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Simple Summary: Pumpkins (Cucurbita moschata), valued for their nutritional, medicinal, and
economic contributions, are threatened by root-knot nematodes, notably Meloidogyne incognita. This
research explores the impact of M. incognita on the growth and comprehensive physiological responses
of pumpkins. The findings reveal that infection leads to significant growth impairment, as indicated
by reduced plant height and biomass along with the development of nematode-induced galls.
In addition, there is an observable oxidative stress response characterized by elevated levels of
hydrogen peroxide and an increase in antioxidant defense mechanisms such as crucial antioxidative
enzymes (superoxide dismutase, glutathione reductase, and catalase) and the accumulation of
glutathione. These responses demonstrate a dynamic interplay between the plant and the nematode,
where pumpkins mobilize robust antioxidant defenses to counteract the stress induced by nematode
infection. Despite these defense mechanisms, pumpkin’s ability to combat M. incognita raises concerns
about the agricultural production challenges posed by this pest in Cucurbita crops. The insights
gained from this study improve our understanding of plant–nematode interactions, paving the
way for strategies aimed at increasing resistance against these pests, thus promoting sustainable
agricultural practices.

Abstract: Pumpkins (Cucurbita moschata), valued for their nutritional, medicinal, and economic
significance, face threats from Meloidogyne incognita, a critical plant-parasitic nematode. This study
extensively examines the impact of M. incognita on the growth, physiological, and biochemical
responses of C. moschata. We demonstrate that M. incognita infection leads to significant growth
impairment in C. moschata, evidenced by reduced plant height and biomass, along with the significant
development of nematode-induced galls. Concurrently, a pronounced oxidative stress response was
observed, characterized by elevated levels of hydrogen peroxide and a significant increase in antiox-
idant defense mechanisms, including the upregulation of key antioxidative enzymes (superoxide
dismutase, glutathione reductase, catalase, and peroxidase) and the accumulation of glutathione.
These responses highlight a dynamic interaction between the plant and the nematode, wherein
C. moschata activates a robust antioxidant defense to mitigate the oxidative stress induced by ne-
matode infection. Despite these defenses, the persistence of growth impairment underscores the
challenge posed by M. incognita to the agricultural production of C. moschata. Our findings contribute
to the understanding of plant–nematode interactions, paving the way for the development of strate-
gies aimed at enhancing resistance in Cucurbitaceae crops against nematode pests, thus supporting
sustainable agricultural practices.

Keywords: pumpkin; Cucurbita moschata; root-knot nematodes; Meloidogyne incognita; oxidative stress;
antioxidative enzymes; plant–nematode interaction
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1. Introduction

The Cucurbitaceae family is a significant source of nutritionally and medicinally
valuable plants. In addition to their nutritional and medicinal importance, cucurbits
are esteemed for their aesthetic, cultural, medicinal, and botanical significance [1]. It
encompasses 2 subfamilies, 118 genera, and over 800 species [2,3] and has been intertwined
with human culture and dietary practices for over 12,000 years, making it an essential
part of diverse and nutritious diets worldwide [1,4,5]. Despite originating in Asia, the
Cucurbitaceae family has had numerous long-distance dispersal events, leading to its global
distribution and economic importance across various continents [6]. The characteristic
members of Cucurbitaceae include fruits, such as melon (Cucumis melo) and watermelon
(Citrullus lanatus), and major vegetables, such as cucumber (C. sativus), zucchini (Cucurbita
pepo), and pumpkin (C. maxima, C. moschata, and C. argyrosperma) [7,8]. Today, cucurbits rank
among the major fruits and vegetables grown worldwide in both indoor and open-field
settings [4,9].

Among these cucurbits, pumpkin is well-regarded as a versatile crop with significant
implications for food security and sustainable agricultural practices. Notably, pumpkins
are esteemed for their ability to produce some of the largest fruits among flowering plants
and their rich composition of essential nutrients, including a diverse array of amino acids
critical for human health [1,10,11]. These attributes make them suitable for a wide range of
applications in food and feed. In addition to their application in food and feed, pumpkin has
been historically utilized in folk medicine for managing gastrointestinal diseases [12], and
its seeds contain unsaturated fatty acids, phenolic compounds, tocopherols, and minerals,
which enhance their potential as functional ingredients [13,14]. Together, pumpkins and
their seeds offer a plethora of nutritional and medicinal benefits that can be harnessed in
various applications, from functional foods to nutraceuticals.

Pumpkins, despite their utility and nutritional value, are susceptible to various
pathogens and pests, including plant–parasitic nematodes (PPNs). Plant–parasitic nema-
todes pose a significant threat to global food security. There are approximately 4300 known
species of PPNs, accounting for 7% of the phylum Nematoda [15]. It has been reported that
PPN infection causes an annual global loss of over 157 billion dollars, making it one of the
most invasive types of diseases affecting plants [16].

