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Abstract: Traffic police gesture recognition is important in automatic driving. Most existing traffic
police gesture recognition methods extract pixel-level features from RGB images which are uninter-
pretable because of a lack of gesture skeleton features and may result in inaccurate recognition due
to background noise. Existing deep learning methods are not suitable for handling gesture skeleton
features because they ignore the inevitable connection between skeleton joint coordinate information
and gestures. To alleviate the aforementioned issues, a traffic police gesture recognition method
based on a gesture skeleton extractor (GSE) and a multichannel dilated graph convolution network
(MD-GCN) is proposed. To extract discriminative and interpretable gesture skeleton coordinate
information, a GSE is proposed to extract skeleton coordinate information and remove redundant
skeleton joints and bones. In the gesture discrimination stage, GSE-based features are introduced into
the proposed MD-GCN. The MD-GCN constructs a graph convolution with a multichannel dilated
to enlarge the receptive field, which extracts body topological and spatiotemporal action features
from skeleton coordinates. Comparison experiments with state-of-the-art methods were conducted
on a public dataset. The results show that the proposed method achieves an accuracy rate of 98.95%,
which is the best and at least 6% higher than that of the other methods.

Keywords: traffic police gesture recognition; gesture skeleton extractor; multichannel dilated; graph
convolution network

1. Introduction

In daily traffic, traffic signals are important for ensuring the smooth flow of road
traffic and increasing roadway traffic security. Traffic signals include not only signal lamps,
signs, and markings but also traffic police commands. In the event of special situations,
such as traffic light failure, bad weather, traffic congestion, and so on, traffic police typically
control traffic and guide drivers using command gestures. In recent years, self-driving
cars have gradually entered people’s field of vision. Therefore, driverless cars must be
able to not only recognize traffic lights but also quickly and correctly respond to and
process traffic police’s flexible gestures. Thus, traffic police gesture recognition is crucial in
driver assistance systems and intelligent vehicles. In recent years, deep learning achieved
considerable success in computer vision [1-3]. It excels in image-level image classification,
object detection, image segmentation, and other fields and achieved breakthroughs [4-7] in
video-level action recognition and action detection. Therefore, recent works [8-11] used
deep learning methods to solve traffic police gesture recognition problems. However, cur-
rent traffic police gesture recognition methods pose certain difficulties, and the recognition
task generally faces two challenges. First, most existing traffic police gesture recognition
methods extract pixel-level features from RGB images which are uninterpretable because
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of the lack of gesture skeleton features and may result in inaccurate recognition due to
background noise. Appropriate and effective features representing traffic police gestures
should be chosen and extracted. However, traffic police typically work in complex and
unpredictable environments, which can introduce interference and render features uninter-
pretable. A gesture skeleton extractor (GSE) is proposed in this study, which can extract
and improve interpretable skeleton coordinate information. Compared with extracted
pixel-level features, skeleton information can eliminate background interference and make
features interpretable through coordinates and the proposed attention mechanism. Second,
existing deep learning methods are not suitable for handling gesture skeleton features.
These methods ignore the inevitable connection between skeleton joint coordinate feature
and gestures. Several works [8,9,12] extracted traffic police skeleton data and proved that
this method is effective. However, some problems exist in prior works. For example,
previous studies generally relied on handcrafted components or pixel-level information to
extract skeleton features. This method cannot determine the relationship between skeleton
joint coordinates and gestures, misses interpretable topologic features, and demonstrates
weak generalization capability and poor recognition performance. Recently, graph con-
volution achieved considerable success in such tasks [13-17]. Reference [13] proposed a
graph-based scalable semi-supervised learning method, and Yan et al. [14] employed a
graph convolution in skeleton data for action recognition. Inspired by previous works,
a new graph convolution network, namely the multichannel dilated graph convolution
network (MD-GCN), is proposed to address the traffic police gesture task in this study.
Compared with traditional action recognition methods, the proposed method focuses on
specific traffic police gesture features and the classification network and demonstrates
better performance.

