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Simple Summary: Exploring the interactions between organophosphorus flame retardants (OPFRs),
microplastics, and freshwater organisms is essential for comprehending the dynamics within fresh-
water ecosystems to anticipate the potential impacts of organic pollutants and plastic particles.
To address this need, the current study examined the exposure effects of 10 mg L−1 of flame-
retardant aluminium diethylphosphinate (ALPI), 10 µg mg−1

liver of microplastics polyurethane (PU),
and their combination on the freshwater planarian Girardia tigrina. Twenty-four-hour exposure of
G. tigrina to both ALPI and PU resulted in a sequential effect reflected in a significant reduction in
locomotor activity, i.e., exposure may involve a combination of direct neurotoxic effects and the
indirect energetic costs associated with the adaptive responses to mitigate the adverse effects. Other
biochemical responses, e.g., oxidative stress and metabolic responses, remained unaffected compared
to control. Incorporating behavioural indicators into toxicological assays enhances the predictive
power of these assessments, enabling a more accurate evaluation of the ecological consequences of
pollutant exposure. This integrated approach not only improves our understanding of the complex
interactions between organisms and their environment, but also informs more effective strategies for
mitigating the detrimental effects of mixtures of pollutants on freshwater ecosystems.

Abstract: Understanding the interplay among organophosphorus flame retardants (OPFRs), mi-
croplastics, and freshwater organisms is crucial for unravelling the dynamics within freshwater
environments and foreseeing the potential impacts of organic pollutants and plastic contamination.
For that purpose, the present research assessed the exposure impact of 10 mg L−1 flame-retardant
aluminium diethylphosphinate (ALPI), 10 µg mg−1

liver microplastics polyurethane (PU), and the
combination of ALPI and PU on the freshwater planarian Girardia tigrina. The exposure to both
ALPI and PU revealed a sequential effect, i.e., a decrease in locomotor activity, while oxidative stress
biomarkers (total glutathione, catalase, glutathione S-transferase, lipid peroxidation) and metabolic
responses (cholinesterase activity, electron transport system, and lactate dehydrogenase) remained
unaffected. Despite this fact, it was possible to observe that the range of physiological responses in
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exposed organisms varied, in particular in the cases of the electron transport system, cholinesterase
activity, glutathione S-transferase, catalase, and levels of total glutathione and proteins, showing
that the energetic costs for detoxification and antioxidant capacity might be causing a lesser amount
of energy allocated for the planarian activity. By examining the physiological, behavioural, and
ecological responses of planarians to these pollutants, insights can be gained into broader ecosystem-
level effects and inform strategies for mitigating environmental risks associated with OPFRs and
microplastic pollution in freshwater environments.

Keywords: aluminium diethylphosphinate; microplastics; organic pollutants; behavioural endpoints;
molecular biomarkers

1. Introduction

In recent years, the proliferation of anthropogenic chemicals and materials has brought
about growing concerns regarding their impact on the environment and living organ-
isms [1]. Among these concerns are the widespread use of organophosphorus flame
retardants (OPFRs) and the ubiquitous presence of microplastics in aquatic ecosystems [2].
While OPFRs and microplastics can each independently induce adverse effects on biota,
their combined presence presents substantial ecological risks. Furthermore, most commer-
cially available microplastic (polyurethane) may contain OPFR as additives. Such additives,
however, in polyurethane or other polymers designed for thermal stability and heat resis-
tance, might not be chemically bonded to these polymers, and may leach to the surrounding
environment [3]. OPFRs have been detected in freshwaters and wastewaters [4]; therefore,
comprehending their interactions with freshwater organisms, such as planaria, is essential
for evaluating their environmental impacts [1,2]. OPFRs are a class of chemicals commonly
added to a variety of consumer products and materials to reduce their flammability that can
be found in furniture, building materials, textiles, floor polishes, coatings, epoxy resins and
engineering thermoplastics, and, as in [5], polyurethane plastics used as insulation foams
and various products related to furniture, building and electronics [6]. While effective at
preventing fires, OPFRs are often not chemically bound to these products and materials
and can gradually leach out, being detected in various environmental compartments, par-
ticularly in water bodies, where they can accumulate and persist due to their chemical
properties. Concerns over the potential adverse effects of OPFRs on aquatic organisms
have prompted extensive research into their environmental fate, toxicity, and ecological
impacts [5,7]. Similarly, microplastics, plastic particles measuring less than five mm in size,
have emerged as a global environmental concern [8]. These particles originate from the
breakdown of larger plastic items or are intentionally manufactured for use in products
such as personal care items, e.g., exfoliating scrubs, cosmetics, hair care products, and
industrial abrasives, e.g., sandblasting materials, polishing compounds, and composite
materials [9,10]. Microplastics are pervasive in freshwater environments worldwide, posing
risks to aquatic organisms through ingestion, physical harm, and the release of associated
chemical additives and contaminants [8].