Among PPNs, the root-knot nematode (RKN, Meloidogyne spp.) is one of the most
important and damaging pests in agriculture [17]. Root-knot nematodes are sedentary
endoparasitic nematodes that induce pathological changes in plant root systems [18]. These
sedentary endoparasitic nematodes establish a complex and intimate relationship with their
host plants, leading to the redifferentiation of vascular cells into large multinucleate feeding
cells for an extended period, often lasting more than one month [19]. The process of giant
cell formation involves the enlargement of cells and their conversion into multinucleate
structures through synchronous nuclear divisions without cell division. This phenomenon,
known as hypertrophy, is accompanied by hyperplasia of the surrounding root cells,
which contributes to the formation of the characteristic root galls [20]. The hypertrophied
giant cells and the hyperplastic root cells disrupt the normal architecture and function of
the plant’s vascular system. This intricate interaction between root-knot nematodes and
plant roots not only undermines the structural integrity and functionality of the plant’s
vascular system but also significantly hampers its overall health and productivity, posing a
substantial challenge to agricultural sustainability.

The widespread prevalence and diverse species of RKNs present a significant challenge
to important horticultural crops such as pumpkins, with particular species inflicting distinct
patterns of damage and stress. Comprising 98 species, RKNs affect most vascular plants
and cause significant agricultural concern [17]. The most notable species, referred to
as the four major species, include M. arenaria, M. hapla, M. javanica, and M. incognita [21].
These infestations typically result in a range of detrimental effects: yield reductions are
commonly marked by observable symptoms such as root galls, stunted plant development,
and premature wilting, which directly impact agricultural productivity [22–24]. Moreover,
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RKN infection can compromise the plant’s immune system, making it more susceptible to
secondary infections from other pathogens, further exacerbating the detrimental impact on
crop health and reducing yield [25]. This confluence of direct and indirect consequences of
RKN activity underscores the urgency for targeted research and innovative management
approaches to mitigate their pervasive impact.

An important aspect of controlling and managing RKNs in pumpkin cultivation is
understanding the interaction between RKNs and plant responses. Studies have shown
that plants activate a defense mechanism when affected by nematode pathogenesis, using
reactive oxygen species (ROS) as antimicrobial agents and signaling molecules [26–28].
However, excessive ROS can cause irreversible damage to proteins, lipids, and nucleic acids,
leading to cellular mortality [29]. To counteract these effects, plants have developed an
antioxidant system composed of enzymes and various antioxidants, including superoxide
dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) [30].
In addition, intrinsic antioxidants, such as ascorbic acid (ASC) and reduced glutathione
(GSH), play a pivotal role in neutralizing the adverse effects caused by ROS [31]. These
antioxidative defenses are critical for maintaining cellular homeostasis against damage
from RKN infection.

The understanding and assessment of the modulation of ROS activities and antiox-
idative enzymes in pumpkin–RKN interactions provide insights into potential strategies
for managing and mitigating the detrimental effects of the infection. By examining the
antioxidant response and growth impairment in C. moschata infected by M. incognita, we
aim to gain a better understanding of how the antioxidant system in plants functions in
response to oxidative stress caused by RKN infection. We investigated ROS levels, par-
ticularly focusing on the roles of ROS and the antioxidant enzymes that regulate them.
The present study provides comprehensive insights into the impact of M. incognita on
C. moschata, including analyses of growth, ROS substances, and antioxidative enzyme
activity.

2. Materials and Methods
2.1. Experimental Materials

In this study, pumpkin, Cucurbita moschata var. Er-Gu seedlings (Known-You Seed Co.,
Ltd., Kaohsiung, Taiwan), was selected as the test plant for the experiments. The test plants
were grown in a growth medium consisting of a blend of peat and vermiculite (4:1 ratio)
and maintained in a covered greenhouse. After reaching the two-leaf stage, the plants were
transplanted in 3-inch pots for mock- or Meloidogyne incognita (Mi)-inoculation. For the
Mi-inoculated group, plants were transplanted to 300 g of soil containing 3000 M. incognita
juveniles. For the mock control group, plants were transplanted in soil without M. incognita
exposure to serve as a baseline for comparison. The plants were collected at 42 days post-
inoculation (dpi) for subsequent detailed growth measurements and analysis of reactive
oxygen species (ROS) substances, and antioxidative enzyme activity.

2.2. Growth Parameter Measurements

At 42 dpi, various growth parameter measurements were taken to assess the impact of
M. incognita on C. moschata plants. These evaluations include imaging the plant phenotypes,
measuring mock- and M. incognita-inoculated plant height, root length, shoot weight, and
root weight, and assessing the average gall numbers and galling index according to Zeck’s
scale [32]. For plant height, the plant shoots were measured from the soil as the baseline.
For root length measurement, the roots of the plants were washed with running water and
imaged for subsequent processing by ImageJ software 1.53t [33]. The use of scale bars and
color palette cards ensured consistency among images. Additionally, to assess the impact
of M. incognita on C. moschata, the shoot and root sections of each plant were separated and
weighed. The number of root-knot nematode galls was counted, and the galling index of
mock- or M. incognita-inoculated plants was determined by Zeck’s scale [32] as an indicator
of infection severity. According to Zeck’s scale, a rating of 0 indicates an uninfected plant
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root system, while a rating of 10 denotes a severely damaged plant with a completely
compromised root system [32].

