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Abstract: A flood is an overflow of water that swamps dry land. The gravest effects of flooding are
the loss of human life and economic losses. An early warning of these events can be very effective in
minimizing the losses. Social media websites such as Twitter and Facebook are quite effective in the
efficient dissemination of information pertinent to any emergency. Users on these social networking
sites share both textual and rich content images and videos. The Multimedia Evaluation Benchmark
(MediaEval) offers challenges in the form of shared tasks to develop and evaluate new algorithms,
approaches and technologies for explorations and exploitations of multimedia in decision making
for real time problems. Since 2015, the MediaEval has been running a shared task of predicting
several aspects of flooding and through these shared tasks, many improvements have been observed.
In this paper, the classification framework VRBagged-Net is proposed and implemented for flood
classification. The framework utilizes the deep learning models Visual Geometry Group (VGG) and
Residual Network (ResNet), along with the technique of Bootstrap aggregating (Bagging). Various
disaster-based datasets were selected for the validation of the VRBagged-Net framework. All the
datasets belong to the MediaEval Benchmark Workshop, this includes Disaster Image Retrieval from
Social Media (DIRSM), Flood Classification for Social Multimedia (FCSM) and Image based News
Topic Disambiguation (INTD). VRBagged-Net performed encouraging well in all these datasets with
slightly different but relevant tasks. It produces Mean Average Precision at different levels of 98.12,
and Average Precision at 480 of 93.64 on DIRSM. On the FCSM dataset, it produces an F1 score
of 90.58. Moreover, the framework has been applied on the dataset of Image-Based News Topic
Disambiguation (INTD), and exceeds the previous best result by producing an F1 evaluation of 93.76.
The VRBagged-Net with a slight modification also ranked first in the flood-related Multimedia Task
at the MediaEval Workshop 2020.

Keywords: flood classification; disaster response; road passability; social media

1. Introduction

Water is one of the most significant substances on earth. A large amount of water is
wasted by various means, particularly through the overflow of rivers, lakes and similar
streams. As a result, dry land receives an extensive flow of water, which creates flooding.
Mostly, flood causes the loss of human lives and severe destruction of valuable resources.
An appropriate response to flooding requires a timely and accurate flow of information
from the affected area to the responsible organizations. Flood response systems have been
improved from manual record keeping, to sensor-based monitoring of sensitive zones.
However, sensor-based complex systems also require an enormous quantity of human and
hardware resources, to monitor and report flooding conditions [1].

Recently, use of social media has increased greatly, which has generated a lot of
valuable data. The enormous amount of social media data is the key to resolve various
challenging problems, specifically the monitoring of disastrous situations [2—4]. Disaster-
related situations require timely information, so that the damage can be minimized through
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appropriate measures from the responsible authorities. As it is very difficult to physically
collect information from all flood-sensitive zones, social media data play a significant role
in providing valuable and timely information. Different social networks, including twitter
and Flickr, provide facilities of uploading and sharing text and images to its subscribers.
This enormous quantity of data can be processed to extract useful information to obtain
better solutions of various problems including floods.

The focus of using social media data for flooding events has received more attention
due to the MediaEval benchmark workshop [5-7]. The workshop aimed to encourage
social media and satellite data based solutions for different challenges of the flooding
event. MediaEval, 2017 targeted solutions of classifying flooding events with the help of
text and images retrieved from social media data [5]. MediaEval, 2018 has focused on the
presence of roads and their passability status by using social media data [6]. MediaEval,
2019 evaluated the severity of the flooding situation by predicting a person in an image
experiencing a water level above their knees, and the prediction of whether or not an online
article is related to a flooding situation [7].

Deep Learning based approaches are widely used for flood classification using social
media [4,8-12]. A significant effort has been invested in searching for better solutions
using deep learning approaches. Ensemble techniques such as bagging are becoming
increasingly significant as they have frequently shown the ability to improve upon the
generalization ability of a single deep learning model [3,4,11]. This paper describes our
ensemble-based deep learning system VRBaggedNet, presented in MediaEval competitions
for flood classification using social media. This system ranked first in the Medieval 2020
flood classification task when evaluated independently by the organizers. The main
novelty in this paper is the ensemble of several bagged based Visual Geometry Group
(VGG) and Residual Network (ResNet) models. Several deep learning models are trained
using Bagging, i.e., by sampling with replacement of training data. These models are
later combined using aggregation in order to reduce the over-fitting and the error rate
of individual learner. In addition, the proposed ensemble-based system also alleviates
the inherent problem of class imbalance in some MediaEval tasks. The following are our
main contributions:

* A comprehensive literature survey of the state-of-the-art methods for the classifica-
tion of different flooding events is provided in this paper. The discussion includes
shallow learning- as well as deep learning-based methods for feature extraction and
classification of flooding events.

