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Abstract: The translation of traffic flow data into images for the purposes of classification in machine
learning tasks has been extensively explored in recent years. However, the method of translation
has a significant impact on the success of such attempts. In 2019, a method called DeepInsight was
developed to translate genetic information into images. It was then adopted in 2021 for the purpose of
translating network traffic into images, allowing the retention of semantic data about the relationships
between features, in a model called MAGNETO. In this paper, we explore and extend this research,
using the MAGNETO algorithm on three new intrusion detection datasets—CICDDoS2019, 5G-NIDD,
and BOT-IoT—and also extend this method into the realm of multiclass classification tasks using
first a One versus Rest model, followed by a full multiclass classification task, using multiple new
classifiers for comparison against the CNNs implemented by the original MAGNETO model. We have
also undertaken comparative experiments on the original MAGNETO datasets, CICIDS17, KDD99,
and UNSW-NB15, as well as a comparison for other state-of-the-art models using the NSL-KDD
dataset. The results show that the MAGNETO algorithm and the DeepInsight translation method,
without the use of data augmentation, offer a significant boost to accuracy when classifying network
traffic data. Our research also shows the effectiveness of Decision Tree and Random Forest classifiers
on this type of data. Further research into the potential for real-time execution is needed to explore
the possibilities for extending this method of translation into real-world scenarios.

Keywords: machine learning; cybersecurity; artifical intelligence; intrusion detection systems;
text-to-image translation; data translation

1. Introduction

Network ubiquity has revolutionized the modern world and made it possible to
connect to anyone anywhere, instantly. However, this ubiquity is a double-edged sword—
not all communication is made in good faith, and a family of exploits known as (Distributed)
Denial of Service ((D)DoS) attacks have plagued the time and minds of network engineers
and administrators for decades. These types of attacks exploit the general lack of centralized
control systems [1]. Traditionally, an expert in this area of cybersecurity is required to
fortify, defend, and mitigate these attacks individually, but modern advancements in the
area of machine learning have allowed researchers to alleviate the high need for domain
experts in this task. As such, the most important task in this domain is now the accuracy
of machine learning classifiers on the current intrusion detection datasets, a task made
more difficult due to the imbalance of classes within these datasets. The vast majority
of traffic across a network is benign, regular packets sent as part of a working system,
with only a small number of these representing malicious packets and attacks. Highly
accurate detection and classification of network attacks is required, as false alarms can
lead to congestion in the network as relevant packets are discarded. Naive over- and
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undersampling is the traditional approach and although this can create balance in the
dataset, it has the limitation of potential overfitting. For example, SMOTE—Synthetic
Minority Oversampling Technique [2]—offers the ability to sample within the feature space.
Other novel approaches have also been presented as the default methods for augmentation
used by researchers when they need to balance a dataset, including methods like ADASYN,
which relies on weighting the minority samples based on the difficulty of learning the data
type [3], and RFMSE, which combines Minority SMOTE and Edited Nearest Neighbor
(ENN) and was introduced for medical samples [4]. Although a significant improvement
over traditional methods, due to their ignorance of general data location during synthesis,
unwanted noise is introduced in the process. In comparison, the MAGNETO model (iMage-
based Gan-enhanced convolutional NEural neTwOrk) introduced in [5], proposes a new
type of image translation which preserves the relationships and semantic information of
the different features. Instead of mapping features to pixels left to right, top to bottom, as
many proposed systems do, Andresini et al. import a method of 2D mapping introduced
in [6] for mapping gene expressions into images. This alternative mapping method groups
similar features into neighboring pixels, allowing the spatial representation to encode
information about more than just the order in which the features appear in the file. This
allows the preservation of semantic relationships between the pixels/data points. Our
research shows that even without the assistance of an augmentation model to balance the
data, the DeepInsight method of data-to-image translation results in high accuracy and
precision in classifying traffic data. We also demonstrate that there are advantages to using
older and more established classifiers like Decision Trees and Random Forest models, in
place of the original Convolutional Neural Networks (CNNs) from the MAGNETO model.

Our specific contributions to the area are as follows:

• To confirm the feasibility of the DeepInsight method for modern traffic data, using the
implementation from [5] to keep our model’s fidelity to the original method.

• We introduce two new classifier types to examine if the Convolutional Neural Net-
work (CNN) implemented in MAGNETO is the best model when using multiclass
classification. For this, we implement a Decision Tree (DT) and a Random Forest (RF)
classifier model.

• We extend the work conducted on the original datasets, such that we examine the
results of using these datasets on both the original architecture and on the new Decision
Tree and Random Forest classifiers.

• We extend the work conducted in [5] into new domains, using more recent and up-to-
date datasets. Specifically, the CICDDoS 2019, 5G-NIDD, and BOT-IoT datasets, all
made available for research purposes in the last five years.

• We apply the different models to the NSL-KDD dataset for the purposes of comparison
to existing state-of-the-art models.

• We add a multiclass classification task to the model, using the original MAGNETO
model in a One versus Rest classification task. For this, we split each dataset into files
based on the different types of attacks and run training and testing over these files.

• We implement a full multiclass classification task by redeveloping the classifiers used
in the MAGNETO model to operate on the new datasets with multiple attack types.

• We present a full comparison of our new versions of the DeepInsight method with
new classifiers against several state-of-the-art models.

• We explore the overall execution time of the different classifiers within the MAGNETO
experiments, both in the original paper and on our own computer architecture.

This paper is organized as follows: Section 2 goes over similar and related research
in translating traffic data into images. Section 3 covers the methodology we used in
this research and the reasons we used these specific implementations. It also covers and
explains the MAGNETO model, as introduced in Andresini et al. [5]. Section 4 explains
the process by which we processed the data for use in the experiments, and the details of
different datasets we employed.Section 5 explores the results we achieved in the different
classification tasks and the different classifiers we implemented, as well as thoroughly
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examines the execution time for the tasks and the accuracy, F1-score, recall, and precision of
our DT and RF models against other state-of-the-art models. Finally, Section 6 underlines
the conclusions from our work and outlines the potential for future research in this area.

2. Related Works

The research in this paper is based on the original experiments in [5] and the original
DeepInsight method from [6]. Similar works have been published, with researchers looking
to find the most efficient ways of using traffic-to-image translation for anomaly detection.

2.1. Using Images for Anomaly Detection

Work using traffic-to-image translation has been performed both with and without
the use of machine learning models. This has led to tools like those introduced in [7],
called NetViewer, which can display network traffic as images, in addition to detecting
anomalies. Unlike the research in this paper, the authors do not make use of machine
learning but instead offer “motion prediction” to detect anomalies using changes in the
images. NetViewer allows the user to detect attacks visually, showing DDoS attacks, for
example, as vertical lines within the image for the source/destination data. NetViewer
creates different images based on different features, unlike DeepInsight, which combines
the features to create a single image.

Further work to enable network administrators to view network traffic visually has
been undertaken in papers such as [8]. The authors use the transformation of network
traffic data into images to enable better detection of attacks and suspicious traffic. The
authors use passive monitoring on both KREONet2 (KREONet2 is South Korea’s dedicated
research and science network—Korea Research Environment Open Network 2), and on the
University of Southern California network. The authors use packet header data to generate
visual images of the network traffic. Image generation is conducted by bytes, working
from left to right, top to bottom, meaning the semantic information between data points
is not preserved in the way that it is in the DeepInsight model. The appearance of solid
horizontal lines in images is again indicative of anomalies in the traffic data. The authors
also make use of color to further offer differentiation of patterns in the images in real time.
This is another differentiation from the MAGNETO model, which operates in greyscale.

