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Abstract: The goal of this paper is the performance evaluation of a deep learning approach when
deployed in fifth-generation (5G) millimeter wave (mmWave) multicellular networks. To this end,
the optimum beamforming configuration is defined by two neural networks (NNs) that are properly
trained, according to mean square error (MSE) minimization. The first network has as input the
requested spectral efficiency (SE) per active sector, while the second network has the corresponding
energy efficiency (EE). Hence, channel and power variations can now be taken into consideration
during adaptive beamforming. The performance of the proposed approach is evaluated with the
help of a developed system-level simulator via extensive Monte Carlo simulations. According to
the presented results, machine learning (ML)-adaptive beamforming can significantly improve EE
compared to the standard non-ML framework. Although this improvement comes at the cost of
increased blocking probability (BP) and radiating elements (REs) for high data rate services, the
corresponding increase ratios are significantly reduced compared to the EE improvement ratio. In
particular, considering 21.6 Mbps per active user and ML adaptive beamforming, the EE can reach
up to 5.3 Mbps/W, which is significantly improved compared to the non-ML case (0.9 Mbps/W).
In this context, BP does not exceed 2.6%, which is slightly worse compared to 1.7% in the stan-
dard non-ML case. Moreover, approximately 20% additional REs are required with respect to the
non-ML framework.

Keywords: 5G; mmWave; massive MIMO; machine learning; adaptive beamforming; system level simulations

1. Introduction

The full deployment of fifth-generation (5G) broadband wireless cellular networks has
enabled the transition toward advanced features and applications, such as enhanced mobile
broadband (eMBB), ultra-reliable low latency communications (URLLC) as well as massive
machine-type communications (mMTC) [1,2]. To this end, various novel tech-nologies have
been introduced in the physical layer, such as millimeter-wave (mmWave) transmission [3],
non-orthogonal multiple access (NOMA) [4] as well as massive multiple input multiple
output (m-MIMO) configurations [5]. Moreover, as the discussions on the next generation
of wireless networks (sixth generation, 6G) have already started taking place [6], network
densification is leveraged as an efficient way to provide seamless connectivity to a vast
number of mobile devices. In this context, the single link concept (i.e., base station (BS) to
mobile station (MS)) is replaced by various potential links from access points (APs) and
relay nodes.

However, traditional m-MIMO relies on large-scale phase arrays, which induce high
hardware cost and power consumption due to the energy consuming phase shifters, espe-
cially when the number of antennas grows. Additionally, the transmitted signal inevitably
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interacts with the surrounding objects, thereby degrading the signal-to-noise ratio (SNR)
and quality of service (QoS). To this end, the burgeoning Intelligent Reflective Surface (IRS)
technology that has recently emerged constitutes a state-of-the art reflective beamformer
with extremely low complexity and low hardware expenditure [7]. The IRS technology
is based on the concept of metasurfaces, which consist of passive sub-wavelength reflect-
ing elements whose electromagnetic behavior can be easily altered through electronic
devices such as positive-intrinsic-negative (PIN) diodes or micro-electromechanical sys-
tem (MEMS). In this context, the power-hungry phase shifters are replaced by the former
low-cost electronic devices. In addition, the appropriate position of IRSs facilitates the
bypass of the environmental obstacles along the signal propagation. Thus, the detrimental
effects of signal attenuation and scattering can be potentially mitigated. Even though there
are promising results in indoor applications [8], IRS technology is relatively limited in
m-MIMO cellular networks as there are still open research issues to tackle such as the
deployment of IRS in a hybrid wireless network with multiple BSs and the exploration of
its optimal position and orientation in a given cellular network [9,10].