Understanding the interactions between OPFRs, microplastics, and freshwater biota
is essential for elucidating the complex dynamics within freshwater ecosystems and pre-
dicting the potential long-term consequences of chemical and plastic pollution [11]. The
impact of microplastics on the availability of environmental pollutants should not be un-
derestimated, given that their influence has been shown to be significant. It is crucial to
analyse diverse scenarios to extract precise insights into the ecotoxicological implications
of the “Trojan horse” effect of microplastics, i.e., microplastics can act as a vector for the
uptake of pollutants to aquatic organisms [12]. Additionally, it is important to consider
that the presence of microplastics may also heighten the availability of emerging pollutants
such as flame-retardant compounds ([13] and references therein).
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Freshwater planaria serve as valuable indicators of environmental quality and are
frequently used in ecotoxicology studies to assess the effects of contaminants on aquatic
organisms [14]. Employing freshwater planarians in toxicological research shows consider-
able potential. These organisms are frequently utilised to investigate the toxic effects of
xenobiotic compounds, particularly those stemming from human activities. Additionally,
freshwater planarians have been proposed as bioindicators of freshwater environment
quality as is reflected in their sensitivity to environmental stressors and relatively sim-
ple biology [15]. Due to their adaptability to laboratory culturing conditions, freshwater
planarians are highly suitable non-target organisms for investigating sub-lethal effects of
contaminants across a broad spectrum of endpoints. These may include regeneration, loco-
motion, feeding, bioaccumulation, and biochemical parameters, among others [16]. Since
planarians are small-sized predators commonly found in many freshwater systems [17],
they can be excellent model organisms to be used in ecotoxicological research. Planari-
ans are highly sensitive to changes in their environment, including exposure to various
chemical pollutants and toxins [15]. They can serve as reliable indicators of environmental
contamination because their physiological responses to toxic substances can be readily
observed and measured. Planarians exhibit various behaviours that can be affected by
exposure to toxic pollutants, such as changes in locomotion, feeding, and response to
stimuli. These behavioural changes can serve as sensitive indicators of sublethal toxic-
ity [15,16]. Therefore, planarians are ideal model organisms to assess the direct and indirect
effects of pollutants, e.g., OPFR and/or microplastics, along trophic chains; thus, they hold
great potential as bioindicators of the ecological integrity of freshwaters. Also, freshwater
planarians are useful model species in behavioural and biomedical studies as they are easily
maintained in the laboratory and display specific behavioural responses to psychoactive
substances. Moreover, planarians are relatively easy to handle and maintain in laboratory
conditions. They can be cultured in controlled environments and their behaviours, growth
rates, and reproductive cycles can be closely monitored over time [15,18]. Planarians are
well-characterised animal models in neurobiology research and their nervous system shares
features with vertebrates in terms of cell morphology and physiology [19].

Research conducted on planarians has documented the uptake of polyethylene mi-
crospheres and polyethylene terephthalate microfibers. These microplastics were found in
concentrations ranging from 12 to 60 µg mg−1 in contaminated food sources, particularly
liver, without observable alterations in their feeding behaviour, food consumption, or
regenerative capabilities [20]. However, this exposure led to a significant reduction in the
thickness of the gut epithelium and the lipid content of enterocytes, accompanied by apop-
totic cell death induction and a decrease in growth rate [20]. The exposure of planarians
to polystyrene microspheres at concentrations of 10, 50, and 100 µg mg−1 in liver tissue
resulted in a notable decrease in both body and blastema, i.e., the regenerative area with
fast proliferation of tissue due to differentiation of neoblasts triggered by physical injury.
This decline indicated a delay in growth and regeneration processes [21]. Concurrently, the
proliferation and differentiation of stem cells were hindered, and there was a decrease in the
proportion of mitotic stem cells [21]. Additionally, polystyrene microspheres appeared to
induce oxidative stress in planarians, as evidenced by significant alterations in the activity
of antioxidant enzymes, e.g., glutathione S-transferase and catalase [22].

In the present research, we assessed the 24 h exposure impact of organophospho-
rus flame-retardant aluminium diethylphosphinate, polyurethane microplastic particles,
and their combination on the freshwater planarian Girardia tigrina. The primary aim of
our investigation was to examine the repercussions of individual and combined acute
exposure to aluminium diethylphosphinate as well as polyurethane microplastic particles
ingested by freshwater planarians (G. tigrina) through the consumption of bovine liver.
Morphological, behavioural, metabolic, and biochemical endpoints at sub-lethal levels
were determined. In particular, we evaluated the weight, length, and locomotor activity of
planarians as biomechanical parameters, as well as the effects on detoxification (glutathione
S-transferase), antioxidant capacity (level of total glutathione and activity of catalase),
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oxidative stress (level of lipid peroxidation), aerobic (electron transport system activity)
and anaerobic (lactate dehydrogenase) consumption of energy, and levels of protein and
acetylcholinesterase activity as a proxy of activity and neurotoxicity biomarker.

