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Abstract: This paper presents a new family of spreading code sequences called hybrid prime code
(HPC), to be used as source code for the optical code division multiple access (OCDMA) network
for large network capacity. The network capacity directly depends on the number of available code
sequences provided and their correlation properties. Therefore, the proposed HPC is designed based
on combining two or more different code words belonging to two or more different prime numbers.
This increases the number of code sequences generated. The code construction method utilized
allows the generation of different code sets, each with different code length and weight, according
to the number of prime numbers used. In addition, the incoherent pulse position modulation
(PPM) OCDMA system is proposed based on the HPC code. Furthermore, the bit error rate (BER)
performance analysis is introduced versus the received optical power and the number of active
users. Moreover, the error vector magnitude (EVM) is calculated versus the optical signal-to-noise
ratio. This work proves that using two prime numbers simultaneously generates far more codes
than using prime numbers separately. It also achieved an OCDMA system capacity higher than the
system that uses the optical orthogonal codes (OOCs), modified prime codes (MPCs) families, and
two code families with separate simultaneously prime numbers, at a BER below 10−9 which is the
optimum level.

Keywords: optical code division multiple access (OCDMA); 2D codes; hybrid prime codes (HPC);
bit error rate (BER) performance analysis

1. Introduction

In the last three decades, there were two main categories of optical orthogonal codes,
based on (0, 1) logic, and were introduced into the optical code division multiple access
(OCDMA) networks. The first code category refers to the optical orthogonal codes (OOCs)
and is designed with low off-peak, auto- and cross-correlation properties for the purposes of
frame synchronization and minimum interference [1–9]. The second one refers to the prime
codes (PCs) and is designed to sacrifice the auto-correlation property [10–21]. In direct
sequence OCDMA (DS-OCDMA) networks, each user assigns a different code sequence
to spread its data bits. Moreover, all code sequences are orthogonal and share the same
available bandwidth such as the OOCs, MPCs, and other spreading codes in the literatures.
Before the spreading, line coding such as block codes can be used at the bit level in order to
detect and correct the data bits at the receiving end.

In order to improve the OCDMA network’s performance, many researchers have
focused on the modification of the OOC and PC parameters such as code length, code
weight, and code correlation properties. Ultimately, the total number of code sequences
provided is the most important network parameter. It limits the number of users sharing
the network simultaneously. To date, all of the previous results demonstrated that the PC
family such as; modified PCs (MPCs), padded MPCs (PMPC), new-MPCs (n-MPC), double
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padded MPCs (DPMPCs), uniform cross-correlation MPCs (UC-MPCs), enhanced MPCs
(EMPCs), and weighted MPCs (WMPCs) can offer a greater number of sequences with
much better characteristics than the OOC [22–26].

Within the PC family, the WMPC is an improvement over MPC, i.e., double the number
of code sequences, higher code weight, and better correlation properties assuming the same
PC sequence length [27–33]. The MPC uses complex analysis methods to increase the code
weight to further comply with the auto-correlation peak value. From these observations,
the main objective of this study is to propose a new code family called hybrid prime codes
(HPC) that is not related to the MPC and their method of construction but only depends on
the code words of the PC. This new code family is able to provide data for the following
issues efficiently:

(1) Maximum number of code sequences for maximum number of users, leading to an
increase in the network capacity for data and multimedia applications.

(2) Minimum code length to increase the user bit rate.
(3) Optimal code weight for good network bit error rate (BER) performance.
(4) Minimum cross-correlation values to prevent multiple access interference (MAI).
(5) Reliable code parameter variation while keeping the same cross-correlation value.
(6) Simplicity of code generation.
(7) Minimum cost with respect to the line coding techniques in optical domain.

Two main goals required for a high performance OCDMA network:

(1) High signal integrity in the midst of interference at the receiving end.
(2) Broader network capacity.

Therefore, all optical code sequences have to be in the optical orthogonal category in
order to distinguish the target user from the rest.