2.2. Machine Learning for Image Data Classification

In general terms, much of the research into translating network traffic data into images
for classification by neural networks has used the structure of the data to inform the
ordering of pixels in an image. As such, changing the order of columns provides an entirely
new image. This is the issue the DeepInsight translation method seeks to address.

In the current research landscape, many other researchers have developed methods
of translation, many of which use the ordering of the files. In [9], the authors propose
translating traffic data into images for classification by a Convolutional Neural Network
for the purpose of detecting Botnet traffic and attacks. In this paper, the authors use a
three-step process for taking the raw traffic data and turning them into images for use
in the CNN. First, the data are split into sections which become either PCAP or binary
files. Then, the data are processed, with the MAC and IP addresses anonymized and
any empty data or duplicates discarded. Finally, the remaining data are transformed into
images using grayscale pixels, with any data of shorter length being padded by white
pixels. The addition of white space padding is a very visually significant difference from
the DeepInsight method of translation. We have compared the results from Taheri et al. in
our state-of-the-art comparison (see Section 5.6).

Similarly to [9], in [10] the authors use a Convolutional Neural Network (CNN) to
classify traffic flow data that have been transformed into images, though their paper does
not focus on anomaly detection or network intrusion. Their model, Seq2Img, utilizes a
Reproducing Kernel Hilbert Space Embedding (RKHS) to convert the traffic data into
images, as seen in Figure 1, which was created from Instagram traffic. Unlike [9] or [5],
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the images generated for Seq2Img are not grayscale. The use of RKHS embedding allows
Seq2Img to take the dynamic behavior of the packets into account when generating the
image, which provides extra detail and information for training the CNN. The process
creates six-channel images, which are fed into the CNN for training and classification
purposes. The CNN in Seq2Img classifies the image based on the application type the traffic
flow is for, such as Facebook or Instagram. The Seq2Img model achieved a classification
accuracy on the transformed traffic data of 88.42% using the RHKS embedding images.

Figure 1. An image generated by the DeepInsight method from Andresini et al. (2021) [5] (left
(Reprinted with permission from Ref. 1385536-1, 2021, Elsevier), compared to an RKHS Embed-
ding Image of Instagram traffic, from Chen et al. (2017) [10] (Reprinted with permission from Ref.
5606331016579, 2017, IEEE.) (right).

Regular, unencrypted network traffic is not the only type to be processed and classified
in this way. In [11], the authors transform and classify encrypted traffic passed through
VPNs. The images of the network traffic are used to train their CNN to recognize encrypted
network traffic, using the ISCX VPN-non-VPN dataset [12]. The ISCX dataset has 14
types of encrypted traffic, 7 types of conventionally encrypted traffic, and 7 types of VPN
encrypted traffic. Each session was processed into a series of images. Each byte of the traffic
data was represented as an integer from 0 to 255, and thus transformed into a grayscale
pixel. The resulting images were 28 × 28 pixels in size, and any data that were shorter
than the total of 784 bytes was padded with zeroes. Longer data were truncated at 784
bytes. When classifying the images, the CNN model reached an F1-Score of 97.73% on the
traditional encrypted traffic and 99.55% on the VPN encrypted traffic, demonstrating the
effectiveness of traffic-to-image translation for classification purposes. A similar experiment
was undertaken in [13], in which a CNN was used to distinguish images of network traffic
that had been encrypted via different methods. The images, referred to as FlowPics, were
generated from network traffic flow data in the ISCX dataset, and the classification of
encryption type was achieved with an accuracy of 99.7%.

Other research has focused on detecting malware through the translation of network
traffic flow data into image sequences. In [14], the authors translate Android malware
network flow data into two-dimensional continuous image sequences for classification
with a bidirectional Long Short-Term Memory (LSTM) model. Each packet is transformed
into a 2D grayscale image for classification. The system, called Falcon, achieves 97.16%
accuracy in detecting malware, and further achieves 88.32% accuracy in categorizing said
malware.

3. Methodology

For the purposes of this paper, we have forgone the use of the AC-GAN as utilized
in the original paper. This is to ensure we are able to examine the usefulness of the
DeepInsight translation method on network traffic data alone, without the aid of an AC-
GAN augmenting rare classes. All results were achieved on unaugmented datasets, and
compared using multiple classifiers. We utilized the CNN and 2D CNN models from the
original MAGNETO model and also implemented a Decision Tree and a Random Forest
Classifier model for multiclass classification tasks. Future research could involve the use of
the GAN implementation, forgoing it in these experiments to allow the demonstration of the
DeepInsight method, as well as decreasing the needed computational power, as dedicated
terminals such as those used to run training of a GAN on this scale were unavailable to us
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at this time. Figure 2 shows an abstracted overview of the MAGNETO model presented in
Andresini et al., [5].

The datasets used in this paper were transformed from network traffic data, in both
.csv and .pcap files, into 10 × 10 images using the DeepInsight method. Prior to using the
DeepInsight method, the dataset contains the following features:

• A 1D feature vector containing M features X1,. . . ,Xm with each feature describing an
independent characteristic of a network flow.

• A 1D class column vector containing categorical data of the names of each attack.
• A training set consisting of X, an NxM matrix containing training samples on rows

with the 1D feature vector on the columns. Furthermore, the corresponding Y, an N x
1 vector which classifies each row to a particular class. (A binary label in the binary
and One versus Rest classification tasks, and a multiple choice option in the multiclass
classification task.)

Figure 2. An overview of the original MAGNETO model architecture using the methodology from
[5], starting with the DeepInsight translation method, moving to the AC-GAN to balance the datasets,
and finally the 2D CNN to classify the data.

DDoS datasets are famously imbalanced and thus true to life. Attacks are generally a
small percentage of traffic on any real network, and an effective machine-learned model
must be capable of working in an environment where access to balanced data is not possible.
Section 5.5 specifies the exact distribution of the KDD’99 dataset over the 23 attack types.
This dataset was used in the original paper, and again for our comparisons in Section 5.5.
The pipeline from the original 2021 paper [5] has been utilized for this paper with a few
small differences.

1. Data pre-processing to ensure each dataset is of a valid form for future processes. This
includes dropping any unnecessary columns of data which may result in overfitting,
and the normalization of all features, encoded in the range [0,1]. The exception is
the labels, which for the multiclass classification task are set to whole integers, and
OneHotEncoded to provide a label matrix.

2. Encoding training samples that consist of 1D vectors into a 2D form via t-SNE, wherein
each training sample’s 2D form will be used to create an image. This is explained in
Section 3.1.

3. The training of the classifier model on the images created through the translation
method. We have used four classifier models: a CNN, 2D CNN, Decision Tree, and
a Random Forest classifier. The CNNs were used for all the classification tasks,
whereas the DT and RF were used for the multiclass classification and the comparison
tasks with both the original MAGNETO and other state-of-the-art models in a binary
classification task.

As discussed above, for the purposes of our research, the use of the AC-GAN was
omitted. We utilized the code provided by Andresini et al. [5], and kept the settings equal
to the originals for the most part. As such, the training of the classifier occurred over 100
iterations with 2 epochs per iteration. In the CNNs, the settings for the dropout layers (of
which there are two) and learning rate were chosen randomly in each iteration.The best
model was originally saved when the accuracy achieved in that iteration was higher than
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the current saved best model. We altered this to rely on the F1-score instead, to improve
overall performance. We also implemented two new classifiers, a Random Forest (RF) and
a Decision Tree (DT) classifier, which provided high levels of accuracy and a high F1-score.
The specifics of these implementations are discussed in Sections 3.4.1 and 3.4.2, respectively.

3.1. Text-to-Image Encoding with DeepInsight

Normalization of the data was conducted using scikit-learn’s MinMax function. This
was to ensure that all features have values in comparable ranges.