2.3. Evaluation of Hydrogen Peroxide (H2O2), Superoxide Radical (O2
•−), and Malondialdehyde

(MDA) Levels

The assessment of H2O2 levels was performed following a modified approach based
on a previously described method [34]. This involved utilizing the extinction coefficient of
0.28 µmol−1cm−1 to calculate its concentration. The quantification of O2

•− was adapted
from the methodology previously described [35], involving the conversion of hydroxy-
lamine to nitrate as an indicator of O2

•− presence. A standard curve was created from
varying concentrations of sodium nitrite ranging from 0 to 10 µM in order to measure
O2

•−. Lipid peroxidation was estimated by measuring malondialdehyde (MDA) levels
using a procedure that has been previously described [36]. This process included extracting
MDA using a 5% (w/v) trichloroacetic acid solution and then quantifying it through the
thiobarbituric acid reaction to determine lipid peroxidation levels accurately for further
analysis and comparison with known standards.

2.4. Analysis of Ascorbate (ASC) and Glutathione (GSH) Content

The quantification of ascorbate (ASC) levels involved a spectrophotometric approach,
utilizing the chromatic transition that occurs when ASC reduces iron from Fe3+ to Fe2+. This
Fe2+ form subsequently reacts with α,α′-dipyridyl to produce a colored complex detected
at 525 nm. Total ascorbate content was determined by first converting dehydroascorbate
(DHA) to ASC using dithiothreitol (DTT), with quantification against a standard curve of
ascorbate [37]. Subsequently, the absorbance values were used for calculation according to
Beer-Lambert law and compared with the reference standards.

For the GSH assay [38], approximately 0.1 g of plant material was processed in a 5%
(v/v) trichloroacetic acid (TCA) solution. The mixture was then centrifuged 12,000× g for
10 min at 4 ◦C to obtain a clear extract. This acidic extract was neutralized with sodium
phosphate buffer (0.4 M, pH 8.0) and divided into aliquots for total GSH and oxidized
glutathione (GSSG) measurement using an enzymatic recycling technique involving the
conversion of GSH in the presence of 5,5′-dithiobis (2-nitrobenzoic acid) and subsequent
reduction by NADPH catalyzed by glutathione reductase (GR). The absorbance readings
were taken at 412 nm wavelength. For specific GSSG determination, 2-vinylpyridine was
incorporated into the samples. Calibration was accomplished using standard solutions of
GSH and GSSG.

2.5. Antioxidative Enzyme Activity Assays

Antioxidative enzyme activities were assessed by homogenizing plant root tissues
in a 0.1 M sodium phosphate buffer (pH 7.0) using a chilled pestle and mortar. The
protein concentrations in enzyme extracts were determined using an adapted Bradford
assay [39], which is a colorimetric technique for protein quantification and concentration
determination. Briefly, a calibration curve was established using serial dilutions of high-
grade BSA to fit within the assay’s operational concentration range (125–1000 µg/mL).
For the assay, Coomassie brilliant blue reagent (Bio-Rad Laboratories Inc., Hercules, CA,
USA) (1 mL) was added to blank, BSA standard, or protein samples (20 µL in a test tube).
After thorough mixing with a vortex and a 30-min incubation at ambient temperature, the
absorbance of the mixture at 595 nm was recorded in triplicate using a spectrophotometer
(model: U-5100, Hitachi, Tokyo, Japan).

For assays involving ascorbate peroxidase (APX), the extraction medium was supple-
mented with 2 mM of ascorbate. The protocol for APX activity followed a modified version
of the previously outlined procedure [40], with each unit of activity corresponding to the
consumption of 1 nmol of ascorbate per minute under the assay conditions.

The evaluation process for glutathione reductase (GR) activity involved utilizing a
revised adaptation of the methodology reported previously [41]. One unit of activity was



Biology 2024, 13, 267 5 of 16

defined as the quantity of enzyme that catalyzes the transformation of 1 µmol of β-NADPH
per minute.

To measure superoxide dismutase (SOD) activity, we adopted a previously described
method [42], where one unit of activity was equated to the enzyme amount causing 50%
inhibition of the nitro blue tetrazolium (NBT) reduction, monitored at 560 nm, compared to
a nonenzyme-containing blank.

For catalase (CAT) activity quantification, the assay was conducted based on a previ-
ously established method [43]. One unit of activity was defined as the enzyme quantity
that decomposes 1 µmol of H2O2 per minute.

The peroxidase (POD) activity was assessed by conducting a spectrophotometric
analysis. This involved the reaction of H2O2 with guaiacol to produce the oxidized product,
tetraguaiacol, resulting in a measurable change in absorbance at the 470 nm wavelength [43].
One unit of POD activity was defined as the amount of enzyme required to facilitate the
production of 1 µmol of tetraguaiacol per minute, per milligram of protein.

2.6. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Native Gel
Enzymatic Activity Assay

Root samples (0.1 g) were meticulously homogenized in a 50 mM sodium phosphate
buffer (pH 7.0), augmented with 2 mM Na2EDTA and 1 mM phenylmethylsulfonyl fluoride
(PMSF) to inhibit protease activity. The resultant homogenate was then centrifuged at
13,000× g for 15 min at a controlled temperature of 4 ◦C to separate the supernatant, which
contained the enzymatic proteins.