2. Materials and Methods
2.1. Chemicals

Spherical aliphatic polyurethane (PU) microplastics are characterised by their unmodi-
fied and non-stained state with fluorescent dyes, presenting as a white powder with no
discernible odour and exhibiting a density of 1.05 g cc−1 at 25 ◦C. These PU microplastic
particles have an average size ranging between 7 and 9 µm, with a maximum size of
31 µm. Aluminium diethylphosphinate (ALPI, CAS number 225789–38–8, MW 390.27)
was donated by Clariant (trade name of Exolit® OP 1230) (Clariant, Germany). ALPI
(10 mg L−1) was prepared in commercial natural water (Table 1). PU microplastics, in
certain forms or formulation, are naturally quite inflammable since they are one of the
polymer types that heavily rely on the addition of flame retardants. ALPI, on the other
hand, is a flame retardant used in specific forms and formulations of PU.

Table 1. Chemical parameters of commercial natural water in which planarians, G. tigrina, were kept
during the exposure experiment under controlled conditions.

Parameter Concentration (mg L−1)

Silicon dioxide, SiO2 16 ± 10
Hydrocarbonate ions, HCO3

− 11.7 ± 0.60
Chloride ions, Cl− 2.9 ± 0.20
Sodium ions, Na+ 5.2 ± 0.20
Calcium ions, Ca2+ 1.3 ± 0.10

2.2. Test Organism

The planarians, G. tigrina, were maintained at the Faculty of Sciences, University of
Lisbon (Lisbon, Portugal), since 2019. Planarians were kept under controlled conditions
using commercial natural water (pH 6.01 ± 1) with specific composition parameters to
ensure that the planarians have access to essential minerals and nutrients as well as stable
pH conditions necessary for their growth, development, and overall homeostasis (Table 1).
The water was aerated and maintained at 22 ± 1 ◦C in a dark environment. Seeing as
exposure to prolonged light can disrupt their natural behaviours, including feeding and
movement patterns, the planarians were kept in a dark environment to mimic their natural
habitat conditions and to minimise stress. Planarians were fed with bovine liver ad libitum
twice a week. Organisms ranging from 10 to 14 mm in length were selected for all the
experimental procedures after a fasting period of seven days. The planarians used (n = 40
in total) were in good condition without lesions and changes in their locomotor behaviour
in response to light.

2.3. Exposure to Phosphorous Flame Retardant and Polyurethane

Planarians were divided into four glass recipients (n = 10 per recipient) containing
40 mL of commercial natural water previously detailed. Two groups of 10 planarians were
fed with 10 mg of homogenised bovine liver for 5 h in dark conditions at 22.00 ± 1 ◦C. The
other two groups were fed with 10 mg homogenised bovine liver containing
10 µg mg−1

liver of polyurethane (PU) particles in the size range of 3–5 µm during 5 h
in dark conditions at 22.00 ± 1 ◦C. After the feeding period, the remaining liver was re-
moved. PU particles used in this study remain unchanged and unstained. The size range
of the plastic particles was selected based on the size of the particles ingested by planarians
in previous research works [20,21].

One of the two groups fed with liver only were exposed during 24 h to water only, i.e.,
the control group, and the second group was exposed to 10 mg L−1 organophosphorus
flame-retardant aluminium diethylphosphinate (ALPI) for the same period (referred to
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as ALPI treatment [23]). Moreover, two groups of planarians fed with liver containing
PU particles were exposed, during 24 h, to water only to assess the effects of the PU
particles present in the diet (referred to as PU treatment [24]) and to 10 mg L−1 ALPI
(referred to as ALPI + PU treatment) to assess the effects of ALPI in planarians fed with PU
particles. After the feeding period, the remaining liver was removed and the water was
completely renewed.

2.4. Biomechanical Response

Following the feeding period (5 h) and the exposure period (24 h), the locomotor
velocity, body mass, and body weight of planarians of each group were individually
assessed. Changes in locomotor velocity, body mass, and weight can reflect physiological
responses, metabolic changes, or nutritional effects due to toxic exposure. The locomotor
activity was determined in a separate glass container with a diameter of 55 cm. This
container was positioned on a sheet of millimetre paper with grid lines spaced accurately to
0.5 cm. A small volume of natural commercial water was carefully regulated to facilitate the
smooth locomotion of the planarians while facilitating accurate observation and recording
of their movements. Planarians were individually positioned in the centre of the container
and distance was recorded in video over a 3 min period. The number of grid lines crossed
and re-crossed by each planarian was observed on video, allowing for the determination
of the locomotor velocity (crossed gridlines per min) for each individual. Subsequently,
10 planarians of each group were individually placed in 2 mL microtubes and stored
at −80 ◦C for sample preparation. Variability in locomotor velocity measurements was
controlled using consistent observation periods and tracking methods as described, and
variability in body mass and weight measurements was minimised using precision scales
and standardised procedures for weighing planarians.