As may be seen from the preceding, in next-generation wireless networks, a signifi-
cantly large number of antennas will be deployed per AP. Hence, appropriate beamforming
algorithms should be configured that not only ensure uninterrupted connectivity but also
minimize interference levels. In this paper, we deal with a computationally efficient adap-
tive beamforming technique in multicellular mmWave m-MIMO orientations. In this case,
the goal is to improve various key performance indicators (KPIs), such as energy efficiency
(EE) and spectral efficiency (SE). In general, adaptive beamforming in 5G orientations
has attracted scientific research interest over the last years. In this context, in [11], the
performance of various precoding schemes is evaluated with an emphasis on hybrid beam-
forming, which is a challenging beamforming approach that is based on the use of fewer
active radio-frequency (RF) chains compared to the total number of antennas. According
to the presented results, hybrid precoding methods can improve the sum rate and SE. In
particular, one of the main effective hybrid precoders proposed in the literature of m-MIMO
beamforming schemes is phased-zero-forcing (PZF), which improves the SNR and SE.
However, ref. [12] manifests that PZF beamforming needs further improvement in densely
deployed networks. In the same context of m-MIMO beamforming, the provided simula-
tions in [13] suggest a higher number of parallel data streams per user in a mmWave system
to achieve higher-order throughputs. Interestingly enough, it has been demonstrated that
the need for active antenna elements decreases with the number of parallel data streams.
In [14], the performance of a cooperative hybrid beamforming method is evaluated that is
based on the sum-utility maximization. According to the presented results, the proposed
method has similar performance compared to fully digital beamforming even when op-
erated with practical finite-resolution phase shifters. In [15], the concept of ultra-dense
cell-free m-MIMO systems for sustainable 6G wireless communications is introduced. The
key findings of the work conclude that the support of high data rates requires a holistic
network redesign to maximize EE (dense deployment, green design, etc.). In a similar
cell-free m-MIMO system, ref. [16] proposes an optimum beamforming scheme which
outperforms zero-forcing and conjugate beamforming. Even though the former work can
achieve beamforming and power control, it significantly increases the system’s complexity.
In [17], the performance of the least mean square (LMS) algorithm is investigated in the
context of 5G-MIMO configurations. To this end, several optimization algorithms are
evaluated under various parameters (i.e., antenna elements, antenna spacing, etc.).

The coexistence of various novel technologies in the physical layer of the next-
generation broadband wireless networks as it was previously mentioned, along with
increased user traffic and mobility patterns, creates a multiparameter environment with
various constraints. Hence, traditional optimization algorithms on one hand would have
to search over multidimensional spaces for potential solutions, and on the other hand, the
optimization process would have to be repeated over regular time intervals (e.g., coherence
time). Therefore, latency minimization, which is a key concept in 5G/6G networks, would
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not be always satisfied. Over the last few years, machine learning (ML) algorithms have
emerged as a promising solution that can deal with a variety of optimization problems. In
general, ML algorithms can be classified into three major categories [18–20]: supervised
learning (SL) where training is based on well-known datasets, unsupervised learning,
where there is no data pattern, as well as reinforcement learning (RL). In the latter case, a
mobile agent interacts with the environment to define the best possible action per case.