The remainder of this paper is organized as follows. Section 2 is a literature review on
the 2-D OCDMA codes. The construction principles and correlation properties of the HPC
are introduced in Section 3. Section 4 shows the code correlation results. The proposed
OCDMA system model is illustrated in Section 5. Section 6 is the BER performance analysis,
while Section 7 is the throughput analysis. Section 8 displays and discusses the simulation
results. Section 10 is devoted to the main conclusions.

2. Literature Review

The main disadvantage of the 1D code is the need for a long code length for a large
system capacity, where a large bandwidth is used in spectral coding and ultrashort pulses
have to be used in temporal coding. Various 2D schemes are proposed to circumvent this
problem. The 2D code can be constructed through various combinations of time, spectral,
and space. There has been much research into the 2D spectral/time, spectral/space, and
space/time domains. One of the most popular schemes is the MPC. In this scheme, different
data bits are temporally spread by using optical delay lines for the incoherent OCDMA
networks. In this section, we will present the most important previous research, as well
as what has been accomplished in each research. This will lead us to present the idea and
importance of the proposed code.

In [34], the design of a 2D temporal/spatial incoherent OCDMA system is presented
based on matrix codes with experimental results. The proposed system BRE performance
was compared with the performance of the other system which uses the temporal codes.
The results showed that the system performance based on the proposed designed code is
better than the systems that use other codes. This is due to the lower losses with no side
lobes in auto-correlation property.

In [35], the authors proposed a new set of 2D wavelength/time codes with orthogonal
properties in both domains for the OCDMA network. This code set was generated by an
array of fiber gratings and was constructed based on the expansion operation from the 1D
to 2D Hamming correlation. The BER performance was derived theoretically in terms of
only the MAI and all other noise sources are neglected. The numerical simulations proved
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that the BER was improved compared with the BER of the systems that use other codes
when using the smallest number of wavelength sets.

In [36], the generation of a 2D pseudo-orthogonal code sequence was presented using
the optimum Golomb rules. The authors analyzed the BER performance of a synchronous
OCDMA system using 2D wavelength/time codes. It was shown that this code has higher
cardinality and good spectral density than the linear code sequence.

In [37], the spatial/spectral codes and corresponding system architecture were pre-
sented. The developed code was constructed based on two 1D M-sequences. The detection
operation at the receiver was performed using only a binary multiplier. The authors proved
that these codes have better BER performance than 1D M-sequence code if the number of
active users is increased in the network. However, the MAI limits the system performance
because of the dependency on the 1D M-sequence for the code construction.

In [38], a new code family named 2D projection code was proposed with a balanced
detection receiver. The code construction was based on the projection of 2D code into
1D wavelength code. The MAI was eliminated using the balanced detector. The BER
performance was improved at the higher number of active users compared with the
differential detection techniques.

In [39], a 2D wavelength/time OOCs family was constructed for asynchronous
OCDMA systems. These codes have more flexibility than the conventional 2D codes
relative to the code size. The system performance based on the Markov chain technique
was analyzed. The authors proved that this code provides better BER performance than
the others, and the number of active users is dependent on the code size.

In [40], the authors developed a 2D spatial/spectral code and used a MAI cancellation
technique to enhance the BER performance. This code family was constructed based on
a 1D perfect difference code and was named 2D perfect difference code. Moreover, the
transceiver architecture was presented based on this 2D code and the results indicated that
this system can accommodate more active users than the 2D M-sequence codes.

In [41], the authors combined one-coincidence frequency hop code (OCFHC) and
OOC to demonstrate a new code called OCFHC/OOC. In this code, each code word used a
single wavelength. The maximum cross-correlation between any pair of code words is one.
The authors evaluated the system performance in terms of the throughput based on a new
method called effective normalized throughput with the diverse code method used as a
benchmark. Moreover, the numerical simulations of the BER performance are presented.

In [42], the authors constructed a high parameter-flexible 2D minimum weight OOC.
They used minimum wavelengths that corresponded to the code weight with short lengths.
Moreover, the electrical coding/decoding process was investigated based on the parallel
interference cancellation receiver. The authors proved that when the encoder and decoder
were implemented, electrically, the parallel interference cancellation receiver worked better
than the conventional correlation receiver.

