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Abstract: At present, time series prediction methods are widely applied for Human–Computer
Intelligent Systems in various fields such as Finance, Meteorology, and Medicine. To enhance the
accuracy and stability of the prediction model, this paper proposes a time series prediction method
called RAdam-Dual stage Attention mechanism-Nested Long Short-Term Memory (RAdam-DA-
NLSTM). First, we design a Nested LSTM (NLSTM), which adopts a new internal LSTM unit structure
as the memory cell of LSTM to guide memory forgetting and memory selection. Then, we design a
self-encoder network based on the Dual stage Attention mechanism (DA-NLSTM), which uses the
NLSTM encoder based on the input attention mechanism, and uses the NLSTM decoder based on
the time attention mechanism. Additionally, we adopt the RAdam optimizer to solve the objective
function, which dynamically selects Adam and SGD optimizers according to the variance dispersion
and constructs the rectifier term to fully express the adaptive momentum. Finally, we use multiple
datasets, such as PM2.5 data set, stock data set, traffic data set, and biological signals, to analyze and
test this method, and the experimental results show that RAdam-DA-NLSTM has higher prediction
accuracy and stability compared with other traditional methods.

Keywords: nested LSTM; data mining; dual stage attention mechanism; RAdam; time series prediction

1. Introduction

As a crucial component of the data-driven economy, the vast amount of data generated
by Human–Computer Intelligent Systems is playing a critical role in the current social and
economic landscape [1,2]. Most of them belong to time series. Therefore, the time series
prediction method is a research hotspot in Human–Computer Intelligent Systems.

At present, the application of time series prediction methods led by RNNs (Recurrent
Neural Networks) is extremely extensive in the fields of Finance [3,4], Meteorology [5,6],
Medicine [7], etc. RNNs have a certain memory ability by introducing local or global
feedback connections into the forward structure. However, the gradient disappearance
and gradient explosion of an RNN will make its prediction accuracy low in practical appli-
cations [8]. On the contrary, LSTM (Long Short-Term Memory) [9] uses memory units to
replace hidden layer neurons, which can deal with problems related to time series more
effectively. When there are enough training samples, LSTM can fully mine the information
contained in massive data and has the ability of deep learning [10,11]. Therefore, some schol-
ars began to study LSTM to solve the problems of RNNs. Karevan et al. [12] established a
data-driven forecast model based on LSTM to predict the weather. Xie et al. [13] used LSTM
to predict blood glucose levels in patients with type 1 diabetes. Pathan et al. [14] used a
prediction model based on LSTM to predict the future mutation rate of the COVID-19 virus.
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In recent years, scholars have focused on exploring more possibilities of LSTM and
making it more effective in processing high-dimensional complex big data, and began to
study its optimization methods, especially feature aggregation, network structure improve-
ment, and objective function optimization.

In feature aggregation, some scholars study autoencoder networks, which are widely
popular for their successful application in the direction of machine translation [15–17]. Its
core idea is to transform the input sequence into a fixed-length vector through encoding,
and then transform the previously generated fixed vector into the output sequence through
decoding. However, the performance of the autoencoder network deteriorates rapidly with
the increase in input sequence length [18,19]. Therefore, inspired by human attention theory,
some scholars studied the automatic coding network based on the attention mechanism,
which can adaptively select the input (or feature) subset to improve its ability to analyze
long sequences. Hra [20] proposed a momentum LSTM autoencoder network based on an
attention mechanism to realize behavior recognition, which has better simulation results
than traditional methods. Baddar [21] proposed an LSTM autoencoder network with
attention mode variation to realize face recognition, which improved the accuracy of face
recognition. Pandey [22] adopted LSTM as an encoder to achieve machine translation,
which improved the effectiveness of machine translation. However, the autoencoder
network based on the attention mechanism has only been proven effective in machine
translation, face recognition, and image processing, and there are few studies on time series
prediction [23–25].

In network structure improvement, Cho et al. [26] proposed the Gated Recurrent Unit
(GRU), which has simplified the LSTM structure while ensuring the original classification
results. Inspired by LSTM and GRU, Sun et al. [27] proposed the Gated Memory Unit
(GMU) and evaluated it from the aspects of parameter volume, convergence, and accuracy.
The results showed that GMU is a potential choice for handwriting recognition tasks.
Lei et al. [28] proposed the Simple Recurrent Unit (SRU), which improved the training
speed of the LSTM for recognition tasks. The above models ignore their performance
to improve the model training speed and simplify the network structure. However, the
nonlinear mapping ability of the model is particularly important in time series prediction.
Scholars often take stacked network structure [29,30] to improve the model’s ability, but
the model training speed is often not ideal. How to improve the network structure of
LSTM to improve its nonlinear mapping ability and ensure the training speed is the focus
of scholars.