In the ML framework, a survey of the most important approaches categorized per
m-MIMO application (i.e., channel estimation, signal detection, hybrid beamforming,
coexistence with NOMA, etc.) is provided in [21]. In [22], a novel deep reinforcement
learning (DRL)-based coordinated beamforming scheme has been considered, where a
single MS can be served by multiple BSs. In this context, the goal is to derive suboptimal
beamforming vectors at BSs out of possible beamforming codebook candidates. The
beamforming vectors are chosen according to sum rate maximization. In [23], the concept
of federated learning (FL) in m-MIMO configurations is introduced to optimize various
metrics, such as MS assignments and transmission powers. To this end, ML-aided resource
optimization is performed in a decentralized way in discrete time intervals. In [24], an SL
approach is considered for user positioning that can outperform other ML schemes such as
the k-nearest neighbors (k-NN) algorithm and support vector machines (SVMs). In [25], a
deep learning (DL) approach is presented to simplify the process of estimating beamforming
weights. According to the presented results, the proposed approach can significantly reduce
the overall complexity in weight estimation. In [26], hybrid beamforming is used for EE
maximization. In the same context, a low-complexity method that is based on adaptive
cross-entropy (ACE)-based optimization with low-bit phase shifters was proposed in
order to handle the sum rate maximization problem. In [27], the authors present an
approach based on a convolutional neural network (CNN) structure, namely WBPNet,
to realize adaptive time-domain wideband beamforming without delay structures under
insufficient snapshots. In [28], a DL-NN is proposed for hybrid precoders and combiners
to improve spectral efficiency. A key advantage of the proposed approach is that it does
not require prior knowledge such as angle features and channel information. In [29], the
authors evaluate the performance of an adaptive beamforming approach in 5G multicellular
mmWave orientations with the help of a k-NN SL method that selects the appropriate
beamforming configuration based on the requested SE in an active sector. According to the
presented results, this approach provides similar SE and EE levels when compared to the
conventional non-ML approach, at the cost however of increased BP.

The goal of the study presented in this paper is to extend the work in [29] and
investigate the performance of a DL approach when deployed in 5G multicellular wireless
orientations. To this end, the algorithm is trained with the help of a predefined number
of samples to define the optimum positions of the generated beams. A key novelty of
the proposed approach is that two NNs are now considered: one for SE and one for EE
maximization. Hence, channel state information (CSI) knowledge can now be exploited
during NN training in order to capture channel and power variations. As it will be
discussed in the Results section, the proposed approach can significantly improve the EE
for high data rate services compared to the standard non-ML approach with minimum
increases in BP and the number of REs.

The rest of this paper is organized as follows: In Section 2, the multicellular orienta-
tion is described, while the deployed antenna configuration per BS sector is described in
Section 3. In Section 4, the proposed ML adaptive beamforming framework is analyzed. In
Section 5, the overall simulation setup is presented along with simulation results. Finally,
concluding remarks are outlined in Section 6.

The following notation is used in the paper. An italic variable a denotes a scalar,
whereas boldface lowercase and uppercase variables a and A denote vectors and matrices,
respectively. Finally, a calligraphicA denotes a set of |A| elements and notation x:y denotes
all elements from to x to y with step 1.
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2. Multicellular Orientation

We consider a multicellular orientation where MSs enter the network sequentially. At
a given state in an arbitrary BS, the MSs follow a specific spatial distribution. According
to this distribution, the appropriate beamforming configuration (BC) is selected based on
the minimization of total downlink transmission power. Hence, the state per BS’s sector
is defined by the set {Sb,s,BC(b,s)}, where Sb,s is an 1 × 180 vector matrix where non-zero
entries indicate either the requested SE or EE in the corresponding angles. In the same
context, BC(b,s) indicates the BC in the sth sector of the bth BS (1 ≤ s ≤ 3, 1 ≤ b ≤ B). The
overall geometry is depicted in Figure 1 for two tiers of cells around the central cell (19 cells
in total). As it can be observed, there are three antenna configurations per BS located at the
boundaries of the hexagonal cell, each covering an azimuth space of 180◦. More details on
the deployed antenna configuration per sector will be provided in the following section.
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Figure 1. Multicellular mm-Wave m-MIMO orientation.

In 3GPP-channel modeling, a three-model representation of the MIMO channel is
considered [30]. To this end, the wireless channel in the 5G air interface for a non-line of
sight (NLOS) environment can be modeled as follows:

HNLOS
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√
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M
FT
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)
λo
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 j2π
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)
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 (1)

HNLOS
u,q,n =

M

∑
m=1

HNLOS
u,q,n,m (2)