In this work, a traffic police gesture recognition method based on a GSE and the
MD-GCN is proposed. A GSE is proposed in this study which can extract discriminative
and interpretable gesture features. In the gesture discrimination stage, GSE-based features
are introduced into a new framework called the MD-GCN which extracts body topological
and spatiotemporal action features. The MD-GCN can enrich the representation of gesture
features and make the features interpretable. Moreover, the proposed method demonstrates
superior performance in the Police Gesture Dataset [9]. The contributions of the proposed
method are summarized below:

1. A GSE is proposed to extract skeleton coordinate information and remove redundant
skeleton joints and bones, which improves skeleton data representation to strengthen the
attention of the network.

2. The MD-GCN is proposed to extract body topological and spatiotemporal action
features from skeleton coordinates, which can enrich the representation of gesture features
and make features interpretable.

2. Related Work

Traffic police gesture recognition belongs to the field of action recognition. Compared
with traditional action recognition methods, the proposed method focuses on specific
traffic police gesture features and the classification network and demonstrates better
performance. Owing to its important application value, numerous researchers conducted
studies on traffic police gesture recognition, and their methods can be divided into on-body
sensor-based methods and visual-based methods. On-body sensor-based methods use
microelectromechanical systems and inertial sensors (e.g., accelerometers and gyroscopes)
to collect posture and movement data. For example, Wang et al. [18] employed two three-
axis accelerators fixed on the back of the hand of a traffic police officer to collect hand
motion features and then recognized the gestures by comparing them with predefined
templates. Yuan et al. [19] adopted a similar method to design a Chinese traffic police
gesture recognition system, which achieved a satisfactory recognition rate. However,
the operation of such methods is relatively complex and requires traffic police to wear
sensor devices, which can increase their work burden. In addition, the relatively expensive
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equipment limits the wide application of sensor-based methods. Compared with on-body
sensor-based methods, visual sensor-based methods are more convenient and affordable.
Such methods use only a vision sensor to locate and capture the gestures of traffic police in
a video and then extract poses, motion, and other features from the video and classify the
traffic police gestures according to the features. In recent years, numerous studies on visual
methods for traffic police gesture recognition emerged. For instance, Le et al. [20] captured
depth images using a Kinect sensor and then created feature vectors according to the
relative angles between the joints of the skeleton model extracted from the depth images.
Support vector machine classifiers were employed in reference [20] for traffic police gesture
recognition. Guo et al. [21] used a single Kinect camera to obtain depth information and
RGB image data and then constructed static descriptors from the depth information and
estimated dynamic descriptors from the RGB image sequences. The authors generated a
fusion descriptor by combining a static descriptor with a dynamic descriptor and then used
the mean structural similarity index to spot Chinese traffic police gestures. Zhang et al. [12]
utilized Kinect to obtain the fingertip position and then recognize the gesture by an
improved DTW algorithm. Similarly, Ma et al. [8] used Kinect 2.0 to build the Traffic
Police Command Gesture Skeleton dataset and proposed a spatiotemporal convolution
neural network to identify traffic police command gestures. The method can capture and
provide a human skeleton with Kinect sensors for identifying gestures and demonstrates
improved recognition accuracy. However, when the distance between the Kinect sensor
and the traffic police is wide, the accuracy rate of the traffic police hand recognition
method declines. The above vision-based methods are based on depth images; however,
some methods only use RGB images as input. For example, Guo [22] utilized the Gabor
feature-based two-dimensional (2D) principal component analysis. Cai et al. [23] extracted
the body and arm of a traffic police officer in the foreground from an image retrieved by an
RGB camera and then proposed a max-covering scheme to determine the coordinates of
the pixels in the upper arm and forearm and recognized traffic police gestures through the
rotation joint angle. However, these methods could not easily process a situation where
the arm of the traffic police officer is perpendicular to the image plane. With the success of
2D human posture estimation [24-29], reference [9] employed a modified convolutional
pose machine to extract 2D skeletal data from an RGB video, utilized the data to construct
two types of handcrafted features as spatial features, extracted temporal features from the
handcrafted features of the consecutive images using a long short-term memory (LSTM)
network, and used a dense connected network to classify Chinese traffic police gestures.
Although this network demonstrates fast real-time performance, its recognition accuracy
rate in the Police Gesture Dataset is insufficient at only 91.18%. To improve recognition
accuracy, the researchers constructed handcrafted features for supplementation similar
to [9,22,23], which is relatively cumbersome. In contrast to [9], the proposed method does
not require handcrafted features and achieves a high recognition accuracy rate of 98.95% in
the Police Gesture Dataset.