¢ A VRBagged-Net ensemble classification framework has been proposed for the suc-
cessful classification of flooding events. Several accurate and diverse models were
trained using VGG and ResNet-based deep learning models. These models were then
combined using Majority Voting.

¢  Experiments were conducted on several standard benchmarks for flood classification
and compared with the state-of-the-art approaches.

This paper is organized as follows. Section 2 reviews existing work followed by
description of data sets in Section 4. Section 3 discusses the proposed methodology with
experiments and results in Section 5. Section 6 concludes the paper. The ensemble-based
deep learning models have provided various useful outcomes in prediction tasks in different
research fields including cancer prediction, speech recognition and crude oil price prediction.
Stacking-based ensemble learning has been performed for speech recognition, in which
various deep learning neural networks are stacked, including DNN, CNN, and RNN [13].
Researchers have combined the merits of Stacked Denoising Autoencoder (SDAE) and
Bootstrap Aggregation (Bagging) and formulated a method for prediction of crude oil
price [14]. Another ensemble-based approach has been proposed for the prediction of cancer
patients, which has combined different machine learning and deep learning models [15].
Ensemble-based framework IBaggedFCNet has been proposed for the detection of anomalies
in videos, which has utilized Inception-v3 and a 3-Layer Fully Connected (FC) neural
network [16].



Electronics 2021, 10, 1411

30f16

Social media data can also produce fruitful information for disaster response when
combined with various other data resources, including hydrological data. An effective
multimodal neural network has been designed by combining the text of tweets and hydro-
logical information based on the timestamp and location mentioned in tweets [17]. Another
research effort has generated a method for improving situation awareness during disasters
by combining social media data with hydrological and sensor-based data [18]. Another
research attempt has combined crowdsourced photos and volunteered geographic data to
produce an effective method for the estimation of flooding events and identification of its
affected regions [19].

2. Literature Review

In recent times, social media data has been used to identify clues of disastrous events.
This section of the literature review discusses methods used for the classification of various
flooding events. The first part includes the literature, regarding use of social media data
for the detection of availability or unavailability of flood in images. The second part of
the section includes the literature on identifying the availability of passable roads in the
images and the final part discusses methods used to find flood-related topics of articles,
from their respective images.

At the MediaEval 2017 workshop, a specific task was designed to combine social media
text and images, along with satellite images, to identify flooding events for emergency
response [5]. The subtask of the MediaEval, 2017 named as Disaster Image Retrieval
from Social Media (DIRSM) [5], provided a dataset of images, along with their relevant
text taken from different social media networks. The participants of the workshop used
diverse approaches to solve the challenge. Researchers [8] have used Deep Convolutional
Neural Network (DCNN) to perform binary image classification on the basis of availability
or unavailability of flood. Features have been extracted from images with the help of
GoogleNet [9], pretrained on places205, and then extracted features were merged with
conventional features, which includes AutoColor Correlation (AC), Edge Histogram (EH),
and Tamura. Finally, a Support Vector Machine (SVM) classifier was used to perform
binary classification. Another team of researchers [9] used the AlexNet model, pretrained
on Places and ImageNet [20] datasets for feature extraction and a Support Vector Machine
(SVM) was used for the classification of images [9].

Many other researchers have applied different state-of-the-art methods over the
dataset of DIRSM [5]. Researchers [2] have used Spectral Regression in combination
with Kernel Discriminant Analysis (SRKDA), over the ensemble of conventional features
to predict confidence for binary image classification on the DIRSM dataset. The MultiBrasil
team [21] utilized GoogleNet [22] , which is pre-trained on the ImageNet dataset, and
performed binary classification on the DIRSM dataset. In another research effort [23],
X-ResNet [24] pretrained on DeepSentiBank [25] was used, along with Support Vector Ma-
chine (SVM) to conduct binary classification of the images of DIRSM dataset. X-ResNet [24]
is the extension of ResNet [26].