In objective function optimization, common optimizers include the Stochastic Gradient
Descent (SGD) optimizer, Adaptive Gradient (Adagrad) optimizer, Root Mean Square Prop
(RMSProp) optimizer, Adaptive Moment Estimation (Adam) optimizer, etc. [31–33]. The
convergence effect of the SGD optimizer is excellent, but the convergence speed is not ideal.
The Adagrad optimizer relies on global learning rates and tends to become stuck at local
extremum points when training time is too long. The RMSProp optimizer adaptively adjusts
the magnitude of the gradient in each direction but is prone to gradient explosions. The
Adam optimizer combines the advantages of AdaGrad and RMSProp and can calculate the
updated step size by considering the first and second-moment estimation of the gradient,
and the convergence speed is faster. However, the adaptive learning rate of the Adam
optimizer can produce large variance fluctuation and easily fall into the local optimal
solution. Therefore, Liu et al. [34] proposed a modified Adam optimizer—Rectified Adam
optimizer (RAdam), which can dynamically select Adam and SGD optimizer according to
variance dispersion, and construct a rectifier term. The adaptive momentum as a potential
variance function is allowed to be fully expressed slowly but steadily, it can enhance the
stability of model training. Therefore, RAdam has the advantages of both Adam and
SGD, which can ensure fast convergence speed and it is difficult to fall into the local
optimal solution.

In this paper, we propose a novel time series prediction method called RAdam-
Dual Stage Attention Mechanism-Nested Long Short-Term Memory (RAdam-DA-NLSTM)
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through the exploration and research of the above-related work. Our approach involves
several key contributions as follows:

1. We introduce Nested LSTM (NLSTM), an internal LSTM unit structure designed to
guide memory forgetting and memory selection. By incorporating NLSTM as the
memory cell of LSTM, we enhance prediction accuracy.

2. We develop an autoencoder network based on the Dual Stage Attention Mechanism
(DA-NLSTM). This network utilizes an NLSTM encoder with an input attention
mechanism and an NLSTM decoder with a time attention mechanism. This design
addresses the attention dispersion issue present in traditional LSTM architectures. It
effectively captures long-term time dependencies in time series data and enhances
feature aggregation within the network.

3. We employ the RAdam optimizer to optimize the objective function. RAdam dynami-
cally selects between the Adam and SGD optimizers based on variance dispersion.
Additionally, we introduce a rectifier term to bolster the model’s stability.

In summary, our proposed RAdam-DA-NLSTM method represents an innovative
approach to time series prediction. It encompasses advancements in model enhancement,
feature aggregation optimization, and objective function optimization. These contributions
have significantly contributed to the field of time series forecasting and paved the way for
further research and practical applications.

2. RAdam-DA-NLSTM

Radam-DA-NLSTM adopts the self-encoder network model structure and has four
layers, including the input layer, encoder, decoder, and output layer. It adopts two Nested
LSTMs as encoder and decoder, respectively, which use the input attention mechanism
to optimize the NLSTM1 encoder and uses the time attention mechanism to optimize the
NLSTM2 decoder. And they use the Radam optimizer to update the DA-NLSTM network
objective function during encoding and decoding. Figure 1 is the block diagram of the
model construction.

Input Layer

ATTN1 NLSTM1 ATTN2 NLSTM2 Ypredict

Y

X

...

Encoder Decoder

RADAM1 RADAM2

Output 

Layer

Figure 1. Model construction.

Input layer input matrix is X =



x1
1, . . . , x1

t , . . . , x1
T

...
xn

1 , . . . , xn
t , . . . , xn

T
...
xN

1 , . . . , xN
t , . . . , xN

T

 and target sequence is

Y = (y1, . . . , yt−1, . . . , yT−1). Through learning the time series prediction model of Radam-
DA-NLSTM, obtain a mapping function F to predict the unknown values yT .

Ŷ = F(y1, . . . , yt, . . . , yT−1, X) (1)
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where xn
t denotes the information of n sequences in the t-th time step.

2.1. Nested LSTM

Nested LSTM uses a new internal LSTM structure to replace the memory cells of
the traditional LSTM. When accessing the internal memory, it is gated in the same way.
Therefore, the Nested LSTM can access the internal memory more pertinently [11], it makes
the Nested LSTM prediction model have stronger processing ability and higher prediction
accuracy. Figure 2 shows the Nested LSTM unit model structure.

Figure 2. Nested LSTM unit model structure.