2.5. Sample Preparation

Each sample was prepared by placing one planarian into a microtube along with 8
small spheres. Ultra-pure water (1000 µL) was added to each microtube. The samples
were then homogenised using a Tissue Lyser set to 30 Hz for 2 + 2 min. Subsequent to
homogenisation, 1000 µL of ultra-pure water was added for the final volume of 2000 µL.
Samples were centrifuged at 1000× g for 5 min at 4 ◦C. Pellet was discarded, and the super-
natant was divided into aliquots. In the aliquot designated for lipid peroxidation analysis,
BHT (2,6-Di-tert-butyl-4-methylphenol (BHT) diluted with 4% methanol was added into a
sample. For the aliquots intended for electron transport system determination, a solution
comprising Tris-(hydroxymethyl)-aminomethane (Tris base), polyvinylpyrrolidone (PVP),
MgSO4, and Triton X-100 was added. Following aliquotation and homogenisation, the
samples were promptly stored at −80 ◦C until biomarker analysis.

2.6. Oxidative Stress

Homogenate samples, as well as blank controls, were measured in four technical
replicas, and all methods were adjusted for a microplate reader. Glutathione S-transferase
(GST) activity was performed based on the Habig et al. [25] method. The reaction mix-
ture contained a sample, potassium phosphate buffer, reduced glutathione (GSH), and
1-cloro-2,4-dinitrobenzeno (CDNB). Absorbance was measured at a wavelength of 340 nm
every 20 s for 5 min. Specific activity was calculated based on the molar extinction co-
efficient (ε) 9.6 × 103 M−1 cm−1. Catalase (CAT) activity was performed according to
Claiborne [26]. A decrease in absorbance was measured in a mixture of sample, potassium
phosphate buffer, and hydrogen peroxide (H2O2) at 240 nm for 2 min. Specific activity
was calculated based on ε = 40 M−1 cm−1. Total glutathione (TG) levels in planarian
samples were determined with potassium phosphate buffer, β-nicotinamide adenine dinu-
cleotide 2′-phosphate reduced tetrasodium salt (β-NADPH), 5,5′–dithiobis–(2–nitrobenzoic
acid) (DTNB), and glutathione reductase (GR). Absorbance was measured at 412 nm for
3 min. The concentration of TG was calculated based on a standard curve using GSH.
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Lipid peroxidation (LPO) concentrations were assessed by measuring thiobarbituric acid
reactive substances (TBARS) following the protocols established by Ohkawa et al. [27] and
described in detail in Silva et al. [28]. The reaction mixture contained sample, trichloroacetic
acid (TCA), 2-thiobarbituric acid (TBA), trizma hydrochloride, Tris—HCl, and diethylene
triamine pentaacetic acid (DTPA). The mixture was incubated at 100 ◦C for 60 min and
subsequently centrifuged at 9000 rcf for 5 min at 25 ◦C. Absorbance was read at 535 nm, and
ε = 1.56 × 105 M−1 cm−1 was used to calculate the LPO levels. The selection of the aforemen-
tioned specific biomarkers reflects a strategic approach to assess the potential adverse effects
by increasing metabolism that leads to oxidative stress in planarians if the detoxification and
antioxidant capacities do not cope with increased reactive oxygen species produced.

2.7. Metabolic Biomarkers

Cholinesterase (ChE) activity was determined based on the solution containing potas-
sium phosphate buffer, acetylthiocholine iodide, and DTNB. Absorbance was measured at
414 nm, every 20 s for 5 min. Specific activity was calculated based on ε = 13.60 × 103 M−1

cm−1. Electron transport system (ETS) activity was measured according to the protocol
described in [28]. The following reagents were used: β-NADPH, reduced β-nicotinamide
adenine dinucleotide (β-NADH), and p-iodonitrotetrazolium (INT). The absorbance was
monitored at 490 nm for 3 min. Activity was calculated based on ε = 1.59 × 104 M−1 cm−1.
Lactate dehydrogenase (LDH) activity was analysed using Tris, NaCl, NADH, and pyruvic
acid. Absorbance was measured at 340 nm every 20 s for 5 min. Activity was calculated
based on ε = 6.30 mM−1 cm−1. The total protein content was determined using Bradford’s
method which was adapted for microplate analysis. Bovine serum albumin was utilised to
establish the calibration curve, with absorbance readings taken at 592 nm. The selection
of specific biomarkers reflects a strategic approach to assess the potential disruption of
physiological responses in planarians such as energy production and neurotransmission.

2.8. Data Analysis

The parameters of locomotor activity, body mass, body weight, GST, CAT, TG, LPO,
ChE, ETS, LDH, and protein content underwent analyses to evaluate the normality of dis-
tribution. The normality of the data was visually assessed with QQ plots and histograms,
followed by the Shapiro–Wilk test. Confirming the assumed normality of the data, paramet-
ric tests were used. A one-way analysis of variance (ANOVA) was performed to investigate
the differences between the parameter response compared to the control group. Multiple
comparisons, i.e., comparing the mean of each column (response variable) to the mean of
the control group, were determined by Dunnett’s post hoc test. Statistical significance was
considered at a p-value ≤ 0.05. Results are presented as barplots, with mean ± standard
deviation (SD). Statistical analyses and data visualisations were performed using GraphPad
Prism software version 7.0 for Windows (GraphPad Software, La Jolla, CA, USA).