The prompt response to disastrous events heavily depends upon the availability of
pass-able roads, particularly in a flooding situation. The research was initiated by Medi-
aEval, 2018 [6], which aimed to find the availability of evidence of passable roads. Each
instance of dataset comprises of a tweet, with both text and images. Classification was per-
formed by using text, images and the combination of both [6]. Researchers have used text
to find the status of roads, but the literature shows that the text-based part of a dataset does
not produced any significant outcome, which could help in either finding evidence or status
of passable roads [3,10,11,27]. However, another dimension of research has been explored
by using image instances given in tweets. Research efforts have utilized various feature
extraction and classification techniques to find the status of roads. Different pretrained
networks including VGG [28], DenseNet201 [29], Inception V3 [30] and ResNet50 [26]
have been used in a variety of methods and obtained promising results [3,10,11,27]. It
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has been observed that in comparison to text, visual data have provided significantly
better outcomes.

The response system for a flooding event greatly depends on knowledge of the severity
of the situation. Medieval Benchmark Workshop 2019 released the dataset for “Multimodal
Flood Level Estimation” [7]. The dataset consists of images related to flooding disasters.
The dataset was designed to create a better method of image classification on the basis
of whether or not one person is available in the image in a standing position, who has
water level above their knees [7]. Researchers have utilized different techniques for the
detection of such a person and water level above their knees, which includes the use of a
22 layer GoogleNet [22], five fold cross-validation approach with VGG16 and Inception V3,
combination of Faster-RCNN, VGG16 and ResNet50 architecture and so on [4,12,31]. In
another task of MediaEval Workshop 2019, articles have been analyzed by their images
and classified on the basis of whether or not the topic of the article is related to a flooding
event [7]. The task is named as “Image-based News Topic Disambiguation” [7]. Prominent
research efforts have given more attention to pretrained networks for extraction of features
and classification. Few research efforts include utilization of a cross-validation-based
approach along with VGG16 and Inception V3 pretrained networks, implementation of
the ensembled method by using VGG16 pretrained on ImageNet and Places365 datasets.
State-of-the-art results have been evaluated by using the F1 measure and it has been shown
that deep learning-based methods have produced highly successful outcomes [4,12,31].
Different ensemble-based approaches have been used in disaster response systems that
exploit social media data. The majority of the approaches have utilized the weights of
different pre-trained Convolutional Neural Networks (CNN) and various ensemble-based
methods. Major challenges faced by the researchers include class imbalance, and use
of pre-trained weights from ImageNet dataset, which primarly focuses on object-level
information, rather than scene-level information.

3. Methodology

The proposed VRBagged-Net classification framework for flood classification is shown
in Figure 1. The framework is divided into three different phases, including preprocessing
and stratified random sample selection, transfer learning-based training and prediction of
test data. Various components are described as follows:

Phase I: Stratified Random Sample Phase II: Transfer Phase llI: Prediction on Test Data
Selection Learning Based Training
H vee [
H Stratified Random Sample i i VR-Model1 ’—L VR-Outcome 1
: with Replacement 1 HE ResNet H
: : H VR-Outcome 2
Stratified Random Sample VGG [’ iood
H with Replact 2 d N o . lood
: m = : ResNet l— H Majority Voting P | Classification
Stratified Random Sample VGG VR-Outcome N
with Replacement N i ! VR-ModelN - H
i N

Figure 1. Proposed Framework of VRBagged-Net.

3.1. Preprocessing and Random Sample Selection

In the initial phase, the tasks of preprocessing and stratified random sampling are
performed.

3.1.1. Preprocessing

During the preprocessing, images are loaded and resized to a unified dimension.
During resizing, all of the images are scaled to have the same heights and widths. Generally,
images vary in their height and width, which creates difficulty in learning of classifiers.
Hence, images are resized, so that classifiers could be facilitated by similar scale images.
During the resizing process, the value of the height and depth of each image was set as
224 pixels.
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3.1.2. Stratified Random Sample Selection

After preprocessing, stratified random sampling was applied on selected instances.
Stratified random sampling is a probability-based sampling method, in which the popula-
tion is divided into different sub-groups, called “Strata” (Singular stratum). The formation
of an individual stratum is based on the shared characteristics by the members of popu-
lation. The size of samples from each stratum may be selected by using proportional or
equalized methods. In the proportional method, random samples are selected from each
stratum according to the size of its respective stratum. However, in equal size sample
selection, a fixed quantity of samples is selected from each of the stratum, irrespective of
the size of stratum. Selection of equal size instances from each stratum is more efficient, as
it equalizes the representation of each stratum [32-35].

