambierdiscus excentricus
+/−

E31 (VGO1383)
MK649640 25 80 K/2

Gymnodinium impudicum
−/−

E12 (VGO665)
n.a. 19 150 L1

Heterocapsa minima
−/+

E08 (VGO1398)
PP565093 19 150 L1

Karlodinium veneficum
+/+

E17 (VGO1111)
PP565094 19 150 L1

Kryptoperidinium triquetrum
−/+

E25 (VGO1124)
OP256599 19 150 L1

Lingulodinium polyedra
+/+

E07 (VGO1204)
n.a. 19 150 L1

Matsuokaea loeblichii
−/−

E11 (VGO1449)
PP565092 19 150 L1

Ostreopsis fattorussoi
+/+

E27 (VGO999)
KP970827 25 80 L1

Ostreopsis cf. ovata
+/+

E28 (VGO1107)
n.a. 25 80 L1

Ostreopsis siamensis
+/+

E06 (VGO1187)
KP970826 19 150 L1

Prorocentrum hoffmannianum
+/+

E24 (VGO1283)
n.a. 25 80 L1

Prorocentrum lima
+/+

E09 (PL2V)
n.a. 19 150 L1

Euglenophyceae Eutreptiella gymnastica
−/+

E26 (VGO1444)
n.a. 19 150 L1

Prasinophyceae Pyramimonas sp.
−/+

E19 (PY1V)
n.a. 19 150 L1

Prymnesiophyceae Emiliania huxleyi
−/+

E16 (EH2V)
n.a. 19 150 L1

Raphidophyceae Heterosigma akashiwo
+/+

E18 (HA1V)
AF157385 19 150 L1

All species have been examined by light microscopy (LM) for genus/species identification in previous studies
and/or the present one. Genetic sequences not available are indicated by n.a. * Genetic data (rRNA sequencing)
was used to identify P. australis by FR, but data were lost. ** Directly isolated by FR from its invertebrate host
(Symsagittifera roscoffensis). Harmful (listed in IOC-UNESCO taxonomic reference list of harmful microalgae:
https://www.marinespecies.org/hab; accessed on 1 April 2024) and/or bloom-forming taxa are detailed by “+”
or “−” in case of accomplishing or not these criteria.

4.2. Culture and Preparation of Microalgae Extracts

The selected species were grown under specific culture parameters. The cultures
were scaled up to a final volume of 1600 mL. The culture parameters were optimized
(temperature, light and composition of culture medium) for each species (Table 1). Cultures
were grown in three culture chambers kept at 16 ◦C, 19 ◦C and 25 ◦C, under different light
intensities depending on the requirements of each strain. A photon irradiance between
80 and 150 µE m2s−1 of PAR (LED illumination), measured with a QSL-100 irradiometer
(Biospherical Instruments Inc., San Diego, CA, USA) and at a 12:12 L:D photoperiod was
used (Table 1). The cultures were centrifuged (17,000× g for 10 min) to obtain the entire
microalgae biomass. The protocol for organic extraction in freeze-dried biomass from the
studied strains followed that used for cyanobacteria by Edwards et al. [109].

https://www.marinespecies.org/hab
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Some modifications were introduced due to the lower biomass collected in the case
of dinoflagellates. The bioactive extracts were obtained from the pellets following a pro-
tocol based on H2O-methanol and CH2Cl2-methanol extraction. Briefly, cultures were
centrifuged (3000× g, 20 min, 4 ◦C) and the resulting pellets were frozen at −20 ◦C. Sam-
ples were lyophilized for 48 h, and final weights were recorded in each case. Afterwards,
20 mL of methanol was added to the extracts in 50 mL tubes, sonicated in an ultrasonic bath
(3 min) and centrifuged again (7500× g, 10 min, 4 ◦C), these steps were repeated three times.
Methanol was fully evaporated on a rotary evaporator (Büchi R-200; Flawil, Switzerland).
Then, extracts were filtered to eliminate salts using reverse phase columns (Phenomenex,
500 mg mL−1, Strata; Torrance, CA, USA). Columns were activated by adding 6 mL of
methanol 5%. The non-polar fraction was collected as follows: 6 mL of 100% methanol was
added twice and a final rinsing step with 6 mL CH2CL2 100% was carried to render a final
volume of 18 mL. Then, non-polar extracts were concentrated on a Speedvac (35 ◦C, 3 h).
Dried extracts were weighted again, immediately frozen (−20 ◦C) and, on the day after,
solubilized in DMSO to obtain a stock solution of 1 mg mL−1, which was kept at −80 ◦C
until use.