3. Results and Discussion

The locomotor activity of planarians was the only biomechanical response that was
significantly altered in organisms exposed to PU particles and ALPI (Table 2, Figure 1)
through the diet and water, respectively. A significant difference was observed only in
locomotor velocity post exposure to both ALPI and PU particles compared to the control
group (p < 0.05). Changes in post-exposure planarian behaviour, i.e., locomotion, appeared
to be useful endpoints that can detect sequential sub-lethal effects of ALPI and PUs. The
observed difference in locomotor velocity may be due to the combined neurotoxic effects of
ALPI and PU particles. Interestingly, exposure to PU particles or ALPI individually did not
provoke a significant response in locomotor activity. The exposure to concentration/dose
of ALPI or PU particles was not potent enough to elicit a response; these components
may interact in a way that enhances their effects when combined, leading to a significant
response (Table 2, Figure 1). Additionally, ALPI and PU particles have a sub-threshold
effect, and it appears that the exposure concentration did not reach the level required
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to trigger a response in planarian locomotor activity. On the other hand, ALPI and PU
particles may affect different neurological pathways or neurotransmitter systems involved
in locomotor activity. It is likely that simultaneous exposure to both ALPI and PU particles
induces an interaction at a neurological level to produce a significant response (Table 2,
Figure 1). Previous research showed the neurotoxic effects of organophosphorus flame
retardants on freshwater planarians [29]. However, the locomotor activity of planarians
was not significantly altered when exposed to a single dose of ALPI which indicate that the
concentration, exposure period or the mode of exposure may not be sufficient to induce a
response (Table 2, Figure 1). The impaired locomotor function may stem from disruptions
in neurotransmission pathways and alterations in the activity of various biomarkers. The
flame-retardant DE-71 adversely affected the cholinergic system and locomotor activity
in Danio rerio larvae by perturbing calcium homeostasis [30]. That being said, planarian
locomotion is regulated by the dopaminergic system [31] and it may be affected by the
combination of ALPI and PU. As a result, impaired locomotor behaviour, marked by de-
creased mobility, can pose a notable ecological risk and potentially endanger survival [32].
Post-exposure alterations in locomotor activity have also been utilised as indicators of
stress induced by ammonia in the planarian Polycelis felina [33]. The potential impact of
PU particles and microplastic particles in general on the locomotion of planarians has been
previously reported, and results in this study correspond with the absence of PU effect on
locomotor activity shown in [28]. However, alterations in locomotor activity have been
documented in organisms exposed to microplastics or prey contaminated with microplas-
tics. The changes have been observed in invertebrates including Crassostrea gigas, Daphnia
magna, and Artemia franciscana as well as vertebrates such as Danio rerio larvae [34–38]. The
overall decrease was evident in reductions in average speed and distance moved. Changes
in the locomotor activity of predators could further result in negative impacts on their
hunting behaviour, exploration competence, and ability to escape from other predators,
thereby reducing their fitness and potentially disrupting ecosystem function. Behavioural
changes arise from a biochemical and physiological biomarker approach, potentially linked
to modifications at higher levels of biological organisation [33,39]. Behaviour has been
proposed as a sensitive indicator of ecotoxicological impact, as it often responds earlier
than traditional endpoints such as growth in terms of body mass and length, as well as re-
production [33]. The observation of decreased locomotor activity in planarians emphasises
the value of behavioural parameters as supplementary tools in evaluating the sub-lethal
effects of various pollutants [40]. The present research provides additional support for
the suitability of planarians in ecotoxicity assessment. Behavioural endpoints serve as
valuable instruments for evaluating the external manifestation of neurotoxicity induced
by environmental pollutants, representing a comprehensive, organism-wide response that
bridges biochemical and physiological processes [39,41].

Given the potential of flame retardants and microplastic to induce oxidative stress,
we conducted a biochemical analysis to assess the status of the defence system in exposed
planarians, G. tigrina (Table 3, Figure 2). The antioxidant defence system comprises both
enzymatic and non-enzymatic antioxidants, which function by neutralising reactive oxygen
species (ROS) and protecting the planarians against the increase in oxidative stress. The
initial defence line against oxidative stress includes the antioxidant enzymes, CAT, and
glutathione-dependent enzymes. CAT breaks down H2O2 into water and molecular oxy-
gen [42] and GST plays a pivotal role in pollutant metabolism by facilitating the conjugation
of GSH with electrophilic metabolites, thus aiding in their excretion [43]. Furthermore, an
imbalance between the production of ROS and the antioxidant defence mechanisms may
lead to oxidative damage to cellular components, including lipids. This process, known
as lipid peroxidation, results in the formation of lipid peroxides and other reactive by-
products, ultimately compromising membrane integrity and cellular function. Planarians
exposed to ALPI, PU and the combination of ALPI and PU did not exhibit any significant
changes in enzymatic activity (GST, CAT) or concentration of TG and LPO (p > 0.05, Table 3,
Figure 2). This may be due to the exposure concentrations and duration of the acute (24 h)
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exposure. The concentration of 3 and 30 µg L−1 BDE-47 and the concentration of 30 mg L−1