Random sampling with replacement is a powerful technique, which utilizes sampling
operations to acquire optimal gain [36]. It involves the selection of independent sub-
groups from the given population, where the selection of one sub-group does not affect
the selection of any other sub-group. The process is used to choose random elements from
the population for the creation of one sub-group, and then return those elements to the
population. So, the selection of subsequent sub-groups may include previously selected
elements. However, there is a chance that few of the elements of the population may not be
part of any sub-group. The process is repeated until the required number of sub-groups
are generated. In stratified random sampling with replacement, the covariance between
different sub-groups is zero, as they are independent of each other. Generally, stratified
random sampling with replacement creates effective and reliable representation of each
group [37,38].

Therefore, stratified random sampling with replacement is utilized to construct a
series of diverse training sets for the flood classification dataset. The population set (S) is
super set and used to create multiple subsets S;, 5/2, to S/N.

VK | K € (1,15) S D {S;,S5,S5,..., Sk} 1)

where (K) is representation of the total quantity of created sub-sets, and we have used a
quantity of 15 random samples in VRBagged-Net. However, each of the created sub-sets
consist of selected random samples (x') and their relevant labels (y/).

Vi| i€ KSi(xj,y}) CS(x,y) k)
where 71 represents the quantity of instances available in an individual sub-set.

3.2. Transfer Learning Based Training

During the Training phase, transfer learning is implemented to gain advantage of
previously learned Convolutional Neural Network architectures. This phase receives each
of the training samples generated during phase I, and creates its respective training model.
Each of the training models is denoted with the term VR-Model.

VR-Model

VR-Model is the collection of two Convolutional Neural Network architectures, Visual
Geometry Group (VGG) [39] and ResNet [26]. A single VR-Model receives its respective
stratified random sample with replacement. This individual random sample is utilized
by the VR-Model, to train its VGG architecture as well as the ResNet architecture. The
versatile combination of VGG and ResNet has created a strong VR-Model.

Visual Geometry Group (VGG16) is a Convolutional Neural Network (CNN) proposed
during the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC-2014), which is an
annual computer vision competition. The network has secured first and second positions
in image localization and image classification tasks, respectively [39]. The VGG-16 (Visual
Geometry Group) model is used as a part of the VR-Model. It is pre-trained on both of the
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ImageNet [20] and places365 [28] datasets. The ImageNet dataset [20] is helpful in finding
object-level information, as it contains more than a million images, which are distributed in
1000 classes. While, the dataset of Places365 helps in recognizing scene-level information
and contains about 1.8 million images, distributed in 365 classes. By combination of both
ImageNet and Places365 datasets, a hybrid dataset is created, which has 1365 classes.
Furthermore, different parameter settings are tried for the architecture of VGG. The last
four layers of the network are fine-tunned and remaining layers remain unchanged. The
architecture is compiled with the Adam Optimizer and the dropout is set as 0.2. The loss
function is used as binary cross entropy and learning rate is set as 10~°. Moreover, the
model is trained for 40 epochs. The best performing parameters for the architecture are
summarized in Table 1.

Another Convolutional Neural Network used in the VR-Model is ResNet50 (Residual
Network) [26]. The selected architecture is a variant of the ResNet model, and pretrained
on the ImageNet dataset [20]. Residual Networks (ResNet) has implemented the concept
of skip connections, by which various layers of a neural network are skipped during the
training of the neural network. Consequently, the problem of vanishing gradient is avoided,
and the network can be trained up to a higher number of layers. The model of ResNet
accomplished a 3.57% error rate on ImageNet and achieved 1st Place in the classification
task of the ILSVRC 2015 [26]. The last eight layers of the architecture are fine-tunned
and remaining layers remain unchanged. The architecture is compiled with the Adam
Optimizer and the dropout is set as 0.3. Moreover, the loss function is used as a binary
cross entropy and the learning rate is set as 10~°. The model is trained for 50 epochs. The
best performing parameters for the ResNet50 are summarized in Table 1.

Table 1. Details of CNN-architectures utilized in VR-Model

Parameters VGG ResNet
Model VGG16 ResNet50
Weights Imagenet + Places365 ImageNet
Epochs 40 50
Learning Rate 1075 107°

Each of the VR-Models choose individual sub-set S/, for the training of both of its
Convolutional Neural Networks (V and R).

(V,R) := Sy (2}, v}) 3)

3.3. Prediction on Test Data

Final phase of the VRBagged-Net manages predictions through trained VR-Models
on test data and ensemble of predictions by different VR-Models. Each of the VR-Models
consists of two architecures of Convolutional Neural Networks, Visual Geometry Group
(VGG) [39] and ResNet [26], and each of them is separatly used for prediction of test
instances. In the last layer of each model, the sigmoid activation function is used to retrieve
a probabilistic outcome, ranging between 0 and 1. Two Convolutional Neural Networks,
VGG and Resnet are used to extract the output, which can be represented by the following;:

1
Rout = 4
out 1 T e_RWf ( )
1
Vout (5)
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where Rye and Vyy, represent the outcome of individual models before implementation
of the Sigmoid function. However, R, and Vo, represent the outcomes retrieved by
individual CNN, after the sigmoid function is applied. Ry, and V,; are retrieved in the
form of probabilities, ranging from 0 to 1. These probabilities are averaged to combine the
prediction by both of the architectures, and represented by Xyg.