4.3. Antiviral and Antibacterial Activity of the Extracts

The antiviral activity of the extracts against the spring viraemia of carp virus (SVCV)
was assayed using the ZF4 cell line. The ZF4 cells (ATCC CRL-2050) were cultured at
28 ◦C in DMEM/F-12, HEPES (Invitrogen, GIBCO) supplemented with 10% fetal bovine
serum (FBS Invitrogen, GIBCO, Grandisland, NY, USA), penicillin (100 IU mL−1) (Invit-
rogen, GIBCO) and streptomycin (100 g mL−1) (Invitrogen, GIBCO), and buffered with
7.5% sodium bicarbonate (Invitrogen, GIBCO). The SVCV isolate 56/70 was previously
propagated on ZF4 cells and titrated in 96-well plates. The effect of the extracts on the viral
replication was assayed by mixing the SVC virus with a non-toxic final concentration of 10
and 25 µg mL−1 of each extract (1% and 2.5% final concentration of DMSO, respectively).
Cells treated with the same concentrations of DMSO and infected were used as positive
controls. The plates were incubated at 28 ◦C for 6 days and examined for cytopathic effects.
The virus dilution that causes an infection of 50% of the cell line (TCID50) was determined
using the Reed–Müench [110] method. Each extract was titrated 4 times. The percentage
of inhibition (PI) was calculated to represent the antiviral activity of the extracts using the
values of TCID50 mL−1, as follows: PI = [1 − (T/C)] × 100, with T being the viral titer of
treated cells and C the viral titer of the positive control. The antiviral activity was scored as
strong (PI > 90%), moderate (PI between 50 and 90%) and weak (PI < 50%) [69].

The antibacterial activity of the different extracts was assayed against both Gram (−)
and Gram (+) bacteria. Briefly, the Gram (−) Aeromonas hydrophyla AH-1 strain [111] and
the Gram (+) Micrococcus luteus (aka lysodeikticus) were grown on Tryptic Soy Agar (TSA,
Scharlab, Barcelona, Spain) plates at 25 ◦C. Two bacterial suspensions were prepared in
Tryptic Soy Broth (TSB, Scharlab, Barcelona, Spain) (at a final concentration of 5 × 106 and
106 CFUs mL−1 for A. hydrophyla and M. luteus, respectively) and mixed with the different
extracts to a final concentration of 10 µg mL−1 (1% final concentration of DMSO). The
bacteria were also treated with 1% DMSO and used as growth control. The bacterial growth
was analyzed in a 96-well plate by measuring the OD at 600 nm during 24 h in the GloMax
reader (Promega). The percentage of bacterial growth reduction was calculated by using
the values obtained in the control wells as 100% of bacterial growth. The experiment was
conducted 4 times.

For both assays, the normality of the data was evaluated by a Kolmogorov–Smirnov
test and a T-test was used to determinate significant differences at p > 0.05 by using the
GraphPad Prism V7 software.

4.4. Anti-Inflammatory Activity of the Extracts

The anti-inflammatory activity of the extracts was assayed in vivo using the transgenic
zebrafish larvae Tg(lyz:DsRed2) showing red fluorescent neutrophils [112]. Eggs were
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obtained by natural spawning and reared at 28 ◦C. Transection of the caudal fin was
performed on three days post-fertilization (3 dpf) larvae using a sapphire single-edge
lancet (WPI instrument) at the boundary of the notochord without injury the notochord
and the vascular tissue. Animals were previously anesthetized by immersion in water
containing 70 mg mL−1 tricaine (ethyl 3-aminobenzoate, Sigma-Aldrich). Animals were
distributed in a 96-well plate (one animal per well) and immersed in water containing the
different extracts at a final concentration of 25 µg mL−1. Control animals were treated with
water containing the same concentration of DMSO (2.5%). Ten animals were used for each
extract. Images of the injured animals were taken at 2 h, 24 h and 48 h using a fluorescent
microscope DMi8 (LEICA). The sampling points were selected to analyze the initial cell
migration and accumulation (2 h), the resolution of the inflammatory process (24 h) and
the late rearrange of neutrophils (48 h) according to the bibliography [93–95].

The number of neutrophils in the tail was counted in a 100 µm section anterior to
the injury. Multiple focal planes were manually acquired when several neutrophils were
overlapped to obtain images at a single-cell resolution. The z-stacks ensured an accurate
determination of the number of neutrophils in those thick areas of the tail. The percentage
of neutrophils was calculated by considering the number of cells observed in the control
animals at 2 h post injury as the 100% of neutrophil migration. All results were expressed as
the mean and SD. Significant differences between the data were determined by performing
a non-parametric Kruskal–Wallis test with a Dunns post-test using the GraphPad Prism V7
software. A p-value of less than 0.05 was considered statistically significant.