Each row from the dataset must be transformed into a form the classifiers can use.
CNNs in particular place emphasis on pixel order and neighboring pixels, which means
the use of a technique that can transform text while maintaining the semantic relationships
between data points is of great importance.

To this end, we followed the example of both [6] and [5] in utilizing t-distributed
Stochastic Neighbor Embedding (t-SNE) on the transposition of the dataset. Transposition
is conducted so that each row contains traffic characteristics, with samples being the
columns. t-SNE is a nonlinear technique that is particularly well suited for visualizing
high-dimensional data. t-SNE maps high-dimensional data onto a two-dimensional space
in a way that preserves local structure while also revealing global structures. Part of the
t-SNE method constructs a probability distribution for each pair of flow characteristics
from the training data and the similarity of each characteristic Xi to Xj is measured as
a conditional probability that Xi would have Xj as its neighbor if neighbors were being
picked in proportion to their probabilistic density under a Xi-centered Gaussian. The
operations also focus on minimizing the non-symmetric Kullback–Leibler divergence KL
between distributions.

The non-symmetric Kullback–Leibler divergence is defined as:

DKL(P ‖ Q) = ∑
i 6=j

p(χij) · log
p(χij)

q(χij)

where DKL(P ‖ Q) is the information gain achieved if P was used instead of Q.
The result is a dataset transformed from an MxN matrix to one of an Nx2 matrix

where each row still represents the traffic characteristics and the two columns define 2D
coordinates that can be used to visualize those characteristics as points on a Cartesian plane.
This can be seen, abstracted, in Figure 3.

Figure 3. The pipeline for the DeepInsight method of translating traffic flows into images.

In the next step, the Convex Hull Algorithm (CHA) is used to find the minimum
bounding rectangle containing all points from the t-SNE transformation. A convex hull
algorithm is an algorithm that takes a set of points in the plane and computes the convex
hull of those points, in this case, the minimum bounding rectangle. Once found, the points
are rotated to be horizontal or vertical, so that the images can be framed for the architecture
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of a Convolutional Neural Network. Finally, each point is assigned to a specific subsection
of the image frame that most closely matches its point location from t-SNE.

The allocation of features to a pixel frame within the image can result in feature
collision if more than one point finds itself within the same pixel frame. The method
introduced in [5] introduced the use of Mutual Information (MI). This works to overcome
the issues related to the method for addressing collisions in [6], which simply computed
the average of values measured on heterogeneous characteristics. MI is invariant in feature
space transformations such that where feature collisions occur, each is ranked based on
their mutual information, and then the top feature is used for that frame. Figure 4 displays
the methodology behing the Mutual Information collision resolution method introduced in
Andresini et al., [5].

Figure 4. The Mutual Information method introduced in Andresini et al., used to address collisions in
the image space. From ([5], p. 112) ((Reprinted with permission from Ref. 1385536-1, 2021, Elsevier).

The end result of these steps is a blueprint, or scaffolding image, with each sample’s
individual feature values being used as the grayscale values for the pixel frames. This
results in each image having the same general structure; much like a species, a cat has a
general structure shared between each breed.

The images we produced for human recognition were modified slightly in their
production from the original MAGNETO paper. We utilized the Pillow image library, along
with the previously implemented matplotlib, in order to create grayscale grid images with
nine individual sample images in each. Labeled examples of this, showing the image and
the attack label for the multiclass version of the dataset, can be seen in Figure 5.

Figure 5. A sample of nine images from the unaugmented, multiclass 5G-NIDD dataset, labeled with
their attack classes.
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3.2. Classification Using 2D Convolutional Neural Networks

For our experiments, the basic and 2D Convolutional Neural Network is trained to
discriminate between the network flow classes, based on the image form of the samples.
The primary reason researchers tend towards using a 2D CNN over approaches such as
the Random Forest classifier is the ability to capture spatial contiguity in images. This is
relevant to these experiments as the input data are encoded in such a way as to preserve
feature relationships in 2D images. This model is a fully connected feed-forward neural
network, with local filters and weight. There are three Conv2D layers alternating with
Dropout layers-Conv2D layers are of sizes 32–64–128. Each Conv2D layer involves filter
sets that replicate across the entire input, processing small local parts. Specifically, given an
image p, the ith feature map for location (x, y) in a convolutional layer will be determined
by a weight matrix and bias vector, along with a non-linear activation function:

hl
x,y,k = σ(W l

k ∗ pl
x,y + bl

k),

where pl
x,y is the input patch centered at location (x, y) of the lth layer and ∗ represents the

convolution function. The kernel W l
k is shared for each possible location (x, y), thus reducing

the model complexity and making the network easier to train. Finally, it is flattened and
goes through two dense layers of size. Note that there are no pooling layers as per [5].
The output layer’s activation function is sigmoid, for binary classification, and softmax for
multiclass classification.

3.3. Multi-Class Classification with One versus Rest Tasks

A significant part of our experiments to expand the reach of the MAGNETO model
involved the classification of multiple attack types, in addition to the traditional binary
Benign/Malicious classification task. In order to conduct this while remaining as close
to the original model as possible, a One versus Rest classification task was created. Each
dataset was processed into a set of files, one for each attack type, containing all dataset
samples, with each Label column containing a binary label indicating whether or not the
sample was of that file’s class. In the case of the 5G-NIDD dataset, this meant splitting the
dataset into eight attack types as well as one for Benign/Not Benign. The CICDDoS 2019
dataset contained eight attack types, whereas the BOT-IoT dataset contained 15. Each of
these files was processed through the same methods as discussed in the previous section
for the binary classification task. The algorithm was trained on each attack type through the
corresponding dataset file and evaluated for effectiveness and accuracy. For this experiment,
the original CNN models were the only classifiers used.

3.4. Multi-Class Classification with Full Dataset Processing

As a new and substantive extension of the original code for MAGNETO, we created a
version that processed datasets with multiple potential attack labels. The different classes
of attack were used for training as singular datasets with multiple potential labels, rather
than the individual attack class datasets used in the One versus Rest task. Interestingly, the
results for this task were significantly higher than the individually trained One versus Rest task.
As we can see in the breakdowns of the different attack classes in each dataset (Tables 1–3),
there are multiple rare classes which each have only a dozen or so instances in the set. This
makes training the network model to recognize these classes exceptionally difficult. This puts
severe restrictions on the level of accuracy that is possible when classifying these classes. The
difference may also be related to the addition of two different classifiers for the multiclass
classification task. As part of training this model, we moved away from the sole use of
Convolutional Neural Networks (as used in [5]) and implemented both a Random Forest
and a Decision Tree Classifier [15], to see if this had a significant effect on the accuracy of the
multiclass classification of the dataset. The two new classifiers performed more effectively
overall than the CNNs from Andresini et al. [5]. These results will be discussed in more detail
in Section 5.
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Table 1. Breakdown of attack classes in the CICDDoS2019 dataset.

Attack Class Training Instances Testing Instances

Benign-0 1137 285
LDAP-1 38,657 9535

MSSQL-2 115,537 28,852
NetBIOS-3 73,125 18,211
Portmap-4 3746 893

Syn-5 98,007 24,495
UDP-6 77,050 19,532

UDPLag-7 31 20

Total Instances 407,290 101,823

Table 2. Breakdown of attack classes in the 5G-NIDD dataset.

Attack Class Training Instances Testing Instances

Benign-0 382,118 95,619
HTTPFlood-1 112,935 27,877
ICMPFlood-2 929 226
SYNFlood-3 7716 2005
SYNScan-4 16,043 4000

SlowrateDoS-5 58,403 14,721
TCPConnectScan-6 16,080 3972

UDPFlood-7 365,765 91,575
UDPScan-8 12,723 3183

Total Instances 972,712 243,178

In adapting the CNN models for the full multiclass classification task, we made only
minor changes. The CNN models were set up in the same way as for binary classification,
with the difference being the last layer using a softmax activation function, and with the
number of outputs equal to the total number of attack classes.