The above methods present several issues. Some methods extract pixel-level features
from RGB images which are uninterpretable because of the lack of gesture skeleton features
and may result in inaccurate recognition due to background noise. Some methods are
not suitable for handling gesture skeleton features because they ignore the inevitable
connection between skeleton joint coordinate information and gestures. To alleviate the
aforementioned issues, a traffic police gesture recognition method based on a GSE and
the MD-GCN is proposed. The extraction of traffic police skeleton data through pose
estimation can reduce the influence of the background on recognition. A GSE is proposed
to extract skeleton coordinate information and remove redundant skeleton joints as well
as bones, which improves skeleton data representation to strengthen the attention of the
network. An MD-GCN is proposed to extract body topological and spatiotemporal action
features from skeleton coordinates, which can enrich the representation of gesture features
and make features interpretable. Then, the coordinates and confidence of the joints of
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the skeleton sequences construct a tensor as the input of the proposed MD-GCN. Finally,
we realize the classification of the traffic police gestures.

3. Overview of the Proposed Method

Human body motion can be described by the movement of certain joints. In recent
years, dynamic human skeletons were widely used in the field of action recognition. Com-
pared with RGB information, skeleton information has several advantages. Specifically,
skeleton information makes features interpretable and simple and is not disturbed easily
by the background. The gesture sequence of a traffic police skeleton is important for
gesture recognition. This study is based on the gesture sequence features of a traffic police
skeleton instead of RGB features. As shown in Figure 1, the proposed traffic police gesture
recognition method has two components, that is, a GSE and MD-GCN. The first component
extracts the traffic police skeleton sequence from a video using a pose estimation algorithm:
OpenPose [24]. Next, the gesture skeleton sequence eliminates the redundant joints to
improve the attention of the network on traffic police gestures. The other component is
the MD-GCN, with the gesture skeleton sequence as the input. The MD-GCN constructs a
graph convolution using a multichannel dilated to enlarge the receptive field, which ex-
tracts body topological and spatiotemporal action features from the skeleton coordinates.
The 2D skeleton coordinates and the confidence of the joints construct a 3D tensor which is
the input of the proposed MD-GCN. The network significantly enriches the representation
of gesture features and improves gesture recognition accuracy by fusing the features of the
different channel graph convolutions.
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Figure 1. Overview of the proposed gesture recognition method. The FCN means the fully connected network, the TCN

means the temporal convolution network.

4. Gesture Skeleton Extractor

Most existing traffic police gesture recognition methods extract pixel-level features
from RGB images, which are uninterpretable because of the lack of gesture skeleton fea-
tures and may result in inaccurate recognition due to background noise. Such methods do
not consider skeleton features and the influence of redundant skeleton parts. Moreover,
extracted features are not adequately robust and result in poor recognition performance.
To extract discriminative and interpretable gesture skeleton coordinate information, a GSE
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is proposed in this study which can extract skeleton coordinate information using the pose
estimation method and remove redundant skeleton joints as well as bones. The GSE can
improve skeleton data representation to strengthen the attention of the network. Gesture
skeleton sequences can reduce the influence of the background and improve action recog-
nition. Redundant joints, which are not useful or helpful for recognition, exist in skeleton
data for traffic police gesture recognition. Redundant joints increase the computational cost
of the network and reduce action recognition accuracy. The Police Gesture dataset contains
eight Chinese Traffic Police Gestures, namely (1) stop, (2) move straight, (3) left turn, (4) left
turn waiting, (5) right turn, (6) lane changing, (7) slow down, and (8) pull over. Actions
such as arm movements and head turning mainly involve traffic police officers” upper
limbs, whereas their lower limbs move very slightly. The head turning and moving is a part
of the standard traffic police gesture. Hence, it is necessary and reasonable to keep the head
of the traffic police officer in the analysis. The joint features of lower limbs are not helpful
for recognition but influence action features. Thus, the gesture classification network must
pay attention only to the changes in the upper body. A GSE is proposed to improve the
skeleton sequence which can strengthen feature interpretation and the attention of the
network. Figure 2 shows a gesture skeleton sequence that is processed by the GSE. For a
skeleton sequence obtained by the OpenPose algorithm, the GSE removes the left and
right knee joints and left and right ankle joints of each police skeleton in the sequence,
shown in Figure 2a, and simultaneously removes the bones associated with these joints. Fi-
nally, the skeleton sequence in Figure 2a is transformed into the gesture skeleton sequence,
as shown in Figure 2b. The number of police skeleton joints is reduced from 18 to 14,
and the number of police skeleton bones is reduced by four. Therefore, the GSE eliminates
the background, strengthens the attention of the network on the upper body of the traffic
police skeleton, and reduces the input scale of the skeleton sequence data. The experiments
show that the GSE can improve traffic police gesture recognition performance.
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Figure 2. A skeleton sequence is transformed into a gesture skeleton sequence.