Nested LSTM is divided into internal LSTM and external LSTM. Their gating systems
are consistent with the traditional LSTM. Nested LSTM has four gating systems, namely
forget gate, input gate, candidate memory cell, and output gate. The calculation formulas
for each gate are as follows:

Forget gate:
ft = σ(W f xxt + W f hht−1 + b f ) (2)

Input gate:
it = σ(Wixxt + Wihht−1 + bi) (3)

Candidate memory cell:

c̃t = tanh(Wcxxt + Wchht−1 + bc) (4)

Memory cell: The input and hidden states of the internal LSTM are:

ht−1 = ft · ct−1 (5)

xt = it · c̃t (6)

f t = σ(W f xxt + W f hht−1 + b f ) (7)

it = σ(Wixxt + Wihht−1 + bi) (8)

c̃t = tanh(Wcxxt + Wchht−1 + bc) (9)
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ot = σ(Woxxt + Wohht−1 + bo) (10)

ct = f t · ct−1 + it · c̃t (11)

ht = ot · tanh(ct) (12)

The update method of external LSTM memory cell is:

ct = ht (13)

Output gate:
ot = σ(Woxxt + Wohht−1 + bo) (14)

A new round of hidden state:

ht = ot · tanh(ct) (15)

where σ denotes the sigmoid function. In the external LSTM, W f x and W f h denote the
weight matrix of the forget gate; Wix and Wih denote the weight matrix of the input gate;
Wcx and Wch denote the weight matrix of the candidate memory cell; Wox and Woh denote
the weight matrix of the output gate; b f , bi, bc and bo denote the bias of the forget gate,
input gate, candidate memory cell, and output gate, respectively. In the internal LSTM, xt,
ht−1 and ct−1 denote the current input, the hidden state and memory cell of the previous
round, respectively. W f x and W f h denote the weight matrix of the forget gate; Wix and Wih

denote the weight matrix of the input gate; Wcx and Wch denote the weight matrix of the
candidate memory cell; Wox and Woh denote the weight matrix of the output gate; b f , bi, bc

and bo denote the bias of the forget gate, input gate, candidate memory cell, and output
gate, respectively; xt, ht−1 and ct−1 denote the current input, the hidden state and memory
cell of the previous round, respectively.

The output of the output layer is:

yt = σ(Wyhht) (16)

where Wyh denotes the weight matrix of the output layer.

2.2. DA-NLSTM

DA-NLSTM includes the NLSTM encoder based on the input attention mechanism
and the NLSTM decoder based on the time attention mechanism.

2.2.1. The NLSTM Encoder Based on Input Attention Mechanism

The NLSTM encoder based on the input attention mechanism is composed of the
input attention mechanism and NLSTM1. Figure 3 shows its structure.

Attn1 NLSTM
1X

x1

x2

xN

ht-1

1 1
t tx
2 2
t tx

N N
t tx

Input
Attention EncodeSoftmaxInput

h1

h2

hT

n
te X

Figure 3. NLSTM Encoder.
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RAdam-DA-NLSTM uses the input attention on the NLSTM encoder to preprocess
X. The query, key, and value corresponding to the input attention are as follows: query is
the splicing of the last hidden state ht−1 and cell state ct−1 of NLSTM1, key is the whole
sequence information, value is the same as the key. We can calculate the attention score en

t
by query and key, and normalize it by softmax to obtain the weight αn

t of each sequence:

en
t = VT

e tanh(We[ht−1; st−1] + Uexn) (17)

αn
t =

exp(en
t )

N
∑

i=1
exp(ei

t)

(18)

where VT
e , We and ue denote the training parameters, [ht−1; st−1] denotes the query of the

input attention; xn denotes the n-th training sequence, i.e., the key of the input attention, tan
denotes the function tan. Then, we can obtain the preprocessed data from each sequence
weight and sequence information:

X̃ =
N

∑
n=1

αn
t xn

t (19)

Then we input X̃ to NLSTM1, and finally, we can obtain the hidden state of the coding
layer corresponding to each time point t:

ht = f1(ht−1, X̃) (20)

where f1 denotes the calculation method of unit NLSTM1.

2.2.2. The NLSTM Decoder Based on Time Attention Mechanism

The NLSTM decoder based on the time attention mechanism is composed of the time
attention mechanism and NLSTM2. Figure 4 shows its structure.

Attn2
NLSTM

2

dt-1

1
1t
hb ×

2
2t
hb ×

T

t T
hb ×

Temporal

Attention
DecodeSoftmax

h1

h2

hT

ct-1
m

t
l

Y

Figure 4. NLSTM Decoder.

RAdam-DA-NLSTM uses the time attention on the decoder to preprocess ht. The
query, key, and value corresponding to the time attention are as follows: query is the
splicing of the last hidden state ht−1 and cell state s′t−1 of NLSTM2, the key is the hidden
state ht of NLSTM1 at each time point, and value is the same as the key. We can calculate
the attention score lm

t by query and key, and normalize the attention score by softmax to
obtain the weight βm

t of the hidden state corresponding to each time point.

lm
t = VT

d tanh(Wd[dt−1; s′t−1] + Udhm), 1 ≤ m ≤ T (21)
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βm
t =

exp(lm
t )

T
∑

j=1
exp(l j

t)