The protein separation via SDS-PAGE followed the protocol previously established [44],
utilizing a 12% resolving-polyacrylamide gel. Proteins for electrophoresis were prepared
by mixing the extracted proteins (8 µg for constant protein and 45 µL for constant volume)
with bromophenol blue and glycerol, excluding sodium dodecyl sulfate (SDS) for native
PAGE applications. A 10% resolving gel was employed for subsequent analyses.

For APX activity analysis, the extraction buffer was supplemented with 2 mM ascor-
bate. APX zymography was executed at 4 ◦C using a running buffer also containing 2 mM
ascorbate. Post-electrophoresis, APX activity was visualized via staining as previously
described [45].

Peroxidase activity was assessed following the procedure described previously [46].
Briefly, the gel was rinsed with distilled water to eliminate residual running buffer, then
incubated in a staining mixture comprising 4.5 mM guaiacol and 22.5 mM H2O2 in 100 mM
phosphate buffer (pH 7.0) at room temperature (25 ◦C).

GR activity was quantified using the staining protocol described previously [47]. The
gel was stained in a solution containing 250 mM Tris-HCl (pH 7.5), 3 mM Na2EDTA,
0.4 mM NADPH, 0.68 mM 2,6-dichlorophenolindophenol (DCIP), 0.48 mM 3-(4,5-dimethyl-
2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide (MTT), and 3.4 mM GSSG. A duplicate
gel was processed without GSSG as a negative control.

The methodology for determining SOD activity was adopted from a previously re-
ported protocol [42]. The gel was first immersed in a 2.45 mM nitroblue tetrazolium (NBT)
solution for 15 min, followed by incubation in a 50 mM sodium phosphate buffer (pH 7.8)
containing 28 mM riboflavin and 28 mM tetramethylethylenediamine (TEMED) in dark
conditions for 15 min. Subsequent exposure to light for 15 min allowed for the visualization
of SOD activity. To discern SOD isoenzymes, gels were pretreated with either 8 mM KCN
or H2O2 in 50 mM sodium phosphate buffer (pH 7.0) prior to SOD staining. The staining
of proteins within the gel was conducted using Coomassie blue staining to enable the
visualization of protein bands.

3. Results
3.1. Effect of Meloidogyne incognita on Relative Growth Rate and Physiological Features of
Cucurbita moschata

Cucurbita moschata plants were infected with M. incognita to assess the impact on plant
growth and development phenotypes. At 42 days post-inoculation (dpi), it was observed
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that M. incognita-infected pumpkins exhibited significantly lower plant height compared to
mock control, as depicted in Figure 1A,B. Additionally, although no significant difference
was noted in root length between mock control and M. incognita-infected plants (Figure 1C),
the average plant fresh weight of both shoot and root for the infected plants was found to
be significantly lower compared to mock control plants (Figure 1D,E). Analysis of roots
from M. incognita-infected plants (Figure 2) revealed an average of 122 root-knot nematode
(RKN) galls per plant (Figure 2B) with a galling index score of 5.4 according to the Zeck’s
scale (Figure 2C) [32], suggesting the pronounced development of RKN symptoms at 42 dpi
in C. moschata. The results indicate that infection with M. incognita has a detrimental effect
on the growth and development of C. moschata.
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Figure 1. The impact of root-knot nematodes (RKN, Meloidogyne incognita) on the relative growth
and physiological characteristics of pumpkin (Cucurbita moschata). (A) A photograph showing the
phenotype of the C. moschata plant taken 42 days post-inoculation (dpi). Meloidogyne incognita-
inoculated plants are labeled as Mi-inoculated; the scale bar represents 5 cm. Quantification of the
average plant height (B) and the average root length (C). Quantification of the average plant shoot
weight (D) and average plant root weight (E). The values represent mean ± SE (n = 5); ** indicates
p ≤ 0.01; **** indicates p ≤ 0.0001; and ns denotes no statistical significance. The Student’s t test
compares groups as indicated.
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Figure 2. The comparative evaluation of the pumpkin (Cucurbita moschata) root system in response to
root-knot nematode (RKN, Meloidogyne incognita) inoculation. (A) Presence of RKN galls on roots seen
in C. moschata at 42 days post-inoculation (dpi). Meloidogyne incognita-inoculated plants are labeled as
Mi-inoculated; the scale bar represents 1 cm; white arrows indicate observed galls. (B) Measurement
for quantifying the number of RKN galls per plant on the roots of C. moschata at 42 dpi. The values
represent mean ± SE (n = 5); * indicates p ≤ 0.05. The Student’s t test compares groups as indicated.
(C) The severity of gall formation was assessed according to Zeck’s [32] 0–10 scale, where 0 represents
no galls, while a score of 10 indicates root necrosis attributed to M. incognita infection. The values
represent mean ± SE (n = 5); **** indicates p ≤ 0.0001. The Student’s t test compares groups
as indicated.