5. Multichannel Dilated Graph Convolution Network

Existing deep learning methods are not suitable for handling gesture skeleton features,
which neglect the inevitable connection between skeleton joint coordinate information
and gestures. The shortcomings result in the inaccurate extraction of gesture features and
poor recognition performance. To alleviate these problems, in the gesture discrimination
stage, GSE-based features are introduced into a new framework called the MD-GCN.
The proposed MD-GCN constructs a graph convolution with a multichannel dilated to
enlarge the receptive field, which extracts body topological and spatiotemporal action
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features from skeleton coordinates. The MD-GCN improves the fixed adjacent matrix
in the multichannel dilated connection, which can enrich the representation of gesture
features and make features interpretable. The gesture skeleton sequence has a natural graph
structure, and the graph convolution demonstrates superior performance in processing
graph data. Existing GCN methods adopt the graph convolution theory proposed by
Kipf et al. [12]. In a human skeleton graph, G = (V, A, X), where V = {vi}g\il is a set of
N nodes representing skeletal joints; A € RV >V is an adjacency matrix, which represents
the connection between the joints in the skeleton; and X = [x1, Xo, ..., XN, | € RV*D js a
feature matrix, which contains the D-dimensional feature vectors of the A nodes in set V.
For a dynamic human skeleton sequence of length T, the layer-wise update formula for a
single skeleton at the t-th time is used to extract spatial features as per Formula (1):

Xt(lJrl) _ U(ﬁ_lﬁ_ngHl)Wl) 1)

where | represents the number of convolution layers, A = A +1is an undirected skeleton
graph adjacency matrix with self-connection, D is the diagonal degree matrix of A and
D 'AD ! is the normalized adjacency matrix of A, and W is a learnable weight matrix.

However, the existing GCN extracts features with fixed adjacent matrix representation.
Therefore, the GCN samples only the information of the nearest neighbor nodes, thereby
ignoring the information of the k-hop nearest neighbor nodes. To solve the issue mentioned
above, the MD-GCN is proposed in the gesture discrimination stage, which can improve
the fixed adjacent matrix in the multichannel dilated connection. The MD-GCN extracts
features through K paths. Different dilated graph convolutions are deployed on the K
paths to extract the features of different channels. Next, the MD-GCN fuses the different
channel features from the K paths. This process can enrich the representation of gesture
features and make features interpretable.

5.1. MD-GCN Operator

As shown in Figure 3a—c, there are 3 x 3 convolution kernels with dilated rates of 1, 2,
and 3 extract pixel-level features of different scales. A dilated convolution [30], which is
successful in semantic segmentation tasks, is proposed to aggregate the context information.
We expanded it to a GCN and propose a dilated graph convolution operator to extract
different scale features in the graph structured data. The dilated graph convolution operator
alleviates the issue of the graph convolution extracting only single-scale information from
the nearest node. Figure 3c—e show that a 1-dilated graph convolution, 2-dilated graph
convolution, and 3-dilated graph convolution extract the information of the 1-hop neighbor
nodes, 2-hop nearest neighbor nodes, and 3-hop nearest neighbor nodes, respectively.
The k-dilated graph convolution denotes that the feature of each node in the next-layer
graph is obtained by sampling and aggregating the features of the k-hop nearest neighbor
nodes and self-connection.