In [43], a 2D spectral/spatial code was developed based on the existing modified
quadratic congruence code and M-sequence code. The authors used a tunable fiber Bragg
grating to construct the corresponding transceiver. The receiver was designed to eliminate
the MAI and enhance the system BER performance.

In [44], a new spectral/spatial code called diluted perfect difference code was de-
veloped. The code construction was based on the dilution method and the 1D perfect
difference code. The corresponding OCDMA transceiver was presented. This code has a
MAI cancellation property used to eliminate the interference between users due to multiple
access. The authors proved that the BER performance, when calculated using the proposed
code, is better than the other codes at 1.5 Gbps and 2.5 Gbps.

In [45,46], a new 2D wavelength/time code family was proposed based on the modi-
fied quadratic congruence code. The encoder/decoder structures were presented based on
tunable optical delay lines. The balanced detector was used at the receiver to completely
eliminate the MAI. It was proven that the OCDMA system using this new code can accom-
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modate a larger number of active users with a better BER performance than the system
using 2D wavelength/spatial M-matrix code.

In [22], a 2D weighted modified prime code (WMPC) based on the existing MPC was
developed. The author analyzed and presented the auto-correlation and cross-correlation
properties of this new code in comparison with all the codes belonging to the MPC. The
obtained results proved that the cross-correlation property of this code is limited to one
and the auto-correlation property is higher than that of other MPC families. In [47], the
design of 2D photonic crystal OCDMA encoder based on the WMPC was developed
and presented.

In [48,49], a 2D multi-length WMPC (ML-WMPC), in multi-rate form based on multi-
ple prime numbers, was used to accommodate different rates of multimedia services in the
incoherent PPM-OCDMA network. In this research, the system BER performance was ana-
lyzed for different OCDMA receivers and the MAI cancellation receiver with Manchester
encoding achieved better performance. The authors proved that the BER performance of
network based on this multi-length code outperforms the ML-OOC’s and all MPC families
in the presence of the MAI cancellation receiver and Manchester encoding.

In [50,51], a new 2D double-length MPC (DL-MPC) was applied to wireless incoherent
PPM-OCDMA and coherent BPSK-OCDMA networks, respectively. The wireless channel
model was represented by a gamma–gamma model. In [51], the balanced detector was
used at the receiving end to completely eliminate the MAI and other noise. The authors
proved that the BER performance of coherent BPSK-OCDMA systems based on a new code
outperforms all the incoherent and coherent systems using the other codes.

In [52,53], a 2D optimized MPC (OMPC) was developed to improve the BER perfor-
mance of the PPM-OCDMA system by increasing the code weight of the DL-MPC to an
optimum value. The MAI cancellation receiver was used to improve the signal-to-noise
ratio. The code characteristics are compared with the other existing code characteristics
and the proposed OMPC proved to be the best. Furthermore, the system BER performance
based on this code was improved compared with the other existing codes.

3. Code Construction

The proposed HPC code is based on using two different prime numbers P1 and P2; P2
is the greater prime number than P1. Each prime number can generate a number of code
words equal to the same prime number. Each code word contains a number of chips equal
to the corresponding prime number. Each code word contains one active chip “HIGH”
and the remaining chips are “ZEROs”. The position of the active chip is di or j, where
di or j ∈

{
0, 1, 2, . . . , Pi or j − 1

}
. For the first prime number Pi, the code words can be

generated as
{

Xoi, X1i, X2i, · · · X(Pi−1)i

}
and for the second prime number Pj, the code

words can be generated as
{

Xoj, X1j, X2j, · · · · · · X(Pj−1)j

}
. For example, when P1 = 5

and P2 = 7, the generated code words are listed in the following two groups:

X01 = [1 0 0 0 0]− 0 shift
X11 = [0 1 0 0 0]− 1 shift
X21 = [0 0 1 0 0]− 2 shift
X31 = [0 0 0 1 0]− 3 shift
X41 = [0 0 0 0 1]− 4 shift

 for P1 = 5

X02 = [1 0 0 0 0 0 0]− 0 shift
X12 = [0 1 0 0 0 0 0]− 1 shift
X22 = [0 0 1 0 0 0 0]− 2 shift
X32 = [0 0 0 1 0 0 0]− 3 shift
X42 = [0 0 0 0 1 0 0]− 4 shift
X52 = [0 0 0 0 0 1 0]− 5 shift
X62 = [0 0 0 0 0 0 1]− 6 shift


for P2 = 7
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The code words listed in the above two groups are then utilized to construct the two
code sequence trees as shown in Tables 1 and 2 based on the branching operation.