Table 3. Breakdown of attack classes in the Bot-IoT dataset.

Attack Class Training Instances Testing Instances

Benign-0 1,818,563 454,534
Bot-1 1581 385

DDoS-2 102,216 25,811
DoS GoldenEye-3 8203 2090

DoS Hulk-4 185,046 46,027
DoS Slowhttptest-5 4396 1103

DoS slowloris-6 4557 1239
FTP-Patator-7 6367 1571
Heartbleed-8 10 1
Infiltration-9 30 6
PortScan-10 127,134 31,796

SSH-Patator-11 4721 1176
Web Attack: Brute Force-12 1227 280

Web Attack: SQL Injection-13 18 3
Web Attack: XSS-14 525 127

Total Instances 2,264,594 566,149

3.4.1. Implementing the Random Forest Classifier

We implemented a Random Forest Classifier using scikit-learn’s library [15] and
optimized it using a modified version of Andresini et al.’s hyperopt function. The number
of trees, maximum depth, random state, and the criterion function were all chosen at
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random and tested for optimal results over the course of 150 iterations, with two epochs
per iteration. The number of trees varied between 20 and 200, and the maximum depth was
set between 2 and 10. Random state was set as either 32 or 42, and the criterion functions of
gini, entropy, or log-loss were selected at random. The randomized nature of the RF model
resulted in significant differences in execution time between runs, because of the maximum
number of trees and depth.

3.4.2. Implementing the Decision Tree Classifier

The Decision Tree Classifier was implemented using the scikit-learn library [15], and
optimization involved the choice of a random state. The settings for the DT model were
primarily the default settings, with only the random state and depth being altered in the
optimization phases. The classifier was again trained over 150 iterations and two epochs
per iteration. This classifier offered the best performance in execution time, as discussed in
Section 5.

3.5. Comparative Tasks

In order to adapt the overall comparisons to the limitations of our available compu-
tational power, we used the multiclass models, with a binary version of the datasets, for
all classifiers. We also used the original datasets (CICIDS17, UNSW-NB15, and KDD99)
from the Andresini et al. experiments, in order to compare these results on the original
models to the newly implemented classifiers. We also performed these experiments on the
NSL-KDD dataset to allow for better comparison against other state-of-the-art machine
learning models for intrusion detection.

4. Datasets and Processing

In [5], the datasets used were the KDDCUP99 (found at http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html (accessed on 7 Janurary 2023)), UNSW-NB15 (found
at https://research.unsw.edu.au/projects/unsw-nb15-dataset (accessed on 7 January 2023)),
CICIDS17 (found at https://www.unb.ca/cic/datasets/ids-2017.html (accessed on 10 Jan-
uary 2023)), and AAGM17 (found at https://www.unb.ca/cic/datasets/android-adware.
html, (accessed on 10 January 2023), and not used in our experiments) datasets. Our
project introduced newer datasets, so as to examine the effect of the DeepInsight method
on datasets more representative of the current landscape of threat detection. We provided
comparisons between the original experiments and our results in Section 5.5.

We also undertook experiments to see how our multiclass version of MAGNETO,
with the Random Forest and Decision Tree classifiers, performed against the original
datasets, with the exception of the AAGM17 dataset, which was extremely computationally
expensive. These results can also be found in Section 5.5.

The new datasets used in these experiments are CICDDOS2019, 5G-NIDD, and BoT-
IoT. We performed an additional examination on the datasets used by Andresini et al.
in [5]—KDD99 Cup, UNSW-NB15, and CICIDS17. They were all evaluated through the use
of our modified MAGNETO algorithm to test the performance of our proposed approach,
and particularly to offer a comparison between the original MAGNETO experiments and
our modified classifiers. These were pre-processed for use in the experiments, as shown
below. The previous set of datasets (KDD99 Cup, UNSW-NB15, and CICIDS17) as well as
the benchmark dataset of NSL-KDD were used only in part. We selected a random sample
set of 10% of each set for use in our experiments. The original MAGNETO experiments
also used only a small selection of the sets, so this offered the best way to create a true
comparison.

All our datasets, plus our full code and results are available for download for research
purposes (code and results can be downloaded from https://github.com/aerynsfyre/
MAGNETO-extended (updated on 29 July 2023), datasets as modified and the images
generated and their datasets can be found at https://tinyurl.com/2p96uzye (updated on
29 July 2023)).

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/android-adware.html
https://www.unb.ca/cic/datasets/android-adware.html
https://github.com/aerynsfyre/MAGNETO-extended
https://github.com/aerynsfyre/MAGNETO-extended
https://tinyurl.com/2p96uzye
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4.1. CICDDOS2019 Dataset

CICDDOS2019 contains both benign and up-to-date attacks from two broad
categories—exploitation and reflection. The dataset was created to widen the scope of
attacks available in research datasets while providing high-quality, true-to-real-world condi-
tion network flows. In total, eight attack classes are represented, including benign samples.
CICDDOS2019 contains 50 million records across two days, which presents an extensive
amount of data. The CICDDoS2019 dataset [16] requires processing prior to use with the
MAGNETO model. First, there exist NA and infinite values in some records, and it is
necessary to remove these rows. Secondly, features that may result in overfitting, such
as Source and Destination IP, are dropped. The original dataset contains 87 features. In
total, we dropped 49 unnecessary or potentially over-fitting features, resulting in a dataset
with 38 features. Categorical features, such as the type of attack, RAS/EAS/Benign, are
encoded using a LabelEncoder. The ultimate labeling system of the training data is 0 for
Attack and 1 for Benign. Next, data normalization is performed with the use of sklearn’s
MinMaxScaler.

The training and testing datasets were created utilizing Pandas Dataframes to enable
random splits and shuffling of the data. The split of 20% testing data to 80% training
data was conducted with a random selection. The full dataset was used in each of the
experiments. The multiclass experiments were performed based on the “Label” feature,
which gave eight separate attack classes, including “Benign”, as shown in the breakdown
in Table 1.

4.2. 5G-NIDD Dataset

The 5G-NIDD Dataset is a 2022 dataset presented by Samarakoon et al. [17], offering a
large sample of intrusion detection data from multiple sources collected over a 5G wireless
network. The data, from the University of Oulu, Finland, were collected by a 5G testbed,
and are fully labeled for use in machine learning research. Containing many types of attacks,
the dataset provides an up-to-date and comprehensive set for testing. Rows containing NA
or infinite values were removed, and categorical features were encoded with LabelEncoder.
The values were normalized with the MinMaxScaler. Due to the number of attack types,
we utilized a binary classification of Malicious/Benign, as per the labeling of the dataset.
For the multi-class classification task, the feature “Attack Type” was used to separate the
classes of attacks and benign traffic. This gave nine output classifications, including the
“Benign” class for normal traffic. The breakdown of these classes is shown in Table 2.

4.3. BOT-IoT Dataset

The BOT-IoT dataset, from the University of New South Wales Canberra campus,
captured traffic representing both normal and botnet traffic [18]. It contains DDoS, DoS,
OS and Service Scan, Keylogging, and Data Exfiltration attack data types, offering a good
opportunity for multi-class classification using MAGNETO’s One versus Rest task. For the
binary classification challenge, we applied a filter of Attack/Benign to the dataset. Any
rows with NaN or infinite values were dropped, whereas categorical features were encoded,
and all values were normalized using the MinMaxScaler. The multiclass version, based on
the “Label” feature, gave 15 attack classes, including “Benign”, as shown in the breakdown
in Table 3.