Vi | i€ (1/ 15) fVRi = (Vout,i + Rout,i)/z (6)
Furthermore, the probabilistic averaged outcome Xy is converted into discrete form
LXyR, as if value of Xy is less than 0.5, then it is considered as 0, otherwise 1.
_ 1if Xyr>0.5
f(Lxvg,;) = / ?)

0 if Xyr<0.5

The steps involved in processing of a single input image, through VRBagged-Net are
shown in Figure 2.

Averaged outcome

of V(out) & R(out) Output

Inputimage % { Training VR-Model 1 Sigmoid V(out) and R(out)
Probabilistic
Score VGG
Probabilistic
Score ResNet

-| Average I > 1 (Flood)

VGG
ResNet :

Figure 2. Processing steps of VRBagged-Net for an individual input image.

Subsequently, an ensemble is created by combining discrete predictions of individual
VR-Outcome (LXyr) and majority voting is applied.

Vilie (1,15) f(y) = argmax(LXyR) 8)

The majority voting yields the final outcome for flood classification, as shown in
Figure 1. The ensemble of various VR-Models is a very significant part of VRBagged-Net.
The ensemble of versatile VR-Models reduces the error rate of individual classifiers and
improves the classification accuracy. The sequence of steps followed in VRBagged-Net is
given in Algorithm 1.
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Algorithm 1: VRBaggedNet
Input :Dataset[Test, Train] = Train(x,y), Test(xt,yt), K=15

Output:y,error
1 fori=0¢€ Kdo
2 | Sample(xi,yi) = Subset(Train, ) //Training Phase
3 Vi := Sampley; iy Ri := Sample(y; ;)
4 | Weightsy; := VGGy; //Weights are learned from training
phase
5 Weightsg; := ResNetg;
6 Virei := VGG(testy, Wy;) //Testing Phase
7 Ryrei := ResNet(testy, Wg;)
. 1
8 Vout,z T 1+e’1vpre,i
9 Rout,l = m
10 XyRi = (Vout,i + Rouif,i)/2
11 if LfVRi = 0.5 then
12 ‘ LfVRi =1
13 else
14 ‘ LfVRi =0
15 end if
16 end for

17 § = argmax(LXyRg;)

m
18 error = Y |y—§|/m //m is number of test samples
i=1

4. Datasets for Disaster Response System

Various datasets are selected to verify the effectiveness of the VRBagged-Net classifi-
cation framework. All the selected datasets are related to different flooding events, which
include Disaster Image Retrieval from Social Media (DIRSM) Dataset, Flood Classification
for Social Multimedia (FCSM) and Image-based News Topic Disambiguation (INTD).

4.1. Dataset 1: Disaster Image Retrieval from Social Media (Dirsm)

The dataset is taken from the task of Disaster Image Retrieval from Social Media
dataset (DIRSM), which is a sub-task of The Multimedia Satellite Task at MediaEval
Benchmark Workshop 2017 [5]. It includes images taken from different social networks
including Flicker and Twitter. All the images, having evidence of flood are kept in class
“Flood”, while the images having no any evidence of flood are placed in class “No flood”.
In the dataset of 6600 images, 5280 images are part of the train-set and the remaining 1320
are part of the test-set. Figure 3 shows the sample images for the Dataset of DIRSM.

Class: Flood
L8

lass: No Floo

Figure 3. DIRSM Dataset: Random images of “Flood” and “No flood” classes.
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4.2. Dataset 2: Flood Classification for Social Multimedia (Fcsm)

The dataset is taken from the task of “Flood Classification for Social Multimedia
(FCSM)”, which is sub-task of The Multimedia Satellite Task at MediaEval Benchmark
Workshop 2018 [6]. The first objective of the sub-task involves retrieval of images, which
provide direct evidence regarding road passability by conventional means including boats,
Hummer, Landrover, Monster Trucks and similar vehicles. The FCSM dataset includes
8844 tweets, and each of the tweets contain its relevant image. A quantity of 5818 images
are included in the train-set and the remaining 3026 images are part of the test-set. The
training set includes 2128 images with direct evidence of road passability and 3685 images
with no-direct evidence of road passability. Figure 4 shows the sample images for the
FCSM Deataset.