ALPI caused changes in CAT activity, but not in GST activity, as shown in D. rerio [44,45].
Exposure to polyvinyl microplastics led to alterations in haematology, antioxidant enzyme
levels, LPO, and acetylcholinesterase activity in the African catfish Clarias gariepinus [46,47].
However, this is not the case in the present study. Toxic effects often depend on the dose
and duration of exposure, and if these are below a threshold level [48], observable changes
may not occur. Planarians might have exhibited adaptive responses to the exposure, upreg-
ulating their antioxidant defence systems in response to oxidative stress induced by PU,
ALPI, and/or their combination. Despite the exposure to the pollutants, this upregulation
could have maintained CAT and GST activities, TG levels, and LPO within the ranges of
control. Therefore, interactions between PU and ALPI, either synergistic or antagonistic,
could have affected the observed results in a way that the combination of PU and ALPI may
have resulted in counteractive effects on oxidative stress pathways, leading to no change in
CAT and GST activity as well as TG and LPO levels.

Table 2. Descriptive statistics on biomechanical responses—locomotor velocity (crossed gridlines
min−1), body mass (g), and body length (mm) in planarians, G. tigrina exposed to 10 mg L−1

flame-retardant aluminium diethylphosphinate (ALPI), and 10 µg PU mg−1
liver plastic polymer

polyurethane (PU), and the combination of ALPI and PU.

Control ALPI PU ALPI + PU

n 10 10 10 10
Locomotor velocity Min 4.00 3.00 6.00 3.00
(crossed gridlines min−1) Max 15.00 15.00 15.00 10.00

Range 11.00 12.00 9.00 7.00
Body mass (g) Min 0.008 0.008 0.008 0.006

Max 0.018 0.015 0.019 0.018
Range 0.010 0.006 0.011 0.012

Body length (mm) Min 10.00 11.00 10.00 11.00
Max 15.00 15.00 13.00 14.00
Range 5.00 4.00 3.00 3.00

ALPI—aluminium diethylphosphinate; PU—polyurethane; n—sample size; min—minimum value;
max—maximum value.

Table 3. Descriptive statistics of oxidative stress biomarkers—glutathione S-transferase (GST,
nmol min−1 planarian−1), catalase (CAT; µmol min−1 planarian−1), total glutathione (TG, nmol
planarian−1), and lipid peroxidation (LPO, nmol planarian−1) in planarians, G. tigrina exposed
to 10 mg L−1 flame-retardant aluminium diethylphosphinate (ALPI), 10 µg PU mg−1

liver plastic
polymer polyurethane (PU), and the combination of ALPI and PU.

Control ALPI PU ALPI + PU

n 10 10 10 10
GST (nmol min−1 planarian−1) Min 6.87 0.96 3.92 5.49

Max 31.24 34.54 36.48 25.69
Range 24.37 33.58 32.56 20.20

CAT (µmol min−1 planarian−1) Min 17.88 15.87 17.04 22.95
Max 49.60 46.15 58.25 61.50
Range 31.72 30.28 41.21 38.55

TG (nmol planarian−1) Min 58.31 57.67 48.07 50.43
Max 77.33 89.97 77.17 82.87
Range 19.02 32.30 29.10 32.44

LPO (nmol planarian−1) Min 0.79 0.70 0.52 1.11
Max 10.62 8.89 7.43 10.22
Range 9.82 8.19 6.91 9.11

ALPI—aluminium diethylphosphinate; PU—polyurethane; GST—glutathione S-transferase; CAT—catalase;
TG—total glutathione; LPO—lipid peroxidation; n—sample size; min—minimum value; max—maximum value.



Biology 2024, 13, 337 9 of 15

Biology 2024, 13, x FOR PEER REVIEW 8 of 15 
 

 

Table 2. Descriptive statistics on biomechanical responses—locomotor velocity (crossed gridlines 
min−1), body mass (g), and body length (mm) in planarians, G. tigrina exposed to 10 mg L−1 flame-
retardant aluminium diethylphosphinate (ALPI), and 10 µg PU mg−1liver plastic polymer polyure-
thane (PU), and the combination of ALPI and PU. 

  Control ALPI PU ALPI + PU 
 n 10 10 10 10 
Locomotor velocity Min 4.00 3.00 6.00 3.00 
(crossed gridlines min−1) Max 15.00 15.00 15.00 10.00 
 Range 11.00 12.00 9.00 7.00 
Body mass (g) Min 0.008 0.008 0.008 0.006 
 Max 0.018 0.015 0.019 0.018 
 Range 0.010 0.006 0.011 0.012 
Body length (mm) Min 10.00 11.00 10.00 11.00 
 Max 15.00 15.00 13.00 14.00 
 Range 5.00 4.00 3.00 3.00 

ALPI—aluminium diethylphosphinate; PU—polyurethane; n—sample size; min—minimum value; 
max—maximum value. 