(22)

where VT
d , Wd, Ud denote the training parameters, [dt−1; s′t−1] denotes the query of the

time attention, hm denotes the hidden state of NLSTM1, i.e., the key of the time attention.
Through each sequence weight βm

t and sequence information of the hidden state, we can
obtain the updated hidden layer state with all time points:

ct =
T

∑
m=1

βm
t hm (23)

Then, we can obtain Ỹ = (ỹ1, . . . ỹt−1, . . . , ỹT−1) by the combination [yt−1; ct−1] of the
updated hidden layer state and the known target sequence Y = (y1, . . . , yt−1, . . . , yT−1):

ỹt−1 = wT [yt−1; ct−1] + b (24)

where [yt−1; ct−1] denotes the combination of the decoder input and the updated hidden
layer state, wT and b denote the size parameters of the combination mapped to the decoder.
Then, we input ỹt−1 to NLSTM2 to obtain the hidden layer state dt corresponding for each
time point t.

dt = f2[dt−1; ỹt−1] (25)

where f2 denotes the calculation method of unit NLSTM2. The final output Ŷ is:

Ŷ = F(y1, . . . , yt, . . . , yT−1, X)
= VT

y (Wy[dT ; cT ] + bw) + bv
(26)

where [dT ; cT ] denotes the combination of the hidden layer state of NLSTM2 and the
updated hidden layer state, Wy and bw denote the size parameters of the combination
mapped to the decoder, Vy and bv denote the weight and bias of the final result obtained
for the linear function.

2.3. RAdam Optimizer

We use the RAdam optimizer to optimize the objective function, i.e., we use the SGD
momentum optimizer at the initial stage of training, then switch to the improved Adam
optimizer at a certain time according to the potential divergence of variance. And it builds
a rectifier term, which allows the adaptive momentum to be fully expressed slowly but
stably as a function of potential square difference, which can improve the stability of model
training. Therefore, RAdam has the advantages of both Adam and SGD, which not only
ensure fast convergence but also make it difficult to fall into the local optimal solution at
the beginning of training.

In this paper, we use the square loss as the objective function, and the formula is as follows:

J(Y, Ŷ) =
1
N

N

∑
i=1

(Yi − Ŷi)
2

(27)

where N denotes the number of training samples. Yi denotes the target sequence value of
the training sample and Ŷi denotes the predicted sequence value of the training sample.
Figure 5 is the flow chart of the RAdam optimizer solving the objective function, and the
steps are as follows.
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Initialize  moving 1st moment and 
moving 2nd moment 

t=t+1, calculate the gradient of 
objective function 

Input the step size, decay rate, t=0

Update moving 1st moment and 
moving 2nd moment

Calculate the maximum length of 
approximated SMA

4t

Revise moving 2nd moment,
build a rectifier item

Calculate model parameters t

Adopt Adam optimizer

Adopt SGD+Momentum 
optimizer

YES

NO

Output model parameters t

Calculate the maximum length of the 
approximated SMA

Revise  moving 1st moment 

t

Figure 5. RAdam optimizer.

Step 1. Input the step size αt, decay rate {β1, β2}, t = 0.
Step 2. Initialize moving 1st moment and moving 2nd moment, calculate the maximum

length ρ∞ of the approximated SMA.

ρ∞ = 2
/
(1− β2)− 1 (28)

Step 3. t = t + 1, calculate the gradient gt of objective function, update moving 1st moment
mt and moving 2nd moment vt, revise moving 1st moment m̂t, and calculate the
maximum length ρt of approximated SMA.

gt = ∇θ Jt(θt−1) (29)

vt = β2vt−1 + (1− β2)g2
t (30)

mt = β1mt−1 + (1− β1)gt (31)
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m̂t = mt
/
(1− βt

1) (32)

ρt = ρ∞ − 2tβt
2
/
(1− βt

2) (33)

where ∇θ denotes gradient solution, Jt(θt−1) denotes objective function, θt−1 denotes
the model parameters when t− 1.

Step 4. Calculate θt according to ρt. If ρt > 4, adopt Adam optimizer, revise moving 2nd
moment, and build a rectifier item rt, then obtain the revised moving 2nd moment
value v̂t and the model parameters θt.

v̂t =
√

vt
/
(1− βt

2) (34)

rt =

√
(ρt − 4)(ρt − 2)ρ∞

(ρ∞ − 4)(ρ∞ − 2)ρt
(35)

θt = θt−1 − αtrtm̂t
/

v̂t (36)

If ρt ≤ 4, adopt SGD+Momentum optimizer, then obtain the training parameters θt.

θt = θt−1 − αtm̂t (37)

Step 5. Output the model parameters θt.

3. Experiment and Simulation
3.1. Data Sources

To prove the effectiveness of RAdam-DA-NLSTM, we apply the model to PM2.5
prediction, stock prediction, traffic prediction, and biological signal prediction, respectively.