Table 1. Code sequences tree for P = 5.

Folded Code Sequences Code Sequences

X41X01 X31X01 X21X01 X11X01 X01X11 X01X21 X01X31 X01X41
X41X11 X31X11 X21X11 X11X21 X11X31 X11X41

X41X21 X31X21 X21X31 X21X41
X41X31 X31X41

Table 2. Code sequences tree for P = 7.

Folded Code Sequences Code Sequences

X62X02 X52X02 X42X02 X32X02 X22X02 X12X02 X02 X02X22 X02X32 X02X42 X02X52 X02X62
X62X12 X52X12 X42X12 X32X12 X22X12 X12X22 X12X32 X12X42 X12X52 X12X62.

X62X22. X52X22 X42X22 X12X62 X22X32 X22X42 X22X52 X22X62
X62X32 X52X32 X42X32 X32X42 X32X52 X32X62

X62X42 X52X42 X42X52 X42X62
X62X52 X52X62

The number of code sequences in the first and second trees in Tables 1 and 2 are
K1 = P1(P1 − 1) and K2 = P2(P2 − 1), respectively. However, it is also shown in the two-
code sequence trees that K1 = K2

2 − 1. Thus, the number after the minus sign, such as 1,
represents the number of code sequences that are not used in coding construction (the bold
faced and highlighted code sequences in Table 2).

3.1. Code Construction Procedure

(a) Arrange the code sequences in the first tree, row by row in one column, as shown in
Table 3, column 1.

(b) Merge the code sequences in column 1 with the code sequences in the right side of the
second tree in Table 2, column by column, as shown in Table 3, column 2.

(c) Rotate the final code sequences in column 2 horizontally from right to left until the
first code word in this sequence becomes the last one, as shown in Table 3, column 3.

After these operations, the final code sequence can generally be expressed as:

cm =



X0iX0jX1iX1j X0jX1iX1jX0i
...

...
X0iX(dj)jX(di)iX(dj)j rotat (Pi − 2)times X(dj)jX(di)iX(dj)jX(0i)

...
...

X0iX(Pi−2)jX(Pi−1)iX(Pi−1)j X(Pi−2)jX(Pi−1)iX(Pi−1)jX(0i)
...

...
...

...
...

...
...

... rotat (Pi − 2)times
...

X(Pi−1)iX1jX(Pi−2)iX(Pj−1)j X1jX(Pi−2)iX(Pj−1)jX(Pi−1)i



(1)

The total number of code sequences in Table 3 is equal to K, where K = K1 ×
number of merged code words (i.e., equals four in column 2, Table 3) and the total number
of code sequences can be generated equal to 2 K if the left half code sequences (the folded
tree) in Table 2 have been used.
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Table 3. HPC sequences for P1 = 5 and P2 = 7.

Column 1 Column 2 Column 3

Code
Index m First Tree Code Sequences Merged Code

Sequences Resultant Code Sequences

0 C0 X01X11 X01X02X11X12

C00 X01 X02 X11 X12 = 100001000000010000100000
C01 X12 X01 X02 X11 = 010000010000100000001000
C02 X11 X12 X01 X02 = 010000100000100001000000
C03 X02 X11 X12 X01 = 100000001000010000010000

1 C1 X01X21 X01X12X21X22

C10 X01 X12 X21 X22 = 100000100000001000010000
C11 X22 X01 X12 X21 = 001000010000010000000100
C12 X21 X22 X01 X12 = 001000010000100000100000
C13 X12 X21 X22 X01 = 010000000100001000010000

2 C2 X01X31 X01X22X31X32

C20 X01 X22 X31 X32 = 100000010000000100001000
C21 X32 X01 X22 X31 = 000100010000001000000010
C22 X31 X32 X01 X22 = 000100001000100000010000
C23 X22 X31 X32 X01 = 001000000010000100010000