3.2. Investigating the Impact of Meloidogyne incognita on Hydrogen Peroxide (H2O2), Superoxide
Radical (O2

•−), and Malondialdehyde (MDA) Concentrations

In the subsequent analyses, we evaluated the impact of M. incognita on various oxida-
tive stress parameters, including hydrogen peroxide (H2O2) concentrations, the production
of superoxide radicals (O2

•−), and quantities of malondialdehyde (MDA) (Figure 3). The
results showed that the M. incognita-inoculated group had a significant 2.4-fold increase in
H2O2 levels compared to the mock control group (Figure 3A). Conversely, we found the
average O2

•− concentration was lower in the M. incognita-inoculated plants compared to
the mock control group; however, based on our analysis results (Figure 3B), this difference
did not reach statistical significance. Evaluation of MDA levels as an indicator of lipid per-
oxidation and correlation with reactive oxygen species (ROS) levels revealed no significant
difference between the mock control and M. incognita-inoculated group (Figure 3C).



Biology 2024, 13, 267 8 of 16Biology 2024, 13, x FOR PEER REVIEW 8 of 17 
 

 

 

Figure 3. The analysis of stress-related parameters, including hydrogen peroxide (H2O2) (A), super-

oxide radical (O2•−) (B), and malondialdehyde (MDA) (C) content in the roots of pumpkin (Cucurbita 

moschata) under mock or Meloidogyne incognita-inoculated (Mi-inoculated) conditions at 42 days 

post-inoculation. The values represent mean  ±  SE (n  =  5); **** indicates p  ≤  0.0001; and ns denotes 

no statistical significance. The Student’s t test compares groups as indicated. 

3.3. Effect of Meloidogyne incognita on Ascorbate (ASC) and Glutathione (GSH) Levels in Cu-

curbita moschata 

We conducted further analysis to examine the impact of RKN M. incognita on antiox-

idant molecules within C. moschata, specifically targeting ascorbate (ASC) and glutathione 

(GSH) concentrations. Our observations at 42 dpi showed that although there was an in-

crease in the levels of both total ASC and total GSH (Figure 4), a statistically significant 

elevation (2.2-fold) of total GSH levels was only found in the M. incognita-inoculated 

group compared to the mock control group (Figure 4C). 

Figure 3. The analysis of stress-related parameters, including hydrogen peroxide (H2O2) (A), super-
oxide radical (O2

•−) (B), and malondialdehyde (MDA) (C) content in the roots of pumpkin (Cucurbita
moschata) under mock or Meloidogyne incognita-inoculated (Mi-inoculated) conditions at 42 days
post-inoculation. The values represent mean ± SE (n = 5); **** indicates p ≤ 0.0001; and ns denotes
no statistical significance. The Student’s t test compares groups as indicated.

3.3. Effect of Meloidogyne incognita on Ascorbate (ASC) and Glutathione (GSH) Levels in
Cucurbita moschata

We conducted further analysis to examine the impact of RKN M. incognita on antioxi-
dant molecules within C. moschata, specifically targeting ascorbate (ASC) and glutathione
(GSH) concentrations. Our observations at 42 dpi showed that although there was an
increase in the levels of both total ASC and total GSH (Figure 4), a statistically significant
elevation (2.2-fold) of total GSH levels was only found in the M. incognita-inoculated group
compared to the mock control group (Figure 4C).
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Figure 4. Effects of Meloidogyne incognita on the levels of total ascorbate (A), ASC (B), total glu-
tathione (C), and GSSG (D) in Cucurbita moschata. Meloidogyne incognita-inoculated plants are labeled
as Mi-inoculated. The values represent mean ± SE (n = 5); *** indicates p ≤ 0.001; and ns denotes
no statistical significance. The Student’s t test compares groups as indicated.
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3.4. Assessment of Protein Levels and Antioxidative Enzyme Activity in Cucurbita moschata
Post-Inoculation with Meloidogyne incognita

We examined the total protein concentration and specific activities of antioxidative
enzymes, including superoxide dismutase (SOD), glutathione reductase (GR), catalase
(CAT), and peroxidase (POD), in C. moschata exposed to M. incognita infection at 42 dpi
(Figure 5). Our analysis showed that although a 2.0-fold increase in protein content was ob-
served in the M. incognita-infected group compared to the mock control group (Figure 5A),
the GR activity in C. moschata was significantly lower (0.69-fold) compared to the mock
control (Figure 5C). In addition, following the inoculation with M. incognita, APX exhibited
a decrease of 0.63-fold compared to the mock control (Figure 5D). No significant difference
was observed for SOD (Figure 5B), CAT (Figure 5E), and POD (Figure 5F). Conversely,
when normalizing the enzyme activities to fresh weight, the overall SOD activity in the
M. incognita-inoculated group was significantly enhanced, with a 1.7-fold increase com-
pared to the mock control (Figure S1A). Similarly, glutathione reductase (GR) activity in
C. moschata was significantly higher following inoculation with M. incognita, exhibiting
a 1.6-fold increase compared to the control (Figure S1B). CAT and POD activities also
increased in response to M. incognita by 1.9-fold and 1.6-fold, respectively, relative to the
mock control (Figure S1D,E).
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peroxidase (APX) (D), catalase (CAT) (E), and peroxidase (POD) (F) in Cucurbita moschata, normalized
to protein content. Meloidogyne incognita-inoculated plants are labeled as Mi-inoculated. The values
represent mean ± SE (n = 5); * indicates p ≤ 0.05; *** indicates p ≤ 0.001; and ns denotes no
statistical significance. The Student’s t test compares groups as indicated.