PM2.5 prediction: We use the Beijing PM2.5 dataset for prediction. This dataset
is a series of 43,824 time steps collected by the U.S. Embassy in Beijing from 1 January
2010, to 31 December 2014, including the current time, PM2.5 concentration, dew point,
temperature, pressure, wind direction, wind speed, hours, rainfall hours, etc. at Beijing
Capital International Airport.

Stock prediction: We use the Nasdaq 100 stock data set (Nasdaq 100) for prediction.
The data set covers a series of 40,560-time steps from 26 July 2016 to 22 December 2016,
including the stock price data of 81 major companies under the Nasdaq 100 index.

Traffic prediction: We use the California traffic volume data set of 24 sections in the
California transportation performance measurement system (PEMs) for traffic volume
prediction and use the Seattle traffic speed data set for traffic speed prediction. The sampling
time interval of California traffic flow data is 5 min, and the data time range is 61 days from
1 May 2014 00:00:00 to 30 June 2014 23:59:00. Seattle speed data are the vehicle speed data
set from Seattle in 2015 collected by 323 detectors, and the sampling interval is also 5 min.

Biological signal prediction: We use two types of biological signals: ECG signal and
BCG signal. The ECG signal was obtained from the dynamic ECG database of sudden
cardiac death, available on PhysioNet. This dataset includes ECG signals from patients
who experienced actual cardiac arrest. The signal was collected using two leads, and the
sampling frequency was set to 250 Hz. To ensure accuracy, the ECG signal was meticulously
annotated by medical experts, identifying the starting point of the sudden cardiac death
beat. The BCG signal was obtained from a large-scale and complex dataset provided by
a medical device company. The dataset contains recordings of cardio ballistics from over
100 patients with abnormal cardio ballistics, spanning from 2016 to 2020. This dataset
belongs to a million-level time series, making it a valuable resource for predictive analysis
in the field of bio-signal-assisted prediction. By analyzing these diverse and comprehensive
datasets, we aimed to derive meaningful insights and improve the accuracy of predictions
in the context of biological signal analysis.



Electronics 2023, 12, 3084 10 of 20

The above data conforms to the high-dimensional complex characteristics and is
suitable for testing the effectiveness of RAdam-DA-NLSTM.

3.2. Parameter Setting

RAdam-DA-NLSTM needs to set four important parameters, namely time steps L,
encoder hidden units number m1, decoder hidden units number m2, and batch size b.
These parameters were obtained through iterative experiments. Table 1 shows the model
parameter setting results of the above data.

Table 1. Parameter setting results.

Datasets L m1 m2 b

Beijing PM2.5 10 64 64 64
NASDAQ 100 15 128 128 64

California traffic volume 15 64 64 64
Seattle traffic speed 20 64 64 64

ECG signal 15 128 128 64
BCG signal 20 128 128 64

3.3. Comparative Analysis

We use 70% of the data sets as the training set, 10% of the data sets as the valida-
tion set and 20% of the data sets as the test set. To further reflect the advantages of the
RAdam-DA-NLSTM, we use SVM, RNN, GRU, LSTM, attention LSTM, and DA-LSTM
prediction models to conduct 20 experiments on the data set, and use four evaluation
indexes: mean absolute error (MAE), mean absolute percentage error (MAPE), root mean
square error (RMSE) and coefficient of determination (R2) to evaluate and analyze the
prediction accuracy.

MAE =
1
N

N

∑
i=1

∣∣∣Yi − Ŷi
∣∣∣ (38)

MAPE =
100%

N

N

∑
i=1

∣∣∣∣∣Yi − Ŷi

Yi

∣∣∣∣∣ (39)

RMSE =

√√√√ 1
N

N

∑
i=1

(Yi − Ŷi)

2

(40)

R2 = 1−

N
∑

i=1
|Ŷi −Yi|

N
∑

i=1
|Ŷi −Yi|

(41)

where N denotes the number of samples, Yi denotes the target sequence value of samples,
Ŷi denotes the predicted sequence value of samples and Yi denotes the target sequence
average value of samples.

3.3.1. PM2.5 Prediction

In recent years, air pollution has become extremely serious, and the problem of air
quality has attracted more and more attention. Judging the air quality according to the
concentration of pollutants in the air reflects the degree of air pollution. PM2.5 refers to
particles with a diameter less than or equal to 2.5 microns in the atmosphere, also known as
particles that can enter the lung. Although the content of PM2.5 in the earth’s atmosphere
is relatively small, it contains a large number of toxic and harmful substances and has a
long residence time and long transportation distance in the atmosphere, which greatly
affects the air quality and has a direct or indirect impact on human health and plant growth.
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Therefore, it is very necessary to monitor and predict PM2.5 concentration in real time. The
following are the prediction results of this model on the Beijing PM2.5 test data set, and
Figure 6 shows the prediction fitting diagram.

Figure 6. Prediction results (Beijing PM2.5).