In this context, the channel coefficient between an arbitrary pair of tx-rx is decomposed to an
equivalent number of channel coefficients from N clusters. The channel in each cluster is further
decomposed to M subpaths. In (1), Pn represents the power of the nth cluster, Θn,m is a 2 × 2 matrix
with initial phases uniformly distributed in (−π,π), and vector matrices Ftx,n,m/Frx,n,m represent the
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field pattern of transmitting/receiving antenna element q/u, respectively (1 ≤ q ≤Mt, 1 ≤ u ≤Mr),
for the mth subpath of the nth cluster. In particular:

Frx,n,m =

[
Frx,u,θ(θn,m,ZoA, φn,m,AoA)
Frx,u,φ(θn,m,ZoA, φn,m,AoA)

]
(3)

Ftx,n,m =

[
Ftx,s,θ(θn,m,ZoD, φn,m,AoD)
Ftx,s,φ(θn,m,ZoD, φn,m,AoD)

]
(4)

Θn,m =

 exp
(

jΦθθ
n,m

) √
κn,m−1 exp

(
jΦθφ

n,m

)
√

κn,m−1 exp
(

jΦφθ
n,m

)
exp

(
jΦφ

n,m

)  (5)

In (3) and (4), θn,m,ZoD and θn,m,ZoA represent the angles of departure (AoD) and arrival (AoA),
respectively, in the vertical plane for the mth subpath (1 ≤ m ≤M) of the nth cluster (1 ≤ n ≤ N). The
corresponding parameters for the horizontal plane are φn,m,AoD and φn,m,AoA, respectively. Moreover,

set
{

Φθθ
n,m, Φθφ

n,m, Φφθ
n,m, Φφφ

n,m

}
in (5) corresponds to initial phases uniformly distributed in (−π,π) as

previously mentioned, while the κn,m parameter is the generated cross-polarization power ratio (XPR)
for each ray m of cluster n. Moreover, drx,u/dtx,u is the location vector of receive/transmit antenna
element u/q, respectively, and λo is the carrier wavelength. Finally, r̂rx,n,m and r̂tx,n,m are the spherical
unit vectors.

The corresponding geometry (considering only the x-y plane) is depicted in Figure 2, where
ΩBS/ΩMS denote the orientation of the BS/MS antenna array, respectively, which is defined as the
difference between the broadside of the BS/MS array and the absolute north (N) reference direction.
Moreover, θBS is the line of sight (LOS) AoD direction between the BS and MS (with respect to the
broadside of the BS array), while θMS is the AoA between the BS-MS LOS and the MS broadside.
Finally, ∆n,m,AoD is the angle offset of the mth subpath with respect to θn,m,AoD and ∆n,m,AoA the
corresponding offset with respect to θn,m,AoA.
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3. Proposed Antenna Design
The employed antenna array configuration scheme of the current work is characterized by

low-cost fabrication in an effort to reduce hardware complexity. In particular, the suggested mmWave
antenna configuration consists of a 21 × 21 array of rounded crossed bowtie radiating elements
(REs) as shown in Figure 3. In order to achieve a unidirectional radiation pattern with the minimum
waste of energy through the back lobe, two ground planes have been located below each RE at a
distance of λo/4 and λo/2, respectively, with reference to each rounded bowtie antenna, as shown
in the right panel of Figure 3 [31]. It should be noted at this point that the crossed rounded bowtie
antennas, used as the exciter of the reflector, have been rotated at ±45◦ to enhance the formula-
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tion of an adaptive dual-polarized radiation pattern [32], which is a critical property for cellular
network communications.
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The formulation of all the electromagnetic characteristics of the current array scheme along with
a multitude of radiation patterns has been thoroughly presented in our recent published work [29].
Hence, all the produced radiation diagrams as well as technical details about the REs are provided in
every detail in the former published work. However, it is necessary to mention that all the antenna
field properties have been calculated through the method of moments (MoM) [33], applied in a 3D
computational model [34], which incorporates the deleterious effects of mutual coupling among REs.
Thus, a realistic analysis of such type of antenna arrays has been carried out.