3 C3 X01X41 X01X32X41X42

C30 X01 X32 X41 X42 = 100000001000000010000100
C31 X42 X01 X32 X41 = 000010010000000100000001
C32 X41 X42 X01 X32 = 000010000100100000001000
C33 X32 X41 X42 X01 = 000100000001000010010000

4 C4 X11X21 X11X42X21X52

C40 X11 X42 X21 X52 = 010000000100001000000010
C41 X52 X11 X42 X21 = 000001001000000010000100
C42 X21 X52 X11 X42 = 001000000010010000000100
C43 X42 X21 X52 X11 = 000010000100000001001000

5 C5 X11X31 X11X52X31X62

C50 X11 X52 X31 X62 = 010000000010000100000001
C51 X62 X11 X52 X31 = 000000101000000001000010
C52 X31 X62 X11 X52 = 000100000001010000000010
C53 X52 X31 X62 X11 = 000001000010000000101000

6 C6 X11X41 X11X02X41X22

C60 X11 X02 X41 X22 = 010001000000000010010000
C61 X22 X11 X02 X41 = 001000001000100000000001
C62 X41 X22 X11 X02 = 000010010000010001000000
C63 X02 X41 X22 X11 = 100000000001001000001000

7 C7 X21X31 X21X12X31X32

C70 X21 X12 X31 X32 = 001000100000000100001000
C71 X32 X21 X12 X31 = 000100000100010000000010
C72 X31 X32 X21 X12 = 000100001000001000100000
C73 X12 X31 X32 X21 = 010000000010000100000100

8 C8 X21X41 X21X22X41X42

C80 X21 X22 X41 X42 = 001000010000000010000100
C81 X42 X21 X22 X41 = 000010000100001000000001
C82 X41 X42 X21 X22 = 000010000100001000010000
C83 X22 X41 X42 X21 = 001000000001000010000100

9 C9 X31X41 X31X32X41X52

C90 X31 X32 X41 X52 = 000100001000000010000010
C91 X52 X31 X32 X41 = 000001000010000100000001
C92 X41 X52 X31 X32 = 000010000010000100001000
C93 X32 X41 X52 X31 = 000100000001000001000010

10 C10 X11X01 X11X42X01X62

C100 X11 X42 X01 X62 = 010000000100100000000001
C101 X62 X11 X42 X01 = 000000101000000010010000
C102 X01 X62 X11 X42 = 100000000001010000000100
C103 X42 X01 X62 X11 = 000010010000000000101000

11 C11 X21X01 X21X02X01X32

C110 X21 X02 X01 X32 = 001001000000100000001000
C111 X32 X21 X02 X01 = 000100000100100000010000
C112 X01 X32 X21 X02 = 100000001000001001000000
C113 X02 X01 X32 X21 = 100000010000000100000100
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Table 3. Cont.

Column 1 Column 2 Column 3

Code
Index m First Tree Code Sequences Merged Code

Sequences Resultant Code Sequences

12 C12 X31X01 X31X12X01X42

C120 X31 X12 X01 X42 = 000100100000100000000100
C121 X42 X31 X12 X01 = 000010000010010000010000
C122 X01 X42 X31 X12 = 100000000100000100100000
C123 X12 X01 X42 X31 = 010000010000000010000010

13 C13 X41X01 X41X22X01X52

C130 X41 X22 X01 X52 = 000010010000100000000010
C131 X52 X41 X22 X01 = 000001000001001000010000
C132 X01 X52 X41 X22 = 100000000010000010010000
C133 X22 X01 X52 X41 = 001000010000000001000001

14 C14 X21X11 X21X32X11X62

C140 X21 X32 X11 X62 = 001000001000010000000001
C141 X62 X21 X32 X11 = 000000100100000100001000
C142 X11 X62 X21 X32 = 010000000001001000001000
C143 X32 X11 X62 X21 = 000100001000000000100100