However, a single k-dilated graph convolution extracts only single-scale features with
the k-hop adjacency matrix and leads to missing representative features. To learn additional
representative gesture features, a multichannel graph convolution operator with a dilated
strategy is proposed to extract the features of different channels with different k values.
As shown in Figure 4, different dilated graph convolutions are deployed on the K paths to
extract the features of different scales from the previous layer. Next, the features from the
different channels obtained by the different dilated graph convolutions are fused. For a
graph, the layer-wise update formula is used to extract spatial features as per Formula (2):

XEIH) . (ZZﬁflgkﬁ*lX%WL) k € ScaleSet )

where | represents the number of layers, A = A + Iis an undirected k-hop graph adjacency
matrix with self-connection, D is the diagonal degree matrix of A and D~'AD! is the
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normalized adjacency matrix of A, W is a learnable weight matrix, and ScaleSet denotes
the fusion scale set.

(d) (e ()

Figure 3. The red node means the central node. The orange node represents the node aggregated.
(a—c): 3 x 3 dilated convolution, with dilated rates of 1, 2, and 3 from left to right; (d—f): k-dilated
graph convolution, with k values of 1, 2, and 3 from left to right. The dilated graph convolution
enlarges the receptive field.

2-dilated graph

convolution .
Fusion

Figure 4. The process of the multichannel dilated graph convolution network (MD-GCN) operator.
The leftmost graph is the original graph and the rightmost is a new graph processed by different
dilated convolution operations and fusion.

5.2. MD-GCN Classification Network

A GCN-based method is proposed to extract skeleton joint coordinate information
features. However, the existing GCN method for action recognition extracts single-scale
features with fixed adjacent matrix representation, which ignores the different scale repre-
sentations of a gesture skeleton graph. The shortcoming results in the inaccurate extraction
of gesture features and poor recognition performance. In the gesture discrimination stage,
GSE-based features are introduced into a new framework called the MD-GCN, which con-
structs a graph convolution with a multichannel dilated to extract body topological and
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spatiotemporal action features from skeleton coordinates. The dilated graph convolution
enlarges the receptive field. The MD-GCN captures the spatial relationships in k-hop
nearest neighbor nodes and extracts spatiotemporal and multichannel features from a
skeleton sequence.

The architecture of the MD-GCN classification network is illustrated in Figure 5.
The input of the network is a gesture skeleton sequence that can be represented by a
C x T x V tensor, where T denotes the sequence length or number of video frames, V rep-
resents the number of nodes in each skeleton graph, and C is the dimension of each node.
In the traffic police gesture recognition task, a skeleton sequence without the GSE is a
3 x 80 x 18 tensor, but a skeleton sequence with the GSE is a 3 x 80 x 14 tensor. The back-
bone of the entire network is composed of 10 basic blocks (B1-B10) followed by a global
pooling layer, a fully connected layer, and a SoftMax layer. The basic blocks extract body
topological and spatiotemporal action features from skeleton coordinates. Figure 6 shows
that the basic blocks in the network are composed of two parts. The left part is used to
extract interpretable human topology and spatial gesture features, and the right part is used
to extract temporal gesture features. Each basic block contains an MD-GCN operator and
a temporal convolution network (TCN). Each MD-GCN operator contains multichannel
dilated graph convolution. The MD-GCN operator mentioned above is deployed on the
left part to extract multichannel features, and the orange convolution, gray convolution,
and light blue convolution represent the three types of k-dilated graph convolutions of
different scales in Figure 6 (k = 1, 2, and 4 in our method). The MD-GCN operator is
followed by a batch normalization (BN) layer and ReLU layer. In the right part, the gold
Convt with a t x 1 convolution kernel (t = 9 in the experiment) extracts temporal features in
the dimension of T and is also followed by a BN layer and ReLU layer. As for the extraction
of temporal information, the TCN in Figure 6 uses the convolution kernel of (T x 1) to
aggregate features from the corresponding joints in continuous sequences. Then, it realizes
feature aggregation on the temporal dimension. As for the LSTM, it can only process
one frame at a time, which means that it is difficult to achieve a parallel computing for
LSTM. Generally, the training time and the efficiency of LSTM-based methods are longer
and lower. Compared with LSTM, our TCN can process multiple skeleton sequences at a
time. Owing to the feature of the MD-GCN with different dilated rates having the same
dimension which is C x T x V, the fusion operator just adds the features up for fusion.