By using different phases for each RE in conjunction with the appropriate activation of either
the entire array or a part of it (subarray), an efficient beamforming technique is adopted. Hence, such
arrays increase the levels of manipulation of the radiation pattern. This allows the radiation pattern
to be changed not only in terms of the desired direction (azimuth or elevation level) but also in terms
of directivity [34]. As a result, a low-complexity beamforming technique is suggested together with
an implicit steering mechanism. To this end, 51 different BCs can be formulated, including square
and rectangular array configurations. Figure 4 provides an indicative example of the applied BCs,
where multiple background colors have been used to distinguish among each other. In conclusion,
adopting the proper array configuration necessitates the balancing of three distinct parameters: the
number of the activated REs, the desired QoS and the required spatial coverage.

To this end, two representative scenarios explaining the mutual dependence of the aforemen-
tioned parameters are presented on the bottom right panel of Figure 4. Assuming that the required
spatial coverage is defined between +30◦ and −30◦, the current antenna array can accomplish this
requirement with five configuration schemes, as shown in the table on the upper right panel of
Figure 4. Supposing that the requested QoS requires an increased directivity, the most appropriate
scheme would be 21 × 3 (63 REs), while a scenario characterized by a low QoS would require the
activation of the 3 × 3 scheme (nine REs). Hence, a scenario with an even reduced required QoS
could be facilitated by activating only one RE. Consequently, the main priority of the employed
algorithm is to detect all the possible configuration schemes which ensure spatial coverage for all
MSs of a sector. In turn, the algorithm decides which among them is the most efficient, in terms of
power consumption, that accomplishes the demanded QoS.
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4. Machine Learning Adaptive Beamforming Framework
In this section, the proposed ML adaptive beamforming framework is presented. A key advan-

tage of the proposed approach is that it considers both SE and EE optimization during ML model
training. In the first case, as in [29], the requested throughput in an active sector’s angular space
is the input matrix, while the output is the configuration scenario. However, a disadvantage of
this approach is that it could not capture channel and power variations. Hence, in this paper, we
also consider EE during beamforming calculations. In this case, assuming that there are already
accepted MSs in a sector, then the requested EE in this sector is updated according to the candidate
MS, assuming that this MS can be served by the already existing configuration. If the entrance of this
MS does not lead to power outage, then the output configuration remains the same. Otherwise, it is
updated accordingly. In both cases, the input EE to the specific sector is calculated according to the
previous state.

The proposed approach is described in Algorithm 1. The set MSb,s indicates the accepted
MSs in the sth sector of the bth BS, while the rejection flag (rf ) indicates either the acceptance
or rejection of the candidate MS. Moreover, index tr indicates the current training sample (Ns
samples in total) and matrix Hk indicates the Mr × Mt channel matrix for the kth MS that has
been calculated according to (2). Finally, W denotes the total system’s bandwidth, while O(m,n)
is an m × n zero matrix. Each MS is assigned a specific number of physical resource blocks
(PRBs) [35]. PRB and power allocation are performed with the help of functions PRB_allocation
and power_allocation, respectively. Note that MS rejection takes place in three cases: (1) PRB out-
age, (2) power outage for the specific MS, and (3) power outage for the bth BS (in the latter two
cases, corresponding thresholds are defined by pm/Pm, respectively. Moreover, if cases (1) and
(3) take place, the Monte Carlo (MC) simulation comes to an end, as it will be described in Section 5
as well. If MS rejection is caused due to power transmission, then additional BCs are examined until
their maximum limit is reached (NBC).