4.4. KDD99 Cup Dataset

Introduced in 1999, the KDD99 Cup dataset was one of the first intrusion detection
datasets for research [19]. In spite of its age, the KDD99 dataset is still widely used by
machine learning and cybersecurity researchers. In 2015, the KDD99 dataset had been
utilized in almost 150 studies, primarily for training machine learning IDS models [20].
The KDD99 dataset breakdown, with regards to the ratio of malicious/benign traffic and
the number of redundant samples, is shown in Table 4. For the purposes of this study, we
utilized 10% of the dataset, split into two sets—80% for training and 20% for testing.
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Table 4. Distribution of the KDD99 Cup dataset for attacks and their redundancy rates with regards
to the original dataset records.

Type Original Records Redundant Records Redundancy Rate

Training Set

Attacks 3,925,650 262,178 93.32%
Normal 972,781 812,814 16.44%

Total 4,898,431 1,074,992 78.05%

Testing Set

Attacks 250,436 29,378 88.26%
Normal 60,591 47,911 20.92%

Total 311,027 77,289 75.15%

Dataset Total 5,209,458 1,152,281 22.12%

4.5. NSL-KDD

There have been numerous attempts to “clean” the KDD99 Cup dataset, especially
with regards to its redundant records, shown in Table 4. The result of these attempts was
the NSL-KDD dataset (The full NSL-KDD dataset can be found here: https://www.unb.
ca/cic/datasets/nsl.html (accessed on 7 January 2023)) [21]. It utilizes the same sample set
as the KDD99 dataset does, but it removes redundant or unnecessary records, making it
more efficient for machine learning tasks like this one. We again utilized 10% of the dataset
in our experiments.

4.6. CICIDS17 Dataset

The CICIDS17 dataset, or the Canadian Institute of Cybersecurity System dataset of
2017, has long been a standard training and testing set in machine learning for IDS. Because
it was utilized in the original MAGNETO paper, we have reproduced that experiment
here and trained a binary classification task for this dataset using our newly implemented
Random Forest and Decision Tree classifiers. The randomly selected 10% of the samples
selected were used for these experiments.

4.7. UNSW-NB15 Dataset

The UNSW-NB15 dataset was released for research purposes in 2015 [22,23]. It contains
a large set with 49 features and nine attack types. The number of samples is also significant,
as it contains 25,40,044 unique records. As such, using only a selection of the total samples
is required for efficient computation [24]. We have used a random selection of 10% of the
full set.

5. Results
5.1. Binary Results

The results for the Binary classification task can be seen in Table 5. The MAGNETO
model provided high levels of accuracy, even without the addition of the GAN implemen-
tation to balance the datasets in use. The execution time, however, was significant for the
CNN and 2D CNN models. For the binary task on the 5G-NIDD dataset, the full run of
training and testing took 23 h, 42 min, and 39 s. The CICDDoS19 dataset completed its run
in 1 h, 6 min, and 46 s, much faster than its rival. The BOT-IoT dataset completed training
in 34 h, 37 min, and 9 s.

The original paper provided overall accuracy and the F1-score for the datasets used.
As such, we cannot compare the original paper’s precision and recall against our own exper-
iments. Nonetheless, we have provided the precision and recall for the binary classification
task using the MAGNETO CNN implementations.

https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html
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Table 5. The results of the Binary classification task using the MAGNETO CNN model on the new
datasets.

Dataset Accuracy F1-Score Precision Recall

CICDDoS2019 99.85% 99.83% - 99.82%
5G-NIDD 99.46% 99.13% 85.93% 76.40%
BOT-IoT 97.07% 97.07% 94.37% 96.61%

The initial results from the binary classification task used for the CICDDoS 2019 dataset
provided a trained model with the first dropout layer at 0.09082176810268824, the second
dropout layer set to 0.8144037383748151, with a learning rate of 0.0009158694003247323.
This model achieved an F1-Score of 99.78%. Interestingly, the model had high recall but no
precision. The Convolutional Neural Network model used for the binary classification task
resulted in a very low precision in classification.

The best performance of the Binary Classification Task on the 5G-NIDD dataset was
achieved with dropout layers of 0.041691190108933865 and 0.8349497093285286, and a
learning rate of 0.0007422573800689679. This achieved a balanced accuracy score of 99.46%
and an F1-Score of 99.45%.

The binary classification of the BOT-IoT dataset gave a best performance of 97.07%
accuracy and 95.47% F1-score, several percentage points lower than the other two datasets.
Dropout layer 1 was set at 0.004898578679374063, and dropout layer 2 was 0.6595608323069847,
with a learning rate of 0.0006702515026435587.

The BOT-IoT dataset, when split along the lines of Malicious/Benign, contains more
than 1.8 million records of benign data and almost 450,000 records of malicious data in the
training set. The testing set contains just over 450,000 benign samples and approximately
111,000 malicious samples. This is distinctly imbalanced—somewhat more so than the
other two datasets—and may account for the difference in accuracy once trained.

5.2. Multiclass One versus Rest Results

The results of the unaugmented One versus Rest multiclass classification task can be
seen in Tables 6–8.

The results of the One versus Rest multiclass classification task on the full 5G-NIDD
base station one dataset are shown according to Attack Type in Table 7. Because these are
the unaugmented results, obtained without the use of the GAN module, we can see the
low F1-Score on the rarest class-ICMPFlood, which only achieved an F1-Score of 49.977%.
This is because, in the unaugmented dataset, there are only 929 samples of this attack class
in the training set and 226 in the testing set, out of more than one million samples total.

Table 6. Results from the One versus Rest multiclass classification task on the unaugmented CICDDoS
2019 dataset.

Attack Type-Label Accuracy F1-Score

Benign-0 99.845% 99.831%
LDAP-1 99.27% 97.905%

MSSQL-2 96.934% 96.132%
NetBIOS-3 82.115% 45.09%
Portmap-4 99.123% 49.780%

Syn-5 50.905% 46.873%
UDP-6 98.058% 96.937%

UDPLag-7 99.98% 49.995%

Overall Values 90.779% 72.818%
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Table 7. The unaugmented 5G-NIDD dataset One versus Rest multiclass classification results by
attack type.

Attack Class-Label Accuracy F1-Score Instances

Benign-0 76.397% 70.432%
HTTPFlood-1 94.529% 88.603%
ICMPFlood-2 99.907% 49.977%
SYNFlood-3 92.132% 94.969%
SYNScan-4 99.874% 99.890%

SlowrateDoS-5 65.480% 72.039%
TCPConnectScan-6 99.478% 98.099%

UDPFlood-7 81.151% 76.466%
UDPScan-8 99.683% 99.841%

Overall Results 89.848% 83.368%

Table 8. Multiclass One versus Rest results for the unaugmented BOT-IoT dataset.

Attack Type-Label Accuracy F1-Score

Benign-0 97.068% 95.469%
Bot-1 99.931% 49.982%

DDoS-2 99.4% 96.443%
DoS GoldenEye-3 99.63% 49.907%

DoS Hulk-4 97.143% 90.771%
DoS SlowHTTPTest-5 99.932% 91.294%

DoS Slowloris-6 99.937% 92.579%
FTP-Patator-7 99.723% 49.931%
Heartbleed-8 50.0% 49.999%
Infiltration-9 99.999% 49.997%
PortScan-10 98.724% 94.477%

SSH-Patator-11 99.792% 49.948%
Web Attack-Brute Force-12 99.951% 49.988%

Web Attack-SQL Injection-13 99.999% 49.998%
Web Attack-XSS-14 99.978% 49.994%

Overall Results 96.080% 70.718%

The imbalance of the unaugmented BOT-IoT dataset meant that the results for the One
versus Rest classification task were significantly lower than that of the other datasets. As
shown in Table 8, the F1-Scores suffer in the rarer classes. In some of the rarest classes, only
a few dozen samples are available to train the model on that type of attack, which results
in a poor representation in the network.