64 64 64 64 128 128

o e — —> e
Bl B2 B3 B4 5 BS
’\*% .\'>. '\5- \‘\
S N N ES
128 256 256 256
256
FCN
t=0 —» > — —> \—-b N —>
| C .
B7 "> B8 B9 L BI0 & &
S \\'\ N\ N Global
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Figure 5. The architecture of the MD-GCN classification network.
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MD-GCN Operator

2-dilate graphff
convolution
e

Convt BN  ReLU

Figure 6. The basic block of the MD-GCN classification network.

6. Experiments
6.1. Dataset and Training Details

Figure 7 shows that the Chinese traffic police gestures are composed of eight types of
gestures, namely: (1) stop, (2) move straight, (3) left turn, (4) left turn waiting, (5) right turn,
(6) lane changing, (7) slow down, and (8) pull over. A “stand in attention” gesture was added to
expand the Police Gesture Dataset [9]. The “stand in attention” gesture means that the police
did not change the current traffic situation. The Police Gesture Dataset includes 20 videos
of traffic police making gestures. Each video is approximately 5 to 11 min long, and a total
of 3354 gestures are shown in the videos. Among them, 11 videos in the training set show
1789 gestures and 9 videos in the testing set show 1565 gestures. The gesture dataset provides
only the 20 raw videos without skeleton data and ground truth gesture labels for each video
frame. Thus, the videos were cut according to the labels to obtain 3354 video clips of traffic
police gestures. Next, the skeleton data of the video clips were extracted by the OpenPose [24]
algorithm. The experiments were implemented on the Pytorch deep learning framework,
and the GPU was a Quadro RTX 4000 with 8G of memory (NVIDIA, Santa Clara, CA, USA).
All the MD-GCN models were trained with the same batch size (40), training epochs (60),
and optimizer (SGD with Nesterov momentum 0.9). In the models, the basic learning rate was
set to 0.1. The basic learning rate was used in the first 20 epochs and set to 0.01 in epochs 20
to 40, then divided by 10 after every 10 epochs between 40 and 60 epochs. Cross-entropy was
chosen as the backpropagation loss function. Two challenging action recognition datasets are
experimented in this work, NTU-RGB+D [31] and Kinetics [32]. The NTU-RGB+D dataset
contains 60 classes with more than 56,000 video samples. It contains 56,880 sample actions
and the provided annotations of 3D joint locations were used in the experiment. The dataset is
established by two benchmarks, cross-subject (CS) and cross-view (CV). The Kinetics dataset has
400 action classes and more than 400 video clips for each action. The released Kinetics-Skeleton
data are used in this work, which contain a training set with 240,000 clips and a validation set
with 20,000 clips. The same data process as reference [14] is what we used for the two datasets.

(1) Stop (.} [] 'J ”

® S

(3) Left Turn 1'1 "7 ﬁj "7 ﬁi A

@ S L

(5 Right F vk g vk FF 4
Turn

(O_)L‘zmv. a.—qt—gt—qt—g
Changing

O bove AR

PN & <7 < </ <7 <7

Figure 7. The eight gestures of Chinese traffic police [9].
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6.2. Evaluation of the Proposed Method