 
Figure 1. Biomechanical response—locomotor velocity (crossed gridlines min−1), body mass (g), and 
body length (mm) in planarians G. tigrina exposed to 10 mg L−1 flame-retardant aluminium dieth-
ylphosphinate (ALPI), 10 µg PU mg−1liver plastic polymer polyurethane (PU), and the combination 
of ALPI and PU. Results are presented as mean ± standard deviation, SD. Statistical differences be-
tween the exposures compared to the control (ANOVA, followed by Dunne ’s multiple compari-
sons test) are presented with * (p < 0.05). 
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we conducted a biochemical analysis to assess the status of the defence system in exposed 
planarians, G. tigrina (Table 3, Figure 2). The antioxidant defence system comprises both 
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Figure 1. Biomechanical response—locomotor velocity (crossed gridlines min−1), body mass (g),
and body length (mm) in planarians G. tigrina exposed to 10 mg L−1 flame-retardant aluminium di-
ethylphosphinate (ALPI), 10 µg PU mg−1

liver plastic polymer polyurethane (PU), and the combination
of ALPI and PU. Results are presented as mean ± standard deviation, SD. Statistical differences be-
tween the exposures compared to the control (ANOVA, followed by Dunnett’s multiple comparisons
test) are presented with * (p < 0.05).

In the present study, none of the examined pollutants—ALPI, PU, and a combination of
ALPI and PU—showed significant alterations in the activity of ChE in exposed planarians
(p > 0.05, Table 4, Figure 3). In contrast, research on various polybrominated diphenyl ethers
(PBDEs) suggests their potential to impact the nervous system via the acetylcholine system.
For instance, the PBDE mixture DE-71 notably suppressed AChE activity in D. rerio [30,49].
Similarly, exposure to BDE-209 and its combinations with BDE-47 and BDE-99 significantly
inhibited AChE activity in Carassius auratus [50]. The electron transport system (ETS) did
not show any significant differences when exposed to ALPI, PU, or the combination of
ALPI and PU compared to control (p > 0.05, Table 4, Figure 3). This finding could imply that
the toxic effects of ALPI, PU, and their combination may be exerted through mechanisms
other than direct interference with cellular respiration. Alternatively, it may suggest that
planarians possess mechanisms to maintain the integrity of their electron transport system
even in the presence of these pollutants. ETS has been evaluated in planarians, suggesting
that energy allocation refers to the prioritisation of energy resources within a planarian
to support homeostasis. Changes in energy allocation patterns can occur in response to
environmental stressors or challenges, and these changes may have implications for overall
health and fitness [28,51,52]. LDH facilitates the conversion of pyruvate to lactate within
the anaerobic pathway of cellular energy generation [53]. Research has demonstrated
that exposure to environmental pollutants can alter LDH activity [54]; however, that is
not the case in the present study. We detected no significant changes in LDH activity
following exposure to ALPI, PU, and the combination of ALPI and PU compared to the
control group (p > 0.05; Table 4, Figure 3). Interestingly, in research by Nematdoost Haghi
and Banaee [55], microplastics alone did not change LDH activity in Cyprinus carpio, but
when combined with the herbicide paraquat, an increase in LDH activity was detected.
Protein content remained unaffected in planarians after exposure to ALPI, PU, and the
combination of ALPI and PU, suggesting these pollutants did not significantly alter overall
protein synthesis or degradation processes (p > 0.05, Table 4, Figure 3). Changes in protein
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levels can reflect disturbances in cellular homeostasis and physiological functions [56].
Therefore, the observation of unchanged protein levels suggests that the exposure to ALPI,
PU, and their combination did not result in significant disruptions to these essential cellular
processes at the level of protein synthesis or degradation in planarians.
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Figure 2. Oxidative stress biomarkers—glutathione S-transferase (GST, nmol min−1 planarian−1),
catalase (CAT; µmol min−1 planarian−1), total glutathione (TG, nmol planarian−1), and lipid per-
oxidation (LPO, nmol planarian−1) in planarians, G. tigrina exposed to 10 mg L−1 flame-retardant
aluminium diethylphosphinate (ALPI), 10 µg PU mg−1

liver plastic polymer polyurethane (PU), and
the combination of ALPI and PU. Results are presented as mean ± standard deviation, SD.

Table 4. Descriptive statistics of metabolic biomarker response—cholinesterase activity (ChE, nmol
min−1 planarian−1), electron transport system (ETS, mJ h−1 planarian−1), lactate dehydrogenase ac-
tivity (LDH, nmol min−1 planarian−1), and protein content (mg planarian−1) in planarians, G. tigrina
exposed to 10 mg L−1 flame-retardant aluminium diethylphosphinate (ALPI), 10 µg PU mg−1

liver

plastic polymer polyurethane (PU), and the combination of ALPI and PU.