5.3. Full Multiclass Classification

The results of training the model on the unaugmented full multiclass dataset were
significantly higher than that of the One versus Rest task when using the Convolutional
Neural Networks implemented by [5]. To explore this, we implemented two new classifiers,
a Decision Tree and Random Forest model. The results shown in Tables 9–11 are the results
of training on images size 10 × 10, using the best performing of these four classifiers, the
Decision Tree model. In contrast to the high results of the DT and RF classifiers, the original
CNN achieved an F1-score of 62.02% on the CICDDoS19 dataset, 14.49% on the BOT-IoT
dataset, and 62.02% on the 5G-NIDD dataset. Likewise, the 2D CNN from [5] achieved an
F1-score of 70.4% on the CICDDoS19 dataset, 55.36% on the BOT-IoT dataset, and 70.40% on
the 5G-NIDD dataset. The most significant contrast was the original CNN on the BOT-IoT
dataset, which performed significantly lower than the other classifiers on this dataset. This
is likely due to the higher number of attack classes and the severe imbalance in data types.
Full comparative results can be seen in Section 5.4, which shows that the Decision Tree
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classifier resulted in the best overall performance, closely followed by the Random Forest
classifier.

Table 9. Full multiclass classification task with the unaugmented CICDDoS19 dataset using the
Decision Tree Classifier.

Attack Type-Label Accuracy F1-Score

Benign-0 99.996% 99.296%
LDAP-1 99.987% 99.932%

MSSQL-2 99.34% 98.835%
NetBIOS-3 98.163% 94.836%
Portmap-4 98.158% 6.106%

Syn-5 99.958% 99.912%
UDP-6 99.9336% 98.271%

UDPLag-7 99.974% 23.529%

Overall Values 99.365% 77.59%

Table 10. Full multiclass classification task with the unaugmented 5G-NIDD dataset using the
Decision Tree Classifier.

Label Accuracy F1-Score

Benign-0 99.974% 99.967%
HTTPFlood-1 99.999% 99.996%
ICMPFlood-2 100% 100%
SYNFlood-3 100% 100%
SYNScan-4 99.999% 99.975%

SlowrateDoS-5 99.999% 99.993%
TCPConnectScan-6 100% 100%

UDPFlood-7 99.976% 99.968%
UDPScan-8 99.999% 99.969%

Overall Results 99.994% 99.985%

Table 11. Full multiclass classification task with the unaugmented BOT-IoT dataset using the Decision
Tree Classifier.

Attack Type-Label Accuracy F1-Score

Benign-0 99.839% 99.9%
Bot-1 99.976% 82.383%

DDoS-2 99.997% 99.963%
DoS GoldenEye-3 99.994% 99.185%

DoS Hulk-4 99.965% 99.786%
DoS Slowhttptest-5 99.981% 95.173%

DoS slowloris-6 99.996% 99.156%
FTP-Patator-7 99.993% 98.79%
Heartbleed-8 100% 66.667%
Infiltration-9 99.999% 66.667%
PortScan-10 99.935% 99.46%

SSH-Patator-11 99.997% 99.279%
Web Attack: Brute Force-12 99.972% 69.9925%

Web Attack: SQL Injection-13 99.999% 46.154%
Web Attack: XSS-14 99.971% 39.706%

Overall Results 99.974% 84.144%

Although the original CNN models appeared to be inferior in classifying multiclass
images from the new datasets, the Decision Tree Classifier performed very well on the
unaugmented datasets. Given the level of imbalance present in the dataset, the DT classifier
displayed the effectiveness of these models in multiclass classification problems. The full
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results for the Decision Tree Classifier can be seen in Table 11. Comparing the results of
the multiclass classification using the DT with the One versus Rest classification using the
2D CNN, we can see a significant improvement on the performance of the unaugmented
dataset overall.

5.4. Classifier Comparison for Multiclass Task

Having extended the reach of the MAGNETO algorithm by adding a Random Forest
and Decision Tree Classifier to the multiclass version of the task, we have provided a full
comparison of the different classifier models. On the unaugmented datasets, this resulted
in significantly different scores, with the Decision Tree Classifier coming out significantly
ahead of the Convolutional Neural Network classifiers, and achieving results fairly close to
those of the Random Forest classifier.

The full multiclass classification on the CNN, 2D CNN, Random Forest, and Decision
Tree Classifier models was completed over 150 training iterations, with two epochs per
iteration. The overall accuracy on the unaugmented datasets using the different classifiers
can be seen in Figure 6, with F1-Score shown in Figure 7.

Settings for the Random Forest Classifier implemented were optimized with hyperopt
and forests of up to 200 trees were used, with variable maximum depth between two and
eight nodes. The different optimization functions were all utilized in random selection.

The Decision Tree Classifier switched between the random states of 32 and 48. A Sup-
port Vector Machine was considered, but discarded for the high computational complexity
and time requirements associated with convergence on very large datasets.

When comparing the overall results of the multiclass classification task with the One
versus Rest task, it can be seen in the differences between the latter two rows in Table 12
that the multiclass classification task with the Decision Tree classifier outperforms the One
versus Rest task with the 2D CNN classifier. Therefore, our modified, multiclass version
of MAGNETO proves more accurate in classifying the unaugmented datasets than the
original version of MAGNETO.

2D CNN CNN DT RF
85

90

95

100
98.11

91.2

99.37 99.6499.63

86.74

99.97 99.97
99.53

97.8

99.99 99.99

Classifier Model

R
es

ul
t

CICDDoS19 BoT-IoT 5G-NIDD

Figure 6. Comparative results for accuracy of different classifiers for multiclass classification on the
unaugmented datasets.
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Figure 7. Comparative results for F1-score using different classifiers for multiclass classification on
the unaugmented datasets.

Table 12. Results from the different classification tasks using the MAGNETO model without the
GAN implementation.

Classification Type Dataset Accuracy F1-Score

Binary Classification—Using CNN Model
CICDDoS2019 99.85% 99.83%

5G-NIDD 99.46% 99.13%
BOT-IoT 97.07% 97.07%

One versus Rest Classification—Using CNN Model
CICDDoS2019 90.779% 72.818%

5G-NIDD 89.848% 83.368%
BOT-IoT 96.080% 70.718%

Full multiclass classification—Using DT Model
CICDDoS2019 99.365% 77.59%

5G-NIDD 99.994% 99.985%
BOT-IoT 99.974% 84.144%

The overall results on the unaugmented datasets using the different classifiers show
the effectiveness of the DeepInsight method. Even with multiclass classification and
significantly imbalanced classes, the accuracy and F1-scores of the models were able to
reach over 99% and 77% in the lowest scores, with the F1-score going as high as 99.98%
on the 5G-NIDD dataset. The breakdown of the multiclass results shown for the Decision
Tree Classifier displays the effectiveness of the translation method, as the individual classes
achieve high scores in classification. We also display the Area Under the ROC Curve, or
AUC value results for the different classifiers over the CICDDoS 2019 dataset in Figure 8.
This shows relatively similar performance over the attack types, with the DT and RF
classifiers still offering the best overall performance. In contrast, the AUC results for
the 5G-NIDD dataset, shown in Figure 9, show that the DT and RF classifiers offered a
significantly improved performance in comparison to the CNNs, as is also the case on the
BOT-IoT dataset, as shown in Figure 10.
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Figure 8. Area under the ROC curve results for the classifiers using the CICDDoS 2019 dataset.