The training matrices for both NNs (SE and EE) are denoted as XSE and XEE, respectively. Both
matrices have size Ns × 180, since each row entry represents the SE or EE distribution per sector’s
angular space, as mentioned in Section 2. In Step 6, these training matrices are updated according to
the SE or EE of the specific MS in angle ϕk:

SEk(tr, ϕk) = Rk/W (6)

EEk(tr, ϕk) = Rk/Pk (7)
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Algorithm 1: ML-aided adaptive beamforming

Step 1: Initialization,MSb,s ← {} (1 ≤ b ≤ B, 1 ≤ s ≤ 3,), tr ← 0, k← 0
XSE ← O(Ns,180), XEE ← O(Ns,180)

Step 2: k← k + 1. The kth MS tries to enter the network in the sth sector of the bth BS at an angle
ϕk requesting Rk Mbps (rf ← 0)
Step 3: Uk ← PRB_allocation(Hk,Rk)
Step 4: if (|Uk| ~= 0) then Pk ← power_allocation(Uk, Hk, BC(b, s))

else rf ← 1, Go to Step 8
(if ML_mode == 0)

Step 5: if Pk > pm or ∑
k′∈MSb

Pk′ > Pm set rf ← 1. Then:

while (rf == 1)and(BC(b,s) < NBC)
BC(b,s)← BC(b,s) + 1
Pk ← power_allocation(Uk, Hk, BC(b, s))
if Pk < pm and ∑

k′∈MSb

Pk′ < Pm then rf ← 0

Step 6: if(rf == 0) then tr ← tr + 1
XSE(tr,ϕk)← XSE(tr,ϕk) + Rk/W, XEE(tr,ϕk)← XEE(tr,ϕk) + Rk/Pk
YSE(tr,1)← BC(b,s), YEE(tr,1)← BC(b,s)

if |XSE(tr,:) − XSE(j,:)| == O(1,180) or |XEE(tr,:) − XEE(j,:)| == O(1,180)
for 1 ≤ j ≤ tr − 1, then tr ← tr − 1

else go to Step 7
Step 7: if (tr == Ns) then NNSE ← train(XSE,YSE), NNEE ← train(XEE,YEE)

else
Step 5 (updated): BC(b,s)SE ← NNSE(XSE), BC(b,s)EE ← NNEE(XEE), rf ← 0

Pk ← power_allocation(Uk, Hk, BC(b, s)SE)
if Pk > pm or ∑

k′∈MSb

Pk′ > Pmthen

Pk ← power_allocation (Uk, Hk, BC(b, s)EE)
if Pk > pm or ∑

k′∈MSb

Pk′ > Pm then

rf ← 1
Go to Step 8

Step 8: if(rf == 1) or ∑
k′∈MSb′

Pk′ > Pmfor the b’th BS (1 ≤ b’ ≤ B), then MC simulation terminates,

else Go to Step 2

As it is apparent from (6) and (7), the SE/EE of the kth MS is defined as the ratio of the MS’s
requested throughput to the total system’s bandwidth/transmission power for the kth MS. Both
networks are trained in Step 7, where the output configurations per system’s state (i.e., row entry
of XSE, XEE) are stored in matrices YSE/YEE. It should be noted at this point that in order to avoid
data overlapping, there are no identical rows in both training matrices XSE and XEE. Therefore, the
appropriate conditions have been added in the last two entries of Step 6.

When running the adaptive beamforming approach in ML mode (ML_mode flag equals 1), in a
modified Step 5, for a new potential MS that tries to access the network, the updated SE and EE in
this sector are calculated first. Hence, the appropriate BCs can now be defined with the help of the
two previously trained NNs. If the output of the SE network leads to MS rejection, then the output of
the EE network is examined as well.