3.5. Assessment of Antioxidative Enzyme Isoforms in Cucurbita moschata via Native Gel Activity
Assay following Meloidogyne incognita Inoculation

We subsequently examined the protein profiles by using sodium dodecyl-sulfate poly-
acrylamide gel electrophoresis (SDS-PAGE). The results indicated that the protein patterns
between M. incognita-inoculated and mock control groups showed similar patterns (Figure 6).
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Figure 6. Comparative SDS-PAGE analysis of protein profiles from Cucurbita moschata subjected
to mock treatment and Meloidogyne incognita infection. 1 represents proteins from mock-treated
plants, and 2 represents proteins from M. incognita-infected plants. Constant protein or constant
volume indicates whether the loading of protein samples is normalized to total protein (8 µg) or
volume (45 µL).

To examine the antioxidative enzyme isoforms within C. moschata, native polyacry-
lamide gel electrophoresis (PAGE) was employed to discern the presence of SOD, GR,
APX, CAT, and POD variants (Figure 7). Analysis revealed the existence of four distinct
SOD isoforms in C. moschata (Figure 7A). Treatment with specific inhibitors enabled the
differentiation of these isoforms, identifying them as three copper-zinc SODs (CuZnSODs)
and one manganese SOD (MnSOD). Iron SOD (FeSOD) was absent in C. moschata. For GR,
a single band was discernible (Figure 7B), while in terms of APX isoforms, two variants
(APX-I and APX-II) were detected (Figure 7C). Furthermore, a single band was observed
for CAT activity (Figure 7D). POD isoform analysis, conducted with guaiacol and H2O2,
revealed three POD variants in C. moschata (Figure 7E). Equal protein loading across all
lanes was verified (Figure 7F).



Biology 2024, 13, 267 11 of 16Biology 2024, 13, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 7. Native polyacrylamide gel (PAGE) analysis of antioxidative enzyme activities in Cucurbita mos-

chata infected by Meloidogyne incognita. A total of 8 μg of proteins was loaded in each lane. (A) Superoxide 

dismutase (SOD) isozymes, (B) glutathione reductase (GR) isozymes, (C) ascorbate peroxidase (APX) 

isozyme, (D) catalase (CAT) isozyme, (E) peroxidase (POD) isozymes, and (F) Coomassie Brilliant blue 

staining (CBB) for protein quantification. 1, mock; 2, Meloidogyne incognita (Mi)-inoculated. I, II, and III 

indicate different isoforms. 

4. Discussion 

Pumpkins (C. moschata) and their derivatives are important for their nutritional, me-

dicinal, and economic values. However, PPN continues to pose a significant constraint on 

agricultural systems. RKNs, belonging to the genus Meloidogyne, are one of the most im-

portant groups of PPNs worldwide. The present study delineates the physiological and 

biochemical responses of C. moschata to M. incognita infection. Our findings reveal that M. 

incognita triggers significant alterations in growth parameters, oxidative stress indicators, 

and antioxidative defense responses, illuminating the intricate interplay between C. mos-

chata physiology and M. incognita-induced stress adaptations. 

Cucurbit crops are susceptible to root-knot nematodes. A previous evaluation of six 

cucurbit crops (squash, cucumber, cantaloupe, watermelon, smooth luffa, and angled 

luffa) revealed that among the different Meloidogyne spp. (M. enterolobii, M. floridensis, M. 

hapla, M. incognita, and M. javanica), M. incognita was found to be more damaging [48]. 

This pathogen is documented to exert detrimental effects across cucurbits, with pumpkins 

being notably vulnerable compared to cucumber, melon, squash, and watermelon [49]. 

Our investigation into the infection of C. moschata by M. incognita revealed significant im-

pairments in growth, as evidenced by marked reductions in plant height and fresh weight, 

along with notable galling indices (Figures 1 and 2). These findings are consistent with 

previous reports, further substantiating the detrimental effects of nematode infections on 

plant vigor and productivity [50–53]. At higher nematode inoculation levels compared to 

this study, the galling indices of different susceptible C. moschata genotypes could reach 

8.0 to 8.25 [54]. Therefore, implementing timely management practices to counter nema-

tode exposure is crucial in mitigating their detrimental impacts, emphasizing the im-

portance of strategic interventions in preserving cucurbit crop health and productivity 

[53]. 

The exploration of genetic resistance to RKN across cucurbit crops highlights a criti-

cal gap in current agricultural practices. Of the cucurbits, some zucchinis (C. pepo) show 

resistance to M. incognita, exhibiting a Zeck index score of 4.3 [55]. Nonetheless, the genetic 

basis of this resistance remains unknown and may be of a quantitative nature rather than 

governed by a major dominant gene [55,56]. In an evaluation using recombinant inbred 

lines (RIL) from specific crosses, we identified zucchini lines that significantly inhibit M. 