Figure 9. Area under the ROC curve results for the classifiers using the 5G-NIDD dataset.
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Figure 10. Area under the ROC curve results for the classifiers using the BOT-IoT dataset.

5.5. Comparing Results with Andresini et al.

The results of the classifiers for the Andresini et al. paper can be seen in Table 13. These
results are for the Binary classification task, using the original CNN. We have compared
them to a new version of the binary classification task using our Random Forest and
Decision Tree classifiers. Comparing the results from the original paper to the binary results
from the new datasets show a significant difference, as seen in Table 12. In keeping with
the original MAGNETO paper, only 10% of each dataset was used for these experiments.
We have compared accuracy across the classifiers in Figure 11.

Table 13. The results achieved by Andresini et al. [5] in their original binary classification task
compared with the binary classification results from the new version of MAGNETO using the
Random Forest and Decision Tree classifiers. The best results are highlighted for each dataset.
(Reprinted with permission from Ref. 1385536-1, 2021, Elsevier)

Model Dataset Accuracy F1-Score

Andresini et al. [5]
KDD99 93.29 95.66

UNSW-NB15 89.73 91.97
CICIDS17 98.49 96.28

DeepInsight [6]
KDDCUP99 92.80 95.32
UNSW-NB15 68.29 81.10

CICIDS17 97.56 94.11

DT Variant
KDD99 99.95 99.92

UNSW-NB15 98.2 95.93
CICIDS17 99.96% 99.68%

RF Variant
KDD99 99.95 99.92

UNSW-NB15 98.26 96.05
CICIDS17 99.96% 99.72%
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Figure 11. Comparative results for accuracy of original and new classifiers for binary classification
on the original datasets.

With regards to the new datasets, it is important to note that any comparison of the
original datasets to these is only useful with the caveat that the results demonstrate the
types of intrusion data on which the MAGNETO and DeepInsight methods are effective.
It does, however, demonstrate the effectiveness of the MAGNETO model on more recent
datasets, which are more representative of the current information flowing through devices.

The original datasets used in [5] were the KDD’99 Cup [19], UNSW-NB15, and the
CICIDS17 [16]. We improved our ability to compare the different classifier models by
performing binary classification on all of these datasets, with the exception of the AAGM17
dataset, which was excluded from the computational power required to process this dataset.
Given the nature of the KDD99 dataset, as shown in Table 4, we also decided to run our
models on the NSL-KDD dataset, which is an improved version of the KDD99 set, with
redundant records and information removed. It is specifically designed for machine
learning, and whereas Andresini et al. did not use this version of the dataset, several of the
state-of-the-art classifiers we compared our models with did use the NSL-KDD set, and so
we felt it reasonable to include these results. For further comparison, we also performed
multiclass classification on the KDD99 dataset, using the newly implemented Decision Tree
and Random Forest classifiers.

The results on the multiclass classification on two of the original datasets, as shown in
Table 13, show the high accuracy and F1-scores achieved even across imbalanced datasets.
The breakdown of the KDD99 dataset is shown in Table 14, so as to demonstrate how
imbalanced the dataset is when using a multiclass classification model. Based on this
breakdown, the overall results for our classifiers show significant promise for classifying
malicious traffic. It is noted that the Random Forest classifier performs better on these
datasets than the Decision Tree classifier, and further research is necessary to explore this
trend. Some of the classes are so imbalanced that they appear only in single digits in the
training set, and not at all in the testing set. This naturally brings the overall results of
classification down with regard to F1-scores for the minority classes.
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Table 14. A breakdown of the different attack classes and the results of the multiclass classification
task using the DT classifier in the KDD99 dataset.

Attack Class Training Set Testing Set Accuracy F1-Score

0-Back 1754 449 99.999% 99.101%
1-Buffer

Overflow 25 5 100% 33.333%

2-FTP Write 6 2 100% 0%
3-Guess

Password 45 8 100% 100%

4-IMAP 8 4 100% 85.714%
5-IPSweep 10,023 2450 99.998% 99.613%

6-Land 16 5 100% 75%
7-Load Module 6 3 100% 0%

8-Multi Hop 6 1 100% 100%
9-Neptune 857,419 214,598 99.999% 99.998%
10-NMAP 1861 455 99.999% 98.889%

11-
Normal/Benign 778,407 194,373 99.989% 99.71%

12-Perl 3 0 - -
13-PHF 4 0 - -
14-Pod 213 51 99.999% 90.526%

15-Port Sweep 8284 2129 99.999% 99.765%
16-Rootkit 8 2 100% 66.667%
17-Satan 12,737 3155 99.997% 99.602%
18-Smurf 2,246,271 561,615 99.999% 99.999%

19-Spy 2 0 - -
20-Teardrop 794 185 99.999% 98.072%

21-Warez Client 833 187 99.999% 96.721%
22-Warez Master 19 1 100% 100%

Totals: 3,918,745 979,678 99.999% 82.149%

It is also worth noting that the original paper by Andresini et al. [5] did not use the
entirety of the datasets. The KDD99 dataset used was only 10% of the full training set.
For CICIDS17, they used 100,000 samples in the training set and 900,000 samples in the
testing set. For comparison and context, we have included the sizes of the original datasets
in Table 15. For the purposes of comparison, we also utilized 10% of the datasets in this
experiment. In comparison, all of the new datasets (CICDDoS19, BOT-IoT, and 5G-NIDD)
were run using the entire dataset. Tables 15 and 16 show our results in detail in comparison
with the original results in Andresini et al., [5].

Table 15. The full sizes of the original datasets used in Andresini et al. and their 10% sample sizes
used in these experiments.

Dataset Full Set of Samples 10% Selection

CICIDS17 21,978,631 2,197,863

KDD99 4,898,430 494,020

NSL-KDD 181,189 18,118

UNSW-NB15 2,540,043 254,004
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Table 16. The multiclass classification results on the original datasets from Andresini et al. [5].

Dataset RF Classifier DT Classifier
Accuracy F1-Score Accuracy F1-Score

KDD99 99.99% 82.15% 99.984% 73.876%
NSL-KDD 99.53% 99.52% 99.29% 99.29%
CICIDS17 99.97% 97.71% 99.95% 96.94%

5.6. Comparing with State of the Art Models

To fully examine the effectiveness of the DeepInsight method and the MAGNETO
model, we have compared our results using the DT and RF models with recent machine
learning intrusion detection models. The results of this comparison can be found in Table 17.
We only considered models introduced since 2022 and only machine learning-based IDS
models. The comparison used our binary classification task on the NSL-KDD, KDD99,
UNSW-NB15, and CICIDS17 datasets, using the newly implemented Decision Tree and
Random Forest classifiers. These were chosen as they were the most common datasets used
in this type of research, and as such would offer truly competitive results.

Table 17. A comparison of current state-of-the-art IDS machine learning classifiers.