Training samples aggregation is also depicted in Figure 5. Assuming similar MS distribution in
all active BSs, then the state {Sb,s,BC(b,s)} for the sth sector of the bth BS (i.e., the spatial distribution of
either the SE or EE) is sent to a central aggregator for propel model training. The output estimator is
also sent back to all BSs of the orientation. In realistic 5G deployment scenarios, this central aggregator
can be a mobile edge computing (MEC) server [20]. MEC, being a distributed approach, uses ML
tools in heterogenous topologies (such as 5G and 6G networks) to obtain CSI until the network’s
edges in order to define the resource allocation policy in each case. The goal of MEC is to minimize
the computation time by allocating the traffic to different processing units. Therefore, once data
are sent to the MEC server, training is allocated to the appropriate hardware elements to minimize
the overall response times and thus the system’s latency. Moving a step forward, FL approaches
can be applicable as well. In this case, instead of centralized ML model training as depicted in
Figure 5, training can be performed on localized MEC servers associated with specific BSs. Once local
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training is finalized, the master model is periodically updated. In this way, convergence times can be
improved. The required accuracy is achieved by multiple communication rounds between the server
(central aggregator) and the edge devices, which train the model with their local datasets.
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To train both networks, various numbers of hidden layers and neurons per layer were considered.
In particular, calculations included one to five hidden layers and five to twenty neurons per layer. In
all cases, the sample set was divided into two individual sets: a training set consisting of 70% of the
individual samples as well as a validation set with the rest of the samples. The output metric in the
training was mean square error (MSE). Therefore, the loss function can be defined as follows:

L(BC, BCest) =
1

Ns

Ns

∑
i=1

(BC(i)− BCest(i))
2 (8)

where BC is the actual beamforming configuration defined in the non-ML network and BCest is the
corresponding estimation in ML mode. Both networks were trained with the help of the trainlm
method using Matlab [34] (Levenberg–Marquardt backpropagation, [36]). As it can be observed from
Figures 6 and 7, where indicative results are presented for 15 PBRs per MS (SE and EE, respectively),
5 × 5 networks were selected for both cases. In this context, the maximum allowed MSE was set to
0.9. The training outputs are the two NNs defined as NNSE and NNEE, respectively. Both networks
take as input a particular spatial distribution of either SE or EE and provide an estimate of the
appropriate BC.

Once both networks are trained, when running the simulation in ML mode, then the MS
entrance is based on the SE network, as it was previously mentioned, since we cannot know a priori
the optimum configuration for a specific sector. If the output of the SE network does not result in the
acceptance of the new MS, then we examine the output of the EE network. A key advantage of this
approach is that it can capture both channel and power variations. Rejection takes place only if both
configurations cannot serve the new MS. It is important to note at this point that the approximation
of the output configuration with NNs is a regression task. Hence, in all simulation scenarios, the
output BC of either the SE network or the EE network is quantized with the round or with the ceil
operator. Throughout the rest of this manuscript, the first method will be denoted as (R,R) while the
second one will be denoted as (C,C).
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5. Simulation Setup and Results
All simulation parameters are summarized in Table 1. A carrier frequency of 28 GHz has been

considered. It is assumed that MSs may request either five or 15 PRBs. Hence, requested throughput
may vary from 7.2 to 21.6 Mbps (i.e., the product of PRBs per MS, subcarriers per PRB, subcarrier
spacing, and bits per symbol for QPSK modulation). The cell radius equals 500 m, while hot spot
areas are considered per BS in order to examine the performance of the proposed approach in highly
demanding traffic scenarios. The performance of our proposed approach has been evaluated with the
help of a developed system-level simulator that can execute MC simulations in parallel. The positions
of the MSs as well as channel matrices remain constant during an MC run (semi-static simulator).
For each scenario, 104 MC simulations were performed. The output KPIs are EE, SE, and REs as well
as BP. All the aforementioned KPIs have been evaluated both for the non-ML/ML frameworks. A
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typical MS distribution is shown in Figure 8, where an MS may be located in the hot spot area of a BS
with a probability of 1/3.

Table 1. Simulation parameters.