1 2 1 2 1 2 1 2 1 2 1 2

(A) SOD (B) GR (C) APX (D) CAT (E) POD (F) CBB

CuZnSOD3

MnSOD

CuZnSOD2

CuZnSOD1

II

I

II

I

III

Figure 7. Native polyacrylamide gel (PAGE) analysis of antioxidative enzyme activities in Cucurbita
moschata infected by Meloidogyne incognita. A total of 8 µg of proteins was loaded in each lane.
(A) Superoxide dismutase (SOD) isozymes, (B) glutathione reductase (GR) isozymes, (C) ascor-
bate peroxidase (APX) isozyme, (D) catalase (CAT) isozyme, (E) peroxidase (POD) isozymes, and
(F) Coomassie Brilliant blue staining (CBB) for protein quantification. 1, mock; 2, Meloidogyne incognita
(Mi)-inoculated. I, II, and III indicate different isoforms.

4. Discussion

Pumpkins (C. moschata) and their derivatives are important for their nutritional, medic-
inal, and economic values. However, PPN continues to pose a significant constraint on
agricultural systems. RKNs, belonging to the genus Meloidogyne, are one of the most im-
portant groups of PPNs worldwide. The present study delineates the physiological and
biochemical responses of C. moschata to M. incognita infection. Our findings reveal that
M. incognita triggers significant alterations in growth parameters, oxidative stress indi-
cators, and antioxidative defense responses, illuminating the intricate interplay between
C. moschata physiology and M. incognita-induced stress adaptations.

Cucurbit crops are susceptible to root-knot nematodes. A previous evaluation of
six cucurbit crops (squash, cucumber, cantaloupe, watermelon, smooth luffa, and angled
luffa) revealed that among the different Meloidogyne spp. (M. enterolobii, M. floridensis, M.
hapla, M. incognita, and M. javanica), M. incognita was found to be more damaging [48].
This pathogen is documented to exert detrimental effects across cucurbits, with pumpkins
being notably vulnerable compared to cucumber, melon, squash, and watermelon [49].
Our investigation into the infection of C. moschata by M. incognita revealed significant
impairments in growth, as evidenced by marked reductions in plant height and fresh
weight, along with notable galling indices (Figures 1 and 2). These findings are consistent
with previous reports, further substantiating the detrimental effects of nematode infections
on plant vigor and productivity [50–53]. At higher nematode inoculation levels compared
to this study, the galling indices of different susceptible C. moschata genotypes could reach
8.0 to 8.25 [54]. Therefore, implementing timely management practices to counter nematode
exposure is crucial in mitigating their detrimental impacts, emphasizing the importance of
strategic interventions in preserving cucurbit crop health and productivity [53].

The exploration of genetic resistance to RKN across cucurbit crops highlights a critical
gap in current agricultural practices. Of the cucurbits, some zucchinis (C. pepo) show
resistance to M. incognita, exhibiting a Zeck index score of 4.3 [55]. Nonetheless, the genetic
basis of this resistance remains unknown and may be of a quantitative nature rather than
governed by a major dominant gene [55,56]. In an evaluation using recombinant inbred
lines (RIL) from specific crosses, we identified zucchini lines that significantly inhibit
M. incognita reproduction by over 90%. However, these RILs remained susceptible hosts for
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M. javanica [57]. Currently, a recessive gene (mj) from C. sativus var. hardwickii provides
limited resistance, but it is not present in commercial cultivars [58,59]. In various plant
species other than cucurbits, genes that confer resistance to nematodes, particularly those
triggering the hypersensitive response (HR) in root cells, have been identified. The Mi
gene in tomatoes is a well-characterized example, providing resistance to three species of
RKN [60]. Similar early HR responses are seen in coffee with Mex-1-mediated resistance [61],
in black pepper with Me3 [62], and in soybeans during incompatible interactions [63]. While
genetic resistance to root-knot nematodes in cucurbit crops, including pumpkins, has not
been widely identified [50], evaluations of root-stock candidates for grafting, such as
kumati kai, African horned cucumber, and pumpkin, have exhibited enhanced resistance
to RKN [64]. This insight highlights the potential of integrating genetic resistance into
cucurbit breeding programs. The identification and utilization of RKN-resistant rootstocks
for grafting could pave the way for innovative strategies to combat RKN infestations,
thereby enhancing the resilience and productivity of cucurbit crops.

The oxidative stress response of C. moschata upon nematode infection presents a so-
phisticated biological phenomenon that underscores the complexity of plant–pathogen
interactions. Our analysis demonstrates a significant increase in H2O2 levels, indicative of
the activation of the plant’s defense responses, while levels of O2

•− and the marker of lipid
peroxidation, MDA, did not exhibit significant deviations from the control (Figure 3). In
the susceptible tomato cultivar Solanum lycopersicum L. cv. Zheza 205, it was shown that
M. incognita infection led to an increase in MDA levels [65], while detection in the leaves
from separate research showed that MDA levels decreased in the leaves infected with M.
javanica [66]. This suggests a targeted activation of ROS signaling pathways, potentially
reflecting a sophisticated antioxidative response rather than a generalized oxidative stress
reaction [67]. ROS, though causing extensive cellular damage, also play a pivotal role in
defense signaling and the establishment of microbial antagonism. The observed increase
in H2O2 levels aligns with the plant’s defense arsenal, which is crucial for countering
pathogenic invasions [68]. Additionally, studies on tomatoes infected with M. incognita
have shown that furostanol glycosides from Dioscorea deltoidea can mitigate oxidative stress
by modulating lipid peroxidation, suggesting a potential avenue for enhancing C. moschata’s
resilience to nematode-induced stress through similar biochemical mechanisms [69]. The
specific modulation of ROS observed, characterized by an increase in H2O2 without a corre-
sponding rise in O2