Paper Dataset Accuracy F1-Score Recall Precision Model

Al-Qatf et al. [25] KDD99 99.42% 99.37% 99.45% 99.29% SVM

Hammad et al. [26] UNSW-NB15 100% 100% 100% 100% T-SNERFCICIDS17 99.78% 99.98% 99.98% 99.98%

Taheri et al. [9] CTU-13 99.98% 99.98% 99.98% 99.98% CNN
Botnet Dataset 100% 100% 100% 100% CNN

Asif et al. [27] NSL-KDD 97.6% 98.12% 98.14% 98.1% MR-IMID

Maseer et al. [28] CICIDS17
99.49% 99.49% 99.49% 99.49% DT
99.49% 99.49% 99.49% 99.5% kNN
99.54% 99.55% 99.54% 99.56% RF

This Paper

KDD99 99.99% 82.15% 99.95% 99.95% RF
99.95% 99.92% 99.95% 99.95% DT

NSL-KDD 99.53% 99.52% 99.53% 99.53% RF
99.29% 99.29% 99.29% 99.29% DT

CICIDS17 99.96% 99.72% 99.96% 99.96% RF
99.96% 99.68% 99.96% 99.96% DT

UNSW-NB15 98.26% 96.05% 98.26% 98.26% RF
98.20% 95.93% 98.20% 98.20% DT

Our primary source for these state-of-the-art models was recent surveys into the area
of machine learning for intrusion detection, including papers such as [29–31]. Of particular
use was Maseer et al. [28], which provided benchmarks for the different models and
datasets, current as of 2021. It provides benchmark results on the CICIDS17 dataset for
both Decision Tree and Random Forest classifiers, allowing clear comparisons between
these benchmarks and the results from this paper.

The model created by Hammad et al. [26] also utilizes the t-SNE algorithm, which is
used in this paper. Their proposed model, t-SNERF, performs extremely well on the UNSW-
NB15 dataset. Their model combines a stochastic k-nearest neighbor model and a Random
Forest classifier. This offers suggestions for future research into using the DeepInsight
method to classify network traffic. The implementation of the nearest neighbor scheme into
MAGNETO may provide even higher accuracy. Another point of note is that the T-SNERF
algorithm was implemented in R, whereas the MAGNETO algorithm used in this paper
was implemented in Python. Creating a different implementation of MAGNETO in other
programming languages is certainly an avenue for future research.
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5.7. Execution Time

Concerning execution time, the full multiclass classification task over 150 epochs on
the 5G-NIDD dataset took only 25 min and 35 s using the DT model. The BOT-IoT dataset
took a significantly longer time to complete, taking 12 h, 55 min, and 29 s. This is still
significantly less time than the CNN model achieved on the same dataset in the binary
classification task over 100 epochs. The execution time for the CICDDoS19 dataset was
25 min and 35 s. These times suggest the extended execution time for the BOT-IoT dataset
may have been an outlier, or caused by something within the dataset itself. The extra time
could also be due to the randomized nature of each iteration. The depth of the Decision Tree
is chosen from a set for each epoch, and deeper trees take longer to build and train. This is
similar to the Random Forest classifier, which had a random number of trees between 5
and 200 per iteration, meaning the length of time for the execution would vary depending
on the randomly selected number of trees in the forest.

Another important consideration with regard to the execution time is the fact that
we did not have a dedicated machine for the experiments. As such, the execution time of
the algorithm may have been affected by multiple unknown background processes. The
longest execution times for all datasets were those for the CNN and 2D CNN models. For
the purposes of accurate comparison, we ran several of the original datasets on the original
CNN model implemented by Andresini et al., so as to provide data for a ratio between the
time taken in the original experiments and the execution time in these experiments. We have
included the NSL-KDD dataset in these experiments due to its use in the different state-of-
the-art models in Section 5.6. Our results are visible in Table 18, where MAGNETO (original)
displays the results from the original paper by Andresini et al., and MAGNETO (new)
shows the results of that same model, using the original code, on our own architecture.

Table 18. Comparative results for execution time in original and new classifiers for binary clas-
sification on the KDD99 and UNSW-NB15 datasets. “Andresini et al. [5]” refers to the original
experiments for MAGNETO, whereas “[5] on our machines” refers to the same model and code run
on our computer architecture. (Reprinted with permission from Ref. 1385536-1, 2021, Elsevier)

Paper Model Dataset Execution Time (min)

Andresini et al. [5] CNN KDD99 38.6
UNSW-NB15 18.2

Sharma et al. [6] CNN KDD99 74.3
UNSW-NB15 18.4

[5] on our machines CNN KDD99 84.0
UNSW-NB15 467.50

This paper
DT Variant KDD99 01.19

UNSW-NB15 07.36

RF Variant KDD99 0.333
UNSW-NB15 01.45

Looking at the sizes of the datasets in Table 15, we can see that the CICIDS17 dataset,
even at 10% of its size, is significantly larger than the other original datasets. Given that this
set has 2,197,863 samples in the 10% dataset, when compared to the smallest of the datasets,
the NSL-KDD, which contains 18,118 samples in the 10% dataset, it is of little surprise that
the execution time for the CICIDS17 dataset is significantly higher than the other sets.

Based on the results reported in Andresini et al. [5], we have created a comparative
figure to show the different execution times. The original paper shows a very low execution
time; however, when we used the original CNN models on the same datasets, our results
were significantly different. Our only change was to use the softmax activation function. In
order to give a reasonable and accurate comparison of the execution time of the different
models, we ran the CNN models using the code from Andresini et al. [5] on the three
original datasets to examine the difference our computer architecture made to the results.
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In the original MAGNETO architecture, the KDD99 dataset took 38.6 min to complete
100 iterations. On our computers, the same algorithm and dataset took 84 min. Similarly, the
UNSW-NB15 dataset in the original paper took 18.2 min. Using the same code, that dataset
took 467 min and 50 s. This demonstrates a disparity between the resources available to us
as opposed to those used by Andresini et al. [5]. Interestingly, the DT and RF classifiers still
perform at a level comparable with that of the original papers, though the CNN models
are greatly increased in computational time. Our implemented DT and RF models actually
perform better, with regard to execution time, than the original models.

6. Conclusions and Future Research

The DeepInsight method of data-to-image translation shows great promise for machine
learning in multiple disciplines. MAGNETO’s components, including the Mutual Info
method of dealing with pixel collisions—even without the use of an AC-GAN to augment
rare classes in the datasets—offer further refinements that provide a robust method of
anomaly detection. The move from using the CNN models for multiclass classification
tasks towards the use of Decision Tree Classifiers shows a very significant improvement in
performance. Even in unaugmented datasets, the DT and RF models offered high levels of
accuracy, precision, and recall.

Future research should explore the possibilities of running the MAGNETO algorithm
in real time, as the computational power and time required to translate the datasets into
images are not insignificant. Developing an implementation that can translate the data
into images in real time is essential if the DeepInsight method and the MAGNETO model
are to be used in anything more than academic research. The current and original imple-
mentations of the MAGNETO model involve generating all images for a given dataset
at the outset of running the program and then undertaking training and testing. A new
implementation that trains the model and then takes the testing data and translates each
traffic flow sample into an image before classifying it individually would offer a way to
time the algorithm to explore if it is possible to run it in real time. This implementation
would therefore be of great use for further research.

Our experimental setup did not include the AC-GAN implemented by the original
authors of [5], due to computational and time restraints. However, this is a feature to
explore further in future research, and we plan to explore this aspect of the algorithm
further in future papers.

Our research shows the effectiveness of the DeepInsight method of data-to-image
translation and the usefulness of having the ability to preserve semantic data about the
relationships between different data points in the dataset. Over all the different tasks, the
MAGNETO model was highly successful in classifying the attack samples, especially with
the implementation of different classifiers such as Decision Trees, whereas the original
CNN classifier performed more poorly than expected when used for the full multiclass
classification task, the implementation of other classifiers allowed us to demonstrate the
overall effectiveness of this method of image translation.
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download at https://tinyurl.com/2p96uzye (updated 29 July 2023).

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of this study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

Abbreviations
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AC-GAN Auxiliary Classifier Generative Adversarial Network
CICDDoS Canadian Institute of Cybersecurity Distributed Denial of Service
CNN Convolutional Neural Networks
DDoS Distributed Denial of Service
DT Decision Tree
ENN Edited Nearest Neighbor
GAN Generative Adversarial Networks
IP Internet Protocol
KREONet 2 Korea Research Environment Open Network 2
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