Figure 6 shows that the trend of the predicted value and the real value curve of the
RAdam-DA-NLSTM on the Beijing PM2.5 test data set is roughly consistent, indicating that
the fitting result is ideal. Further, we compare the evaluation results of the Beijing PM2.5
test data set predicted by the above seven models. The evaluation results take the average
value of 20 experiments. Table 2 and Figure 7 show the results.

Table 2. Evaluation results (Beijing PM2.5).

Models MAE MAPE RMSE R2 R2 (TS)

SVM 1.1451 4.6632 1.2365 0.6532 0.7217
RNN 0.6621 3.6754 0.7321 0.7229 0.8323
GRU 0.6323 3.3632 0.6941 0.7892 0.8814
LSTM 0.6098 3.1946 0.6380 0.7921 0.8920

A-LSTM 0.2324 2.8312 0.5919 0.8126 0.8620
DA-LSTM 0.2032 2.7328 0.5521 0.8181 0.8705

RAdam-DA-NLSTM 0.1921 2.5217 0.5117 0.8213 0.8831

Figure 7. Comparison results (Beijing PM2.5).
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Table 2 and Figure 7 present the prediction results of MAE, MAPE, RMSE, and R2

for the Beijing PM2.5 test dataset, comparing RAdam-DA-NLSTM with other models. It is
evident that RAdam-DA-NLSTM outperforms the other models in terms of smaller MAE,
MAPE, and RMSE, values, as well as having a higher R2 score. These results highlight the
enhanced prediction accuracy of RAdam-DA-NLSTM for the Beijing PM2.5 dataset and its
advantages over other models in PM2.5 prediction. Notably, the R2(TS) metric reflects the
prediction performance on the training set. By observing the R2(TS) values, we can notice
that LSTM achieves better training results. However, when it comes to the test results, LSTM
performs significantly worse compared to A-LSTM, DA-LSTM, and RAdam-DA-NLSTM.
This discrepancy indicates that LSTM tends to overfit the PM2.5 prediction.

3.3.2. Stock Prediction

Stock prediction in the financial field has always been a hot topic in time series predic-
tion. Stock forecasting refers to the behavior of predicting the future development direction
of the stock market or the rise and fall range of stocks according to the development of
the stock market. Short-term stock prediction is of great significance for stock investors to
analyze the market rhythm and manage the investment risk of holding shares. We use the
Nasdaq 100 index stock test data set for prediction in this paper, and Figure 8 shows the
fitting diagram for Nasdaq 100 index stock test data.

Figure 8. Prediction results (NASDAQ 100).

Figure 8 shows that the trend of the predicted value and real value curve of the
RAdam-DA-NLSTM on the Nasdaq 100 index stock test data set is also roughly consistent,
and the fitting result is quite well. In addition, it is necessary to compare the evaluation
results of the above seven models in predicting the Nasdaq 100 index stock test data set.
The evaluation results take the average value of 20 experiments. Table 3 and Figure 9 show
the results.

Table 3. Evaluation results (NASDAQ 100).

Models MAE MAPE RMSE R2 R2 (TS)

SVM 0.3901 0.5013 0.5211 0.7172 0.8272
RNN 0.2163 0.2586 0.2681 0.7621 0.9031
GRU 0.2031 0.2512 0.2761 0.7663 0.9226
LSTM 0.1821 0.1931 0.2317 0.7874 0.9306

A-LSTM 0.0923 0.1034 0.1522 0.8021 0.9155
DA-LSTM 0.0478 0.0526 0.0632 0.8302 0.9207

RAdam-DA-NLSTM 0.0301 0.0516 0.0531 0.8825 0.9361
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Figure 9. Comparison results (NASDAQ 100).

Table 3 and Figure 9 provide compelling evidence that RAdam-DA-NLSTM achieves
superior results on the Nasdaq-100 stock test dataset compared to other models. Specifically,
RAdam-DA-NLSTM demonstrates smaller MAE, MAPE, and RMSE values, indicating
its enhanced forecasting accuracy. Furthermore, the R2 value of RAdam-DA-NLSTM
outperforms other models, underscoring its robust analytical capability when applied to
complex stock datasets. These findings highlight the effectiveness of RAdam-DA-NLSTM
in predicting stock market behavior and its potential for generating valuable insights in the
domain of financial analysis.

3.3.3. Traffic Prediction

The traffic information system provides fast traffic guidance for cities. Traffic volume
prediction and traffic speed prediction are the key points in the traffic information system.
However, urban traffic has its characteristics, the traffic flow and traffic speed data are hard
to estimate. Therefore, traffic information prediction is highly significant but not easy. We
adopt the RAdam-DA-NLSTM to predict the California vehicle volume data set and Seattle
vehicle speed data set, and Figures 10 and 11 show the fitting diagrams.

Figure 10. Prediction results (California traffic volume).
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Figure 11. Prediction results (Seattle traffic speed).