15 C15 X31X11 X31X02X11X42

C150 X31 X02 X11 X42 = 000101000000010000000100
C151 X42 X31 X02 X11 = 000010000010100000001000
C152 X11 X42 X31 X02 = 010000000100000101000000
C153 X02 X11 X42 X31 = 100000001000000010000010

16 C16 X41X11 X41X12X11X52

C160 X41 X12 X11 X52 = 000010100000010000000010
C161 X52 X41 X12 X11 = 000001000001010000001000
C162 X11 X52 X41 X12 = 010000000010000010100000
C163 X12 X11 X52 X41 = 010000001000000001000001

17 C17 X31X21 X31X22X21X62

C170 X31 X22 X21 X62 = 000100010000001000000001
C171 X62 X31 X22 X21 = 000000100010001000000100
C172 X21 X62 X31 X22 = 001000000001000100010000
C173 X22 X21 X62 X31 = 001000000100000000100010

18 C18 X41X21 X41X02X21X52

C180 X41 X02 X21 X52 = 000011000000001000000010
C181 X52 X41 X02 X21 = 000001000001100000000100
C182 X21 X52 X41 X02 = 001000000010000011000000
C183 X02 X21 X52 X41 = 100000000100000001000001

19 C19 X41X31 X41X12X31X62

C190 X41 X12 X31 X62 = 000010100000000100000001
C191 X62 X41 X12 X31 = 000000100001010000000010
C192 X31 X62 X41 X12 = 000100000001000010100000
C193 X12 X31 X62 X41 = 010000000010000000100001

In comparison with the other orthogonal codes used in the OCDMA networks, such
as the OOCs and the MPCs, the proposed code achieved the following advantages:

1. Limited cross-correlation “0” or “1”;
2. Very large number of code sequences can provide a large number of simultaneous

users without sacrificing performance;
3. Shorter code length for the same higher bit rate transmission.

Table 4 summarizes the comparison between the HPC and the other orthogonal codes
used in the OCDMA networks.

Table 4. Codes comparison.

Code-Family Code-Length Code-Weight Auto-Corr. Number of Code
Sequences Cross-Corr.

OOC [13] F W W (F− 1)/W(W − 1) 0 or 1
MPC [14] P2 P P P2 0 or 1

HPC [Present work] n (P1 + P2) 2n 2n 2(2nP1(P1 − 1)) 0 or 1

where P1 = P = 5, W = 4, F = 32, and n = 2.
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Table 4 shows that the number of sequences provided by the OOC, MPC, and HPC
are 2, 25, and 160, respectively. Moreover, the code lengths of the OOC, MPC, and HPC are
32, 25, and 24, respectively when P2 = 7.

3.2. Correlation Properties

Equation (1) represents the auto- and cross-correlation functions of the HPC sequences
according to Table 3.

RCmzCab =

{
2n f or m = a and z = b
0, 1 f or m 6= a and

or z 6= b
(2)

This equation illustrates that:

(a) The peak value of the auto-correlation property is 2n, where n is an integer number
equal to the number of code words used to construct the code sequence in each tree.

(b) The value of the cross-correlation property is “0” or “1” between any two different
code sequences in the coding of Table 3 and is independent of whether these two
codes share the same code index or not.

(c) m ∈ {0, 1, 2, . . . . . . , (Pi + 2Pj)} and z ∈ {0, 1, . . . , (Pi − 2)}

4. Correlation Results

The simulations in this section are performed to test the auto- and cross-correlation
properties of the proposed HPC family at every synchronized time which is equal to
the encoded bit time duration and to the time that represents the code sequence length.
Figures 1–7 show the auto-correlation property of the HPC sequences C01, C43, C71, C110,
C141, C163, and C182, respectively. The results illustrate that the auto-correlation peak value
is equal to “Four”. Such value represents the number of code words in each code sequence
belonging to the HPC family. This value can be increased by increasing the number of code
words. It is noted that the side lobe values on both sides of the peak value are limited to
either “ZERO” or “ONE” in all results. These results are better than the results obtained
from MPC and OOC families.
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Figure 7. Auto-correlation of C182 sequence, P1 = 5 and P2 = 7.