4.5. Cytotoxic Activity of the Extracts in Cancer Cell Lines

The human colon carcinoma cell line HCT 116 was obtained from Sigma-Aldrich (St.
Louis, MS, USA). The human hepatocellular carcinoma and osteosarcoma cell lines, HepG2
and MG-63, respectively, were obtained from the American Culture Collection (ATCC)
(Manassas, VA, USA, EUA). The cell lines were maintained in an incubator with an atmo-
sphere of 5% CO2 at 37 ◦C. HCT 116 was cultured in McCoy′s 5A medium (Sigma-Aldrich,
St. Louis, MI, USA), while HepG2 and MG-63 were cultured in Dulbecco’s modified Eagle
medium (DMEM) (Biowest SAS, Nuaillé, France). Both media were supplemented with
10% fetal bovine serum (FBS) (Biochrom, Berlin, Germany), 1% of penicillin/streptomycin
(Biochrom, Berlin, Germany) and 0.1% of amphotericin (GE Healthcare, Little Chafont,
Buckinghamshire, UK).

For the assays, the selected extracts were resuspended in dimethyl sulfoxide (DMSO)
and the cell lines were seeded at 3.3 × 104 cells mL−1 in 96-well plates and incubated for
24 h. After, the cells were exposed to 0.5% of DMSO as a solvent control (maximum solvent
concentration used), 1 µM of staurosporine (positive control) and to the concentrations of 5,
25 and 50 µg mL−1 of the extracts, for 48 h.

Cell viability was evaluated using a colorimetric assay with 3-(4,5-Dimethylthiazol-2-
yl)-2,5-Diphenyltetrazolium Bromide (MTT reagent). MTT was added to each well, to a final
concentration of 200 µg mL−1, and incubated for 4 h. The formed formazan crystals were
dissolved in 100 µL of DMSO and the absorbance was read in a multi-detection microplate
reader (Synergy HT, Biotek, Bart Frederick Shahr, Ebersberg, Germany) at 570 nm. Each
cell line was used in three independent assays. For each assay, the values of each treatment
were used to calculate the media and then normalized to the solvent control. Then, the data
were analyzed using the following equation:

Cellviability(%) =

( Absorbancesample

Absorbancesolventcontrol

)
× 100 (1)

A T-test was used to determine significant differences at p > 0.05 by using the Graph-
Pad Prism V7 software.
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5. Conclusions

Microalgae culture collections are a valuable source of bioactive molecules. Promising
bioactivities have been registered not only for dinoflagellates and diatoms but also for
species belonging to some other groups like cryptophytes and raphidophytes (summarized
in Table 2).

Table 2. Summary of the bioactivities detected in all the microalgae strains. Algal groups are
indicated in Table 1. Antiviral activity was scored as strong and moderate (mod). Only significant
antibacterial activity was indicated (yes). Eighteen extracts induced significant changes in the number
of neutrophils (yes). No cytotoxic activity was registered in the selected extracts. NA: samples
not analyzed.

Species ID Virus
SVCV

G + Bact.
M. luteus

G − Bact.
AH1 Inflammation Cytotoxicity

C. dichatoensis E13 strong yes - - -
Nitzschia sp. E14 mod yes - - -
P. australis E15 - yes - - -
T. delicatula E04 - yes - yes NA

T. convolutae E20 mod yes - - NA
Falcomonas sp. E22 strong yes - yes NA

G. theta E21 mod yes - - NA
T. amphioxeia E02 mod yes yes yes NA

P. elastica E03 - yes yes - NA

A. mediterraneum E23 strong yes - - NA
A. minutum E01 - yes yes yes NA
A. tamarense E33 mod yes - yes NA
C. monotis E10 - yes yes yes -

D. acuminata E05 mod yes - - -
D. caudata E29 mod yes - yes NA
G. australes E32 - - - yes NA
G. caribaeus E30 mod yes - - NA

G. excentricus E31 mod - - - NA
G. impudicum E12 strong yes - - -

H. minima E08 - yes - yes -
K. veneficum E17 strong yes yes - NA
K. triquetrum E25 - yes yes yes NA

L. polyedra E07 - yes - yes -
M. loeblichii E11 - yes yes yes -

O. fattorussoi E27 strong yes yes yes NA
O. cf. ovata E28 - yes -- yes NA
O. siamensis E06 - yes - yes -

P. hoffmannianum E24 mod yes - - NA
P. lima E09 - yes yes yes -

E. gymnastica E26 mod yes yes - NA

Pyramimonas sp. E19 - yes - yes NA

E. huxleyi E16 - yes - - -

H. akashiwo E18 - yes - yes NA

Future work will continue this approach towards a more exhaustive exploitation
of this CCVIEO culture collection by selecting specific strains, manipulating the culture
conditions and identifying the bioactive molecules. Additional efforts should be made to
search for new biotechnological and pharmacological applications of these algae in the
production of aquaculture species.
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