Figures 10 and 11 show that the RAdam-DA-NLSTM has good fitting results for the
California traffic volume data set and Seattle speed data set. Especially in the fitting of the
California vehicle volume data set, it greatly highlights the advantages of the model. Then,
we further compare the evaluation results of the traffic data set predicted by the above
seven models. Tables 4 and 5 and Figures 12 and 13 show the results.

Table 4. Evaluation results (California traffic volume).

Models MAE MAPE RMSE R2 R2 (TS)

SVM 0.2903 0.9233 0.3218 0.7621 0.8562
RNN 0.1642 0.5215 0.2811 0.8054 0.9172
GRU 0.1327 0.3291 0.2316 0.8298 0.9238
LSTM 0.1244 0.2282 0.1843 0.8536 0.9423

A-LSTM 0.0836 0.2132 0.1641 0.8721 0.9321
DA-LSTM 0.0624 0.1801 0.0912 0.8863 0.9626

RAdam-DA-NLSTM 0.0598 0.1721 0.0825 0.9136 0.9645

Table 5. Evaluation results (Seattle traffic speed).

Models MAE MAPE RMSE R2 R2 (TS)

SVM 0.8931 4.6548 1.2031 0.6518 0.7931
RNN 0.4362 3.9325 0.9121 0.7029 0.8216
GRU 0.4210 3.8978 0.8945 0.7112 0.8344
LSTM 0.3834 3.6427 0.8649 0.7235 0.8367

A-LSTM 0.3756 3.5471 0.7921 0.7616 0.8721
DA-LSTM 0.2921 2.9221 0.4382 0.7915 0.8925

RAdam-DA-NLSTM 0.2651 2.6945 0.4213 0.8120 0.9024

Tables 4 and 5 and Figures 12 and 13 illustrate that the prediction errors for the
California volume dataset and the Seattle speed dataset are lower for RAdam-DA-NLSTM
compared to other models. Additionally, the obtained R2 values are relatively large,
indicating the robust prediction capabilities of RAdam-DA-NLSTM for the aforementioned
datasets. The findings from this study demonstrate the model’s strong prediction abilities
for traffic information, emphasizing its significant practical significance in the field of
traffic prediction.
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Figure 12. Comparison results (California traffic volume).

Figure 13. Comparison results (Seattle traffic speed).

3.3.4. Biological Signal Prediction

ECG (Electrocardiogram) signal has strong nonlinearity, non-stationary nature, and
randomness, making it both precise and challenging to analyze. It is important for patients
with potential Sinus rhythm, coronary heart disease, hypertension, and other diseases
to predict ECG signals in advance and identify sudden cardiac death, which can save
lives through timely intervention during sudden cardiac events. Figure 14 illustrates the
fitting diagram depicting RAdam-DA-NLSTM’s performance in predicting ECG signal
datasets. BCG (Ballistocardiogram) is a graphical representation of the cardiac shock signal
generated by the movement of the heart in response to blood ejection. It carries valuable
information about cardiac function and condition, and can provide early indications of
potential cardiac abnormalities. Extracting heart-related information from cardiac shocks
using BCG signals and detecting abnormal cardiac shocks to diagnose heart disease can
significantly assist in remote patient monitoring. Figure 15 showcases the fitting diagram
of RAdam-DA-NLSTM for BCG signal dataset prediction.
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Figure 14. Prediction results (ECG signal).

Figure 15. Prediction results (BCG signal).

Figures 14 and 15 show that the RAdam-DA-NLSTM has a strong nonlinear mapping
ability for ECG signal prediction and BCG signal prediction. Then, we compare the
evaluation results of the ECG signal data set predicted by the above seven models. Tables 6
and 7 and Figures 16 and 17 show the results.

Table 6. Evaluation results (ECG signal).

Models MAE MAPE RMSE R2 R2 (TS)

SVM 0.2991 3.0238 0.4832 0.7232 0.8136
RNN 0.2834 2.7622 0.4025 0.7621 0.8648
GRU 0.2802 2.3254 0.3819 0.7796 0.8432
LSTM 0.2725 2.2435 0.3021 0.7728 0.8560

A-LSTM 0.2531 1.8432 0.2563 0.8126 0.8922
DA-LSTM 0.2289 1.2003 0.2016 0.8345 0.8837

RAdam-DA-NLSTM 0.2232 1.2189 0.1782 0.8426 0.8856
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Figure 16. Comparison results (ECG signal).

Figure 17. Comparison results (BCG signal).

Tables 6 and 7 and Figures 16 and 17 show that RAdam-DA-NLSTM exhibits strong
predictive ability on biological signal datasets, with smaller MAE, MAPE, and RMSE,
and larger R2 compared to other models. This highlights the model’s ability to effectively
predict biological signal data. Similar to the previous experiments, RAdam-DA-NLSTM
may not achieve the best results on the training set, but it delivers relatively good results on
the test set. This once again validates the model’s superior capacity to address underfitting
and overfitting issues, ensuring accurate predictions.