A traffic police gesture recognition method based on a GSE and the MD-GCN is
proposed in this study. To evaluate the effectiveness of the proposed method, experiments
were conducted on the Police Gesture Dataset. Appropriate and effective features rep-
resenting traffic police gestures should be chosen and extracted. However, traffic police
typically work in complex and unpredictable environments, which can introduce interfer-
ence and render features uninterpretable. A GSE is proposed to extract gesture skeleton
sequences which contain discriminative and interpretable skeleton coordinate information.
Compared with extracted pixel-level features, gesture skeleton sequences can eliminate
background interference and make features interpretable through coordinates. To verify the
performance of the basic blocks with different MD-GCN operators in gesture recognition in
the network, an MD-GCN operator with dilated graph convolutions with different dilated
rates was deployed for comparison. The results in Table 1 show that the MD-GCN operator
with fused dilated rates of 1, 2, and 4 demonstrates the most impressive performance in
the Police Gesture Dataset. The MD-GCN network with basic blocks (dilated rate = 2, 3,
and 4) exhibits the worse recognition accuracy (96.71%), because the model misses the
1-dilated graph convolution, which contains the features of the nearest neighbor nodes.
However, although the MD-GCN (dilated rate = 1, 2, 3, and 4) fuses the features of more
channels, recognition performance declines. The more aggregated channels there are,
the higher the complexity of the model and the time. The GCN aggregates features for
classifying, and the more information the network aggregates, the easier it is for nodes
to be consistent. We conclude that unlimited multichannel features result in problems of
overfitting and oversmoothing.

Table 1. The accuracy comparison of MD-GCN with different operators.

MD-GCN Operator Accuracy (%) Model Size Training Time (s) Inference Time (s)
With dilated rate =1 97.32 10M 532 25
With dilated rate =2 96.35 10M 537 2.8
With dilated rate = 3 96.13 10M 534 2.5
With dilated rate = 4 95.38 10M 528 2.3
With dilated rate=1,2,3 98.05 11.7M 603 3.0
With dilated rate = 1, 2, 4 98.95 11.7M 602 3.0
With dilated rate =1, 3, 4 97.76 11.7M 620 3.3
With dilated rate =2, 3, 4 96.71 11.7M 617 3.1
With dilated rate =1, 2, 3, 4 98.08 125M 718 3.9

To prove the effectiveness of the GSE, experiments were conducted on the Police
Gesture Dataset. As shown in Table 2, with the same MD-GCN operator configuration
(dilated rate = 1, 2, and 4), the network with the GSE demonstrates better recognition
performance than the network without the GSE. With GSE means the network using
gesture skeleton sequences which remove the redundant lower limbs as the input. Without
GSE means the skeleton sequence as the input. Experiments show that the lower limbs
lead to a lower accuracy. As the results show, ignoring the lower limbs would lead to a
satisfactory accuracy and efficiency. The main reason is that the lower limb movements in
different public traffic gestures are similar, so the lower limb movements are a redundant
and meaningless feature for recognition.

Table 2. The accuracy and time assessments of gesture skeleton extractor (GSE).

Method Accuracy (%) Training Time (s) Inference Time (s)

With GSE 98.95 603 3.0
Without GSE 98.01 691 3.3
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A new graph convolution network, namely the MD-GCN, is proposed to solve the
traffic police gesture task in this study. The MD-GCN constructs a graph convolution with a
multichannel dilated to enlarge the receptive field, which extracts body topological and spa-
tiotemporal action features from skeleton coordinates. The MD-GCN captures the spatial
relationships in k-hop nearest neighbor nodes and extracts spatiotemporal and multichan-
nel features from a skeleton sequence. Compared with a typical GCN [13], the MD-GCN
demonstrates better performance for traffic police gestures. Various experiments demon-
strated the effectiveness of the MD-GCN. Table 1 shows the experiment results comparing
the accuracy of the MD-GCN with that of a typical GCN (dilated rate = 1). The accuracy of
the MD-GCN (dilated rate = 1, 2, and 4) is 1.63% higher than that of the GCN.