Figure 4. FCSM Dataset: Random images of “Route” and “No Route” classes.

4.3. Dataset 3: Image-Based News Topic Disambiguation (Intd)

MediaEval Benchmark Workshop, 2019 has released a dataset of Image-based News
Topic Disambiguation (INTD) [7], which includes a set of images that appeared in online
articles. The dataset aimed to predict whether or not the topic of article in which each
image appeared was related to the flooding disaster. Topics of the articles of the dataset
are ambiguous, even if each of the articles contain related keywords such as “flood”. The
development set of the dataset includes 5181 images, while its test set comprises of 1296
images [7]. Figure 5 shows the sample images for the INTD Dataset.

Figure 5. INTD Dataset: Random images of “Flood-Related Topic” and “Not Flood-Related
Topic” classes.

4.4. Dataset 4: Flood-Related Multimedia Task at Mediaeval Workshop 2020 (Frmt)

MediaEval Benchmark Workshop, 2020 has released a dataset of Flood-related Multi-
media Task at MediaEval workshop 2020 (FRMT) [40], which includes a set of images that
appeared in tweets published in Italian. The dataset of the task comprises of 5419 Tweets
for (development-set) and 2358 Tweet for test-set. The images were collected from Twitter
between 2017 and 2019.
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5. Experimental Results and Comprehensive Analysis

The proposed method has been applied on different datasets including DIRSM, FCSM
and INTD. The Google Colaboratory (Colab) service has been utilized for the experiments.
Colab is a cloud-based service offered by Google and provides support of various artificial
intelligence-based libraries as TensorFlow and Keras. The experiments were performed
by using the Tesla T4 Graphics Processing Unit (GPU) and the memory of 12 GB. Average
training time required for the training of batch containing 32 images, VGG and ResNet
require 147 milliseconds and 184 milliseconds, respectively. However, for bagging, all
models can be run in parallel. The proposed method has utilized 15 bags, and all these
models can be executed in parallel. Moreover, on average, VGG requires 50.73 milliseconds
for the prediction of a single image, while ResNet50 needs 43.88 milliseconds to predict
a single image. The proposed VRBagged-Net classification framework is applied on the
DIRSM. The evaluation of extracted results and their comparison with state-of-the-art
results are discussed below:

5.1. Results for Dirsm Dataset

For the DIRSM dataset [5], two types of evaluation measures are used for binary image
classification such that Average Precision (APK) at different cut-offs (50, 100, 150, 240 and
480) and Mean Average precision (MAP). The average precision (AP) is relative to the area
under a precision—recall curve. It is used to evaluate the average of the precision over
images, which are considered relevant. This metric combines precision and recall into a
single performance value [41]. AP is defined as:

IN|

1
AP = — C 9
|N|EZ:1E )

where N represents quantity of positive samples in a test set. Moreover, the contribution
Ck of the E™ element in the ranking list is defined as follows:

(10)

Co — WOTLE‘ if actual and predicted class true
F 0 if actual and predicted class not true

where L = {I1, I, ..., Ig } is a ranked list of the top E retrieved samples from the test set.
The proposed VRBagged-Net classification framework is applied on the DIRSM [5]
dataset. Initially, 15 models are selected, each of them containing 1500 images from class
1 (Flood) and class 0 (NoFlood). Each of the selected samples is used for the training of
separate VR-Model, subsequently 15 VR-outcomes are generated. Finally, majority voting
is applied to retrieve final predictions. The results are evaluated by average precision at
k, and achieved the average precision of 100, 100, 100, 98.85 and 93.64, at intervals of 50,
100, 240 and 480, respectively. Moreover, another evaluation measure of mean average
precision on different intervals of 50, 100, 150, 240 and 480 revealed 98.12. The top 12
images retrieved by VRBagged-Net for the Dataset of DIRSM are shown in Figure 6.

Figure 6. Top 12 images correctly retrieved by VRBagged-Net for the dataset of DIRSM.
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It has been observed that the previous methods have utilized features extracted
from various Convolutional Neural Networks (CNN) and combined them; however, the
challenge of class-imbalance is not focused. The proposed VRBagged-Net has provided a
better outcome, mainly because of balanced random sample with replacement and creation
of multiple training models. The minority class of Flood and Noflood of the DIRSM [5]
dataset, are equalized by random sample selection with replacement. It is observed by the
increasing number of VR-Models, that the performance of the VRBagged-Net framework
has also increased. Comparison of VRBagged-Net with state-of-art methods is given in
Table 2.