Figures 8–13 represent the value of the cross-correlation between two code sequences
in the same group. It is clear that for every synchronized time referred to the shift number
“24”, the cross-correlation value is “ZERO”. This achieves perfect orthogonality and zero
interference at the receiver side.
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Figure 10. Cross-correlation between C71 and C73 sequences in same group, P1 = 5 and P2 = 7.
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The cross-correlation property between two code sequences from two different groups
are illustrated in Figures 14–19. These results show that the cross-correlation value is
“ZERO” or “ONE” at every synchronized time. If the HPC sequences are applied to the
asynchronous OCDMA network, each user can communicate in the network at unique
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time slots that cause out-of-phase and undesirable correlation values, as shown between
each synchronized time.
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5. The Proposed OCDMA System Model

Figure 20 shows the proposed OCDMA transceiver system architecture based on the
HPC. To prevent the pulse spreading during the optical fiber channel, the data is first
PPM modulated. Each PPM chip is spread by the proposed HPC sequence of length L
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and weight W and then is fed to a star coupler optical channel to broadcast it [54]. The
system multiplicity M is the power control factor that controls the optical power level at
the receiver. The total number of available code sequences is the most important factor for
the system capacity calculation and throughput. Additionally, the MAI caused by the star
coupler optical channel is also the important factor that affects the BER performance and
system capacity and is considered in the performance analysis.
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6. BER Performance Analysis

Each HPC sequence is characterized by the following parameters:

1. Code length L equal to L = 2
n
∑

i=1
Pi, where Pi is the prime number and n is the number

of the different prime numbers used for the code construction.

2n, is the number of code words in each code sequence generated.
The total number of sequences generated K = 2nPmin(Pmin − 1), where Pmin is the

minimum prime number used for the code construction.
Throughout the analysis, it is assumed that N is the maximum number of active users

out of the K number of sequences available, with the remaining number of users being
inactive. In addition, αn, n ∈ {1, 2, . . . . . . , K} is given as a random variable which is
defined as [48,49]:

αn =

{
1, i f user #n is active
0, i f user #n is inactive

(3)

Thus,
K
∑

n=1
αn = N.

Furthermore, the number of active users in the first group can be represented by a
random variable U, and u is the variable that realizes U. When user #2 is recommended,

then U =
K
∑

n=1
αn, and its probability function can be written as:

PU(u) =

(
K

N − u

)(
K1

u− 1

)
(

K− 1
N − 1

) . . . , u ∈ {umin, umin+1, . . . . . . . . . , umax} (4)

where umin = max(N + P1 − K, 1), and umax = min(N, P1).
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Assume each PPM pulse having a number of photons Q that can be defined by
Q = Pr

Pt
× ln

(
M
W

)
. Furthermore, the random vector l = (l0, l1, . . . . . . , lM−1)U represents

the amount of MAI interference, where lj is a random variable representing the number of
pulses interfering the time slot number j. Additionally, w = (w0, w1, . . . . . . ., wM−1)U is the
vector that realizes the vector l and U = u.

The probability of the random vector l can be expressed as:

P
l
...U
(w0, w1, . . . . . . , wM−1

...u) =
1

MN−u
(N − u)!

w0!w1! . . . . . . wM−1!
(5)

where
M−1
∑

j=0
wj = N −U.

In case of the PPM-OCDMA scheme, the BER performance can be expressed as:

Pb =
M

2(M− 1)

umax

∑
u=umin

PE.PU(u) (6)

According to the characteristics of HPC, Equation (5) can be modified as:

PE ≥
N−u
∑

w1=L

(
N − u

w1

)
1

Mw1 .
(

1− 1
M

)N−u−w1
.

min(w1−2P, N−u−w1)

∑
w0=0

(
N − u− w1

w0

)
1

(M−1)w0(
1− 1

M−1

)N−u−w0−w1
+ 0.5

N−u+L−1
2
∑

w1=L−1

(
N − u

w1

)
1

Mw1

(
1− 1

M

)N−u−w1

(
N − u− w1
w1 − L + 1

)
1

(M−1)w1−L+1 × exp
(
−Q (L−1)2

4(L−1+w0+w1)

) (7)