6.3. Comparison with State-of-the-Art Methods

The proposed method was compared with several typical network architectures for the
police gesture recognition task, and the results are shown in Table 3. Among the methods,
the proposed method demonstrates the best performance in the Police Gesture Dataset.
Hara et al. [33] and Tran et al. [34] used three-dimensional (3D) convolution to extract
temporal and spatial features from RGB videos simultaneously. The 3D networks involve
huge computational costs and extract uninterpretable features. Qiu et al. [35] proposed
the P3D network, suggesting that a 3D convolution can be divided into a 2D convolution
and one-dimensional convolution for action recognition. References [33-35] fine-tuned the
Police Gesture Dataset. The batch size is set as four in training. SGD is utilized to converge
the model, where the learning rate and momentum are set as 0.001 and 0.9, respectively.
The decay period is set as 10, and the decay parameter is set as 0.005. Finally, the cross-
entropy function is utilized as the loss function. Although this network reduces parameters
and increases speed, it uses RGB videos as input; thus, background noise will considerably
affect the performance of the network. Similarly, the convolutional LSTM of [36] uses image
features directly, which leads to a low accuracy rate. The aforementioned methods show
that eliminating the influence of the background and illumination are important for traffic
police gesture recognition. Zhang et al. [9] extracted skeleton data from videos using the
Police Keypoint Extraction Network and then converted the skeletal data into a sequence of
handcrafted features. Subsequently, the authors used the sequence of handcrafted features
to distinguish police gestures in an LSTM network or a bidirectional LSTM network [37].
This method requires the designing of handcrafted features, but handcrafted features can
lose some important skeleton information. For example, in a traffic police gesture action,
spatial dependence exists between the moving joints, but handcrafted features will destroy
this information. Compared with the other methods, the proposed method utilizes the
gesture skeleton sequences to avoid background noise interference and redundant joints.
In the gesture discrimination stage, GSE-based features are introduced into the new MD-
GCN framework, which constructs a graph convolution with a multichannel dilated to
extract body topological and spatiotemporal action features from skeleton coordinates.
The MD-GCN improves the fixed adjacent matrix in the multichannel dilated connection,
which can enrich the representation of gesture features and make features interpretable.
As shown in the confusion matrix in Figure 8, the proposed method demonstrates excellent
performance in gesture action recognition. The proposed method can recognize the gestures
of traffic police for most cases. In rare cases, due to the differences and changes in the angle
of view, the “left turn waiting” might be misclassified as “stop” and “slow down” might be
misclassified as “left turn”. Further research to improve the robustness of the angle of view
and strengthen the temporal feature will be conducted in the future to solve this issue.

In order to evaluate the proposed method conducted on complex datasets, the MD-
GCN processed two challenging action recognition datasets: NTU RGB+D [31] and Ki-
netics [32]. The proposed method was also compared with some state-of-the-art methods
in action recognition. The good performance of the MD-GCN in the task demonstrates
its competitiveness and the proposed method can extract discriminative action feature.
The accuracy results are shown in Tables 4 and 5.
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Table 3. The accuracy comparison with some typical network architectures on the Chinese Traffic

Police Gesture Dataset.

Method Accuracy (%)
Hara [33] 81.16
Tran [34] 87.12
Qiu [35] 92.21
Xing [36] 82.40
Zhang [9] 91.18
Pigou [37] 91.04
The proposed method 98.95
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Figure 8. The confusion matrix of the proposed method on the Police Gesture Dataset.

Table 4. The accuracy performance with the NTU RGB+D dataset (%).

cs cv

Kim [38] 74.3 83.1

Ke [39] 79.6 84.8

Yan [14] 81.5 88.3

Tang [40] 83.5 89.8

Wen [41] 84.2 90.2

The proposed method 81.9 88.1

Table 5. The accuracy performance with the Kinetics dataset (%).

Top-1 Top-2

Kim [38] 20.3 40.0

Yan [14] 30.7 52.8

Li [42] 34.8 56.5

The proposed method 30.8 53.3

7. Conclusions

In this work, a traffic police gesture recognition system based on a gesture skeleton
extractor and a multichannel dilated graph convolution network was proposed in order to
extract discriminative and interpretable gesture skeleton coordinate information. A GSE
is proposed to extract skeleton coordinate information and remove redundant skeleton
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joints as well as bones. The GSE-based features are introduced into the proposed MD-GCN
which constructs a graph convolution with multichannel dilated to extract features of body
topological and spatiotemporal action from skeleton coordinates. The experiments showed
that the proposed method has achieved the most advanced performance on the Police
Gesture Dataset.
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