Table 2. DIRSM Dataset: Comparison of VRBagged-Net with state-of-the-art methods.

Reference Method AP@50 AP@100 AP@250 AP@480 MAP
Benjamin et al. [23] X-ResNet - - - 86.64 95.71
Sheharyar et al. [9] AlexNet - - - 86.81 95.73
Icaro et al. [42] ResNet, VGG NASNet 100.00 100.00 98.55 88.41 96.74
VRBagged-Net Bagging, VGG, ResNet 100.00 100.00 98.85 93.64 98.12

5.2. Results for Fcsm Dataset

For the FCSM dataset [6], the F; measure has been utilized to evaluate the classification
of evidence of road passability and status of passable or not-passable roads. The total
VR-Models are trained and their respective outcomes are generated. Finally, majority
voting is applied. The implementation of VRBagged-Net revealed F1 measure of 90.58
for the dataset of FCSM. The top 10 images retrieved by VRBagged-Net for the dataset of
FCSM are shown in Figure 7.

Figure 7. Top 12 images correctly retrieved by VRBagged-Net for the dataset of FCSM.

In the previous best-performing methods, the challenge of finding evidence of road
in images has been attempted by combining different pre-trained Convolutional Neu-
ral Networks (CNNs). Researchers have mainly utilized various deep learning models
including ResNet, VGG, Xception, and DenseNet for feature extraction and classifica-
tion tasks [3,27,43,44]. Table 3 shows the comparison between the results produced by
VRBagged-Net and state-of-the-art methods.

Table 3. FCSM Dataset: Comparison of VRBagged-Net with state-of-art methods

Reference Method F1(%)
Hanif et al. [3] Deep Local Features and SRKDA 74.58
Laura et al. [43] InceptionV3, VGG, DenseNet, NASNetLarge 87.32
Zhengyu et al. [27]  ResNet50, Support Vector Machine (SVM) 87.58
Benjamin et al. [44] SVM, Faster R-CNN 87.70

VRBagged-Net Bagging, VGG, ResNet 90.58
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5.3. Results for Intd Dataset

The dataset of INTD [7] involves the challenge of binary classification of images, on
the basis of the topic of their respective articles. It is challenging to find topic relevancy of
article with its image, as a few of the images are not showing any indication of flood, but the
topic of their article is related to flood. However, a few of the images are showing flooding
conditions, but the topic of their article is not related to flood. For the INTD dataset [7],
VRBagged-Net is applied. As the dataset is highly imbalanced, and ratio of positive class
(Flood related topic) to negative class (Not flood related topic) is (1:8). Therefore, different
balancing techniques are used, including weight balancing and data augmentation. It is
revealed that over-sampling based on data augmentation has produced a better outcome as
compared to weight balancing. Image augmentation is a technique of artificially creating
new samples of original dataset images, while preserving the labels. Augmentation creates
multiple copies of images by using different alterations in images including rotation, elastic
deformation and adding noise. It is a very useful technique for expanding the size of the
dataset to facilitate the training of deep learning models. For the minority class of INTD [7],
the dataset augmentation technique is implemented with the help of python based library,
Augmentor [45]. The library utilizes a stochastic, pipeline-based method for the generation
of multiple copies of the given images, by using the techniques of rotation, flip and zoom,
as shown in Figure 8.

Original Image
4

Figure 8. Different augmented samples created from single image.

After the implementation of augmentation, 15 random samples with replacement
are created and used for the training of VR-Models. Subsequently, VR-Outcomes are
generated by utilizing each of the VR-Models. Finally, majority voting is applied for the
final prediction, as shown in Figure 1. A few of the images retrieved by VRBagged-Net for
the INTD dataset are shown in Figure 9.

Figure 9. Few of the correctly retrieved images by VRBagged-Net for the INTD dataset.



Electronics 2021, 10, 1411

13 of 16

Researchers [12] have balanced the classes by using the technique of oversampling and
then, the VGG16 pretrained network is utilized for the prediction of the topic of the article;
the outcome provided an F1 score of 90.2. Another research effort has used instance weight
to balance the classes and fine-tunned VGG16 on the INTD dataset. As a result, the an F1
score of 89.6 has been achieved [31]. However, the proposed VRBagged-Net has utilized
data augmentation technique for the oversampling of minority class and after ensemble
of just five VR-Models, the achieved results provided an F1 score of 93.76. Various other
research efforts have utilized a combination of various pretrained Neural Networks, but
mainly challenges of class-imbalance and overfitting has decreased the performance of
outcome [46-50]. The comparative analysis of results produced by the proposed method,
with state-of-the-art methods is given in Table 4.