•− and MDA levels (Figure 3), implies a selective antioxidative strategy
possibly orchestrated by the plant to mitigate the oxidative stress while still mobilizing
defense mechanisms against the nematode threat. This selective ROS response aligns with
the broader understanding of ROS as dual-function molecules within biological systems,
acting both as signaling molecules that activate defense responses against pathogens, in-
cluding programmed cell death, and as hypersensitive responses to contain and neutralize
pathogen spread at the infection site [70,71].

In the intricate interaction between plants and PPNs, our analysis has illuminated a
crucial component of plant defense mechanisms, as evidenced by the observed increase in
GSH levels (Figure 4). This elevation in GSH may be indicative of an adaptive response
by the plant to counteract heightened oxidative stress. Glutathione, a pivotal antioxidant,
plays an essential role in maintaining cellular redox homeostasis, thereby safeguarding the
plant cell from oxidative damage induced by nematode infection [72,73]. Interestingly, the
ASC levels did not exhibit a significant change, suggesting a nuanced selective upregulation
of components within the plant’s antioxidant defense system in response to nematode
attack. This differential regulation suggests a sophisticated defense strategy where plants
may prioritize the activation of specific antioxidants based on the nature of the stress
encountered. The complex scenario underscores the ASC–GSH pathway’s significance in
redox regulation during plant–PPN interactions.

Plant antioxidative enzymes play a crucial role in the interaction between root-knot
nematodes and plants. Extensive research into plant–nematode interactions has high-
lighted the pivotal role of antioxidative enzymes [74]. These systems are integral to the
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physiological responses of plants during pathogenic incursion and similarly critical for
nematode endurance in conditions characterized by elevated ROS levels, which can lead
to oxidative stress [75]. Enzymes such as SOD, POD, and CAT, etc. remove free radicals
and activated oxygen species, which are essential for plant defense mechanisms during
pathogen attacks [76]. Studies have shown that resistant genotypes of plants infected
with root-knot nematodes exhibit higher SOD activity compared to susceptible genotypes,
indicating a protective response against nematode infection, whereas CAT activity in resis-
tant genotypes decreases upon infection [77–79]. Conversely, CAT activity was shown to
be elevated upon M. javanica infection [66], suggesting variances in antioxidant enzyme
responses between resistant and susceptible plants. In a study comparing sweet potato
cultivars resistant to and susceptible to RKNs, it was found that although both resistant and
susceptible cultivars demonstrated an increase in SOD activity, resulting in elevated H2O2
levels, the susceptible cultivars exhibited higher CAT activity, leading to reduced H2O2
levels in the initial stages of infection. However, as the infection progressed, H2O2 levels in
these susceptible cultivars increased [75]. Interestingly, in our study, while specific activities
of GR and APX are significantly reduced in groups infected with M. incognita compared
to mock controls (Figure 5), the activities of SOD, GR, CAT, and POD, when quantified
per fresh weight (Figure S1), are significantly induced. A notable 2.0-fold increase was
observed in protein levels of M. incognita-infected pumpkins compared to the mock control
group (Figure 5A). Whereas tomato leaves showed a lower protein concentration upon M.
javanica infection [66], similar observations were made in studies on bitter gourd, where a
substantially higher rate of protein synthesis during infection was noted [80]. This global
protein enhancement may reflect the activation of other defense pathways or a generalized
increase in protein synthesis as part of the plant’s stress response [67]. Protein profile
assessments via SDS-PAGE analysis revealed the presence of variances in SOD, APX, and
POD (Figure 7). However, quantification of the different isoforms would require further
analysis utilizing methods such as fast atom bombardment, electrospray ionization, or
matrix-assisted laser desorption and ionization.

5. Conclusions

Our study illuminates the physiological responses of C. moschata to M. incognita
infection, characterized by stunted growth and an orchestrated increase in antioxidant
defense. These insights not only provide a foundation for understanding the biochemical
landscape of nematode–plant interactions but also highlight potential targets for enhancing
nematode resistance in Cucurbitaceae crops. Research on modulating ROS activities and
antioxidative enzymes in plant–nematode interactions provides a basis for developing
innovative approaches to enhance plant defenses against RKNs, leading to sustainable
management of nematode diseases in agriculture. The variability influenced by the type
of nematode, plant species, and cultivar’s resistance level underscores the complexity of
this interaction, while unraveling these dynamics offers valuable insights into effective
strategies for managing nematode infestations, potentially leading to more resilient crop
varieties and improved yield outcomes.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biology13040267/s1. Figure S1: The effect of Meloidogyne
incognita on antioxidative enzyme activities in Cucurbita moschata.
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