Table 7. Evaluation results (BCG signal).

Models MAE MAPE RMSE R2 R2 (TS)

SVM 0.5326 3.2431 0.6238 0.6532 0.6865
RNN 0.3211 3.0121 0.3442 0.7254 0.7773
GRU 0.2967 2.8320 0.3002 0.7422 0.7932
LSTM 0.2332 2.9233 0.3126 0.7527 0.7942

A-LSTM 0.2017 2.5321 0.2812 0.7632 0.8329
DA-LSTM 0.1822 2.3208 0.2636 0.7921 0.8232

RAdam-DA-NLSTM 0.1675 2.3026 0.2431 0.8053 0.8321
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4. Discussion

Time series prediction methods are extensively utilized across various domains, in-
cluding Finance, Healthcare, Environment, and Transportation. For instance, it has become
possible to predict future trends and fluctuations in stock prices by analyzing historical
stock market data. This is crucial for investors, traders, and fund managers as they can
make informed investment decisions, manage portfolios, and develop effective trading
strategies based on forecasted outcomes. Similarly, in the realm of atmospheric pollution,
analyzing and modeling historical air quality data allows for predicting future PM2.5 levels.
This information proves valuable for environmental departments, city planners, and public
health organizations, as they can take appropriate measures to combat air pollution and
safeguard public health.

Time series prediction also plays a vital role in transportation planning and manage-
ment. By analyzing historical traffic data, including road traffic flow, congestion level,
and public transportation demand, future traffic volume and congestion can be predicted.
Consequently, urban transportation planners and traffic management organizations can
utilize these predictions to formulate transportation plans, optimize traffic signal control,
and provide effective traffic management solutions.

Furthermore, time series prediction holds significant importance in the medical field,
particularly in analyzing biometric signals such as Electrocardiogram (ECG) and Ballisto-
cardiogram (BCG). By modeling and analyzing these signals, it is possible to predict the
progression of patients’ conditions, assess disease risks, and identify changes in physio-
logical states. This empowers doctors, researchers, and healthcare providers to implement
crucial medical interventions, devise personalized treatment strategies, and deliver im-
proved healthcare based on projected outcomes, thereby enabling timely intervention and
potentially saving lives.

In this paper, a novel time series prediction method called RAdam-DA-NLSTM is
proposed, focusing on feature aggregation optimization, model enhancement, and objective
function optimization. Experimental evaluations are conducted across four domains with
six datasets, including stock data, PM2.5 data, traffic speed data, traffic volume data, ECG,
and BCG. RAdam-DA-NLSTM exhibits superior fitting capabilities when compared to
six comparative algorithms (SVM, RNN, GRU, LSTM, A-LSTM, and DA-LSTM) using
four evaluation indicators (MAE, MAPE, RMSE, and R2). By addressing underfitting and
overfitting issues prevalent in most models, this paper demonstrates the robust nonlinear
mapping abilities of RAdam-DA-NLSTM in processing high-dimensional, complex, and
nonlinear data.

However, it is important to acknowledge the limitations of the proposed time series
prediction method in this paper. The experiments were limited to one-step predictions
in order to facilitate better comparisons across different domains. While this approach
is meaningful for forecasting PM2.5 levels and stock prices, it is essential to conduct
multi-step prediction experiments for time series data with compact time frequencies
and urgent demands, such as BCG signals. These experiments would further validate
the long-term prediction capabilities of RAdam-DA-NLSTM. Additionally, it is crucial to
note that demonstrating the generalization performance of RAdam-DA-NLSTM based
solely on four domains may be an exaggeration. Future research and experiments must
encompass a wider range of domains, taking into account the unique characteristics of each
domain. This will contribute to the field of time series forecasting through more effective
and specialized studies.

5. Conclusions

In the field of Human–Computer Intelligent Systems, our study proposes a powerful
time series prediction model called RAdam-DA-NLSTM, which employs a self-encoder
architecture. This model improves the memory ability of the system using Nested LSTM as
encoder and decoder. Additionally, it includes both input and time attention mechanisms
to enhance the feature cohesion ability of the model. We integrate the RAdam optimizer
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to solve the objective function, which results in a more stable prediction system. In our
simulation experiment, we used different datasets such as Beijing PM2.5, Nasdaq 100,
California traffic flow, Seattle traffic speed, ECG signals, and BCG signals. The results
demonstrate that RAdam-DA-NLSTM has higher prediction accuracy and stability.

For future work, our team will explore multi-step prediction of time series, integrate
our prediction method in more applications, and contribute to the time series prediction of
the Internet of Things (IoT) world. Our goal is to improve the efficiency and accuracy of
predictions in the field of Human–Computer Intelligent Systems.
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