Table 4. INTD Dataset: Comparison of VRBagged-Net with state-of-the-art methods

Reference Method F1(%)
Mirko et al. [50] Inception, MobileNet, VGG 66.28
Kashif et al. [49] Fusion of AlexNet, VggNet and ResNet, SVM  82.63
Hariny et al. [48] VGG19 84.26
Dan et al. [47] MobileNet 85.26
Khanh-An et al. [46] EfficientNet 88.5
Mir et al. [4] Ensemble, VGG16, Data Augmentation 89.5
Pierrick et al. [31] InceptionV3, MobileNetV2, VGG16 89.6
Stelios et al. [12] VGG 90.2
VRBagged-Net Bagging, VGG, ResNet 93.76

5.4. Results for Flood-Related Multimedia Task at Mediaeval 2020 (Frmt)

The FRMT dataset [40] involves the challenge of binary classification of images pub-
lished in Italian Tweets, on the basis of availability or unavailability of flooding conditions.
For FRMT [40], only VGG16 is used as the base deep learning model. The rest of the
network remains the same, as shown in Figure 1. The results produced by the variation
of VRBagged-Net ranked top, by revealing the F1 Score as 20.76; the result is already
published in MediaEval workshop, 2020 [40]. The comparative analysis of the results
produced by the proposed method, with state-of-the-art methods is given in Table 5.

Table 5. FRMT Dataset: Comparison of VRBagged-Net with state-of-the-art methods.

Reference Method F1(%)
Naina et al. [51] DenseNet, VggNet-19, ResNet  12.91
Rabiul et al. [52] Xception 14.36
Hanif et al. [53] (VRBagged-Net variation) Ensemble, VGG16 20.76

Researchers [52] have utilized Xception, pretrained on ImageNet dataset and In-
ceptionV3, but features extracted from the Xception pretrained network have produced
better results.

Researchers [51] have utilized three different pretrained networks for the extraction
of features of individual instance of dataset including DenseNet, VggNet-19, and ResNet.
All the selected networks have been pretrained using ImageNet dataset, to extract object
level information. Later, the Support Vector Machine (SVM) is applied for the purpose of
classification on each of the extracted feature sets. This FRMT dataset contains various
challenges, which have negatively affected the results. The major issue includes the text
of tweets that has been annotated without considering their relevant images. Manual
inspection of the test set revealed that those images which are considered flood relevant do
not contain any visual evidence of flooding events. The complexity of the test set has also



Electronics 2021, 10, 1411

14 of 16

References

been increased due to symbols of meteorological alerts, which are difficult to understand
for any algorithm.

6. Conclusions

This research has proposed a Bagging-based deep learning approach with random
input samples and has created a VRBagged-Net classification framework. VRBagged-Net
is featured by stratified random sample selection with replacement for the generation of
various random samples, and training of their respective models. It has been observed
that the combination of weights of object-level and scene-level information for a deep
learning model are useful for flood classification. This approach has exceeded previous best
results for the datasets of Disaster Image Retrieval from Social Media (DIRSM) [5], Flood
Classification for Social Multimedia (FCSM) [6], Image-Based News Topic Disambiguation
(INTD) [7] and Flood-Related Multimedia Task at MediaEval 2020 (FRMT) [40]. More
variations of different ensembling techniques may be implemented in the future, including
AdaBoot and Stacking. Pre-trained models of Neural Network on some domain-specific
data are available, such as NasNet [54]. Their utilization is still an open research problem.
These efforts may improve the performance of the proposed framework.
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The following abbreviations are used in this manuscript:

AC AutoColor Correlation

APK Average Precision

CNNs Convolutional Neural Networks

DCNN Deep Convolutional Neural Network

DIRSM Disaster Image Retrieval from Social Media

EH Edge Histogram

FCSM Flood Classification for Social Multimedia

ILSVRC ImageNet Large Scale Visual Recognition Challenge
INTD Image-Based News Topic Disambiguation

NLP Natural Language Processing

ResNet Residual Network

SVM Support Vector Machine

SRKDA Spectral Regression in combination with Kernel Discriminant Analysis
TFIDF Term-Frequencey Inverse Document Frequency
VGG Visual Geometry Group

VRBagged-Net Visual Geometry Group Residual Bagging Network
FRMT Flood-related Multimedia Task
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