7. Throughput Analysis

The throughput calculation is mainly based on two important parameters such as the
information rate and system capacity. It should be assumed that TM is the M-ary frame
duration, L is the HPC sequence length, and each time slot has duration τ which equals
LTc. Therefore, for different applications τ can be expressed as:

τ = TC L = 2TC × n(P1 + P2) (8)

The throughput RHPC for variable TC, according to the provided application by the
network, can be defined as:

RHPC =
Log(M)

TM
=

Log(M)

Mτ
=

Log(M)

2M× n(P1 + P2)TC
=

RC × log(M)

2M× n(P1 + P2)
ψHPC (9)

where RC = ψHPC
TC

is the chip rate and ψHPC is a factor that represents the probability of
received bit correctly multiplied by the maximum throughput or the steady state value of
the throughput. The user throughput product measures the total information rate trans-
mitted by all users in a network. This product denoted by N × RHPC, but in practice, the
parameters M, L, and Tc are optimized in order to maximize the users-throughput product.

8. EVM Analysis

The error vector magnitude (EVM) is a new important metric for measuring the quality
of the optical signal with BER and throughput performances. For N randomly transmitted
symbols, EVM is defined by the root mean square value of the difference between the
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received error vector and the ideal transmitted vector [55]. For M-ary modulation the BER
can be expressed as a function of the EVM as [56,57]:

EVM =
1− 1√

M
0.5 log2(M)

er f c

(√
3/2

(M− 1)EVM2

)
(10)

For more simplicity, EVM can also be expressed as:

EVM% =
BERmax − BER

BER
× 100% (11)

9. Simulation Results

Figure 21 shows the BER performance of the OCDMA system versus the number of
active users based on the proposed HPC. The graph compares HPC with OOC, MPC, EMPC,
and WMPC (please refer to legend). The result illustrates that when n = 2, L = 24, and W = 4
the HPC outperforms the other codes and the OCDMA can accommodate 80 users at BER
equal to 10−10. This means lower MAI as a result of good code correlation characteristics.
If the code length and code weight are increased, the system can accommodate a higher
number of active users at slightly higher BER due to the incremental increase in the MAI.
Despite this increase, the proposed code is still better than the other codes as shown in
Figure 22.
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Considering the optimum value of BER and the value of system multiplicity M,
Figure 23 presents the system users-throughput product against the number of active users
N in case of the proposed HPC in comparison with the existing MPC. The results show
that at any value of N, the system throughput product decreases as the system multiplicity
increases. In addition, the results show that when the HPC is used the users-throughput
product slightly increases as the number of active users N increases. This due to the
dependence of N and the code length L on the used prime numbers P1 & P2. On the other
hand, when the MPC is used the users-throughput product remains the same when the
number of active users increase, which is due to the minimum available number of codes.
Finally, the system throughput product in the case of HPC outperforms the throughput
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product in the case of MPC due to the difference in the chip rate illustrated in the previous
results in Figure 22 and the higher number of codes available.
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Figure 24 shows EVM% versus the OSNR. This illustrates that at any value of EVM,
the proposed HPC code outperforms the other codes. Moreover, at any value of OSNR, the
error magnitude is lowest when the proposed code is recommended. For example, at 10 dB
OSNR, the values of EVM% are 5%, 8%, and 15% for HPC, MPC, and OOC, respectively.
This is because the good correlation properties achieve the minimum MAI and better BER.
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10. Conclusions

The new address sequence for the SI-OCDMA network which refers to HPC was pro-
posed and evaluated in the communication systems in terms of BER and users-throughput
product. The code construction principles and their correlation properties were presented.
Furthermore, the code construction results proved that the generated number of codes in
the HPC family is much greater than the number of codes generated in the other existing
code families at the same code length. Moreover, the proposed code has the potential to
change its length and weight while maintaining its excellent correlation properties. In
addition, the good correlation characteristics of the HPC led to: (1) achieve a minimum
amount of MAI; and (2) improve the network EVM and BER performance in comparison
with the OOC and MPC at a higher number of users. Finally, the HPC has the potential to
enhance the OCDMA network capacity.
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