Control ALPI PU ALPI + PU

n 10 10 10 10
ChE (nmol min−1 planarian−1) Min 32.89 31.21 15.38 27.39

Max 65.62 123.20 94.79 87.74
Range 32.73 92.01 79.41 60.35

ETS (mJ h−1 planarian−1) Min 242.20 269.60 239.20 499.70
Max 1473.00 1227.00 1068.00 1564.00
Range 1231.00 957.30 829.20 1064.00

LDH (nmol min−1 planarian−1) Min 7.33 8.98 6.76 8.26
Max 42.39 45.90 48.39 33.47
Range 35.06 36.92 41.64 25.21

Protein (mg planarian−1) Min 0.51 0.51 0.44 0.58
Max 1.37 1.43 2.13 1.50
Range 0.86 0.92 1.69 0.92

ALPI—aluminium diethylphosphinate; PU—polyurethane; ChE—cholinesterase; ETS—electron transport system;
LDH—lactate dehydrogenase; n—sample size; min—minimum value; max—maximum value.
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Figure 3. Metabolic biomarkers—cholinesterase activity (ChE, nmol min−1 planarian−1), elec-
tron transport system (ETS, mJ h−1 planarian−1), lactate dehydrogenase activity (LDH, nmol
min−1 planarian−1) and protein content (mg planarian−1) in planarians, G. tigrina exposed to
10 mg L−1 flame-retardant aluminium diethylphosphinate (ALPI), 10 µg PU mg−1

liver plastic
polymer polyurethane (PU), and the combination of ALPI and PU. Results are presented as
mean ± standard deviation, SD.

Additional limitations to the present research exist in a sense of potential lack of
power to detect smaller effect sizes or the implications of using ANOVA when multiple
comparisons are made. However, while the sample size was enough to observe statistical
differences in regard to locomotor velocity, lack of statistical differences could be observed
for other analysed parameters, possibly due to the high variability of the data and low num-
ber of replicates/sample size. Nevertheless, the analysis of all biomarkers showed that the
activities of ETS, ChE, GST, and CAT, as well as the levels of TG and protein (Tables 3 and 4)
exhibited a high range of variation on planarians exposed to ALPI, PU, and ALPI + PU.
Moreover, the weight and length of planarians (Table 2) and the biomarker of oxidative
damage LPO were not significantly changed. Therefore, the impairment of the locomotor
activity of ALPI + PU might be not only associated with previously discussed neurotoxic
potential of the pollutants, but also to the energetic costs associated with non-significant
alterations that are highlighted by the range response of organisms concerning energy
consumption, detoxification, and antioxidant capacity. In view of environmental implica-
tions, decreased locomotor activity in planarians due to toxic exposure can have cascading
effects on population dynamics by altering reproductive behaviours; reduced movement
can limit access to food sources or suitable habitats; slower or less active planarians may be
outcompeted by more mobile organisms for resources. Furthermore, decreased locomotor
activity could make planarians more vulnerable to predation, reducing their survival rates
and potentially altering predator–prey dynamics and thus the overall ecosystem structure
and function. It is plausible to consider that the impairment of locomotor activity observed
in response to ALPI + PU exposure may involve a combination of direct neurotoxic effects
of the pollutants on the nervous system and the indirect energetic costs associated with
the organisms’ adaptive responses to mitigate toxic effects. Thus, locomotor activity seems
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to be an integrated and cumulative biomarker of several changes in the cell physiology
response to relatively low concentrations of both pollutants.

4. Conclusions

In conclusion, our research involving the exposure of G. tigrina to ALPI and PU re-
vealed a notable decrease in locomotor activity while other molecular biomarkers (oxidative
stress biomarkers and metabolic response) remained unaffected. This observation high-
lights the importance of including behavioural indicators in toxicological assays when
assessing the effects of pollutants. Behavioural changes can serve as sensitive early indica-
tors of environmental stressors, offering integrative and cumulative valuable insights into
organism responses that may not be captured by molecular biomarkers alone. Furthermore,
incorporating behavioural endpoints into toxicological assessments allows for a more com-
prehensive understanding of the overall impact of pollutants on organisms. By examining
behavioural responses alongside molecular biomarkers, researchers can better elucidate
potential synergistic or antagonistic effects of organic pollutants. These effects may man-
ifest differently at the behavioural level compared to molecular endpoints, highlighting
the necessity of a multidimensional approach in assessing ecological risks. Moreover, our
study highlights the need to study in depth the single and combined ecophysiological
effects of PU and ALPI using several concentrations and exposure periods. Further in-
vestigations could involve exploring different concentrations, exposure periods, and/or
assessing recovery post exposure to evaluate the potential reversibility of the observed
effects, providing a more comprehensive understanding of the impact of toxic substances
on planarian physiology and behaviour.
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