Parameter Value

Cell radius (m) 500
Carrier frequency (GHz) 28
Total bandwidth (MHz) 100

Pathloss model UMa
Tiers of cells around the central cell/Number of cells 2/19

PRBs per MS 5/15
Modulation type per PRB QPSK
Subcarrier spacing (kHz) 60

Subcarriers per PRB 12
PRBs per BS 132

Monte Carlo simulations per scenario 104

Required Eb/No (dB) for QPSK modulation [37] 9.6
Antenna elements per MS 2

Beamforming configurations (NBC) 51
Training samples per NN network 3000

Maximum power per BS/MS in W (Pm/pm) 20/1
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MSs enter the network sequentially, according to the predefined spatial distribution. For each
candidate MS, all associated system-level parameters (e.g., pathlosses, shadowing, MIMO channel
matrices) are calculated. In the non-ML mode, we examine whether the specific MS can be served by
the already deployed configuration in a BS’s sector. If this is the case, then the MS is admitted in the
network, and all related parameters (i.e., transmission power per PRB/BS) are updated. Otherwise,
additional BCs are examined, as described in Algorithm 1. MS rejection takes place only in the case
where no BC can satisfy MSs’ demands. The MC simulation comes to an end if the power of the PRB
outage is triggered in at least one active BS, as explained in the previous section. Afterwards, all KPIs
of interest are collected.

Simulation results are presented in Figures 9–12 (cumulative distribution function—CDF curves).
In all cases, the standard non-ML approach has been considered as a reference basis along with
the two ML assumptions per case. Throughout the rest of this manuscript, all output KPIs will
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be compared with respect to their mean values. As it can be observed from Figure 9, where SE
is presented, ML values are aligned with the non-ML ones. In particular, for five PRBs per MS,
the corresponding SE is 16.5 bps/Hz. The corresponding value for 15 PRBs per MS is reduced to
13.3 bps/Hz. This reduction is rather expected, since in the latter case, fewer MSs are admitted in the
network. It should be noted at this point that results come in agreement with the works in [38–40]
(for the same number of transmitting elements) as well as with our previous work in [29].
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However, it is interesting to note from Figure 10 that both ML approaches can significantly
improve the EE. In particular, for five PRBs per MS, when no ML is considered, the EE can reach up
to 0.6 Mbps/W. The corresponding values for the (C,C) and (R,R) ML scenarios are 2.1/5 Mpbs/W,
respectively. For 15 PRBs per MS, the corresponding values are 0.9/2.5/5.3 Mbps/W for the non-
ML/C-C/R-R scenarios, respectively. The aforementioned results come also in agreement with the
work in [40] for the same number of transmitting antennas.

As it is apparent from Figure 12, where the total number of REs is depicted, this improvement
may come with a reduced number of REs. In particular, for five PRBs per MS, there are 910 REs
in the non-ML case. The corresponding values for the ML scenarios are 750/805 ((C,C) and (R,R)
cases, respectively). For 15 PRBs per MS, the corresponding values are 620/575/750 for the non-
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ML/ML(C,C)/ML(R,R) cases, respectively. Hence, improved EE comes at the cost of an almost 20%
increase in REs. This amount, however, is significantly reduced compared to the corresponding EE
improvement ratio (5.3 Mbps/W versus 0.9 Mbps/W, as previously mentioned).

As it can be derived from Figure 10, the EE is improved for 15 PRBs per MS. This improvement
is more evident in the ML scenarios. In the non-ML case, the EE reaches 0.6/0.9 Mbps/W for
5/15 PRBs per MS, as previously mentioned. In this case, the appropriate BC is selected that provides
an acceptable QoS to all MSs of a sector with the minimum number of REs, according to the analysis
of Section 3. In the ML case, EE improvement among five and 15 PRBs per MS takes place as well
due to the increased number of REs that formulate the specific BC. Hence, more narrow beams can
now be configured, which unavoidably lead to an overall transmission power reduction.

It is interesting to note, however, from Figure 11 that BP can be significantly increased in the
(C,C) scenario in both cases of PRB assignments per MS. In particular, for the standard non-ML
scenario, then the corresponding BP values are 0.5/1.7% for 5/15 PRBs per MS, respectively. In the
(R,R) scenario, the corresponding values are 1.1/2.6%, while in the (C,C) scenario, they are 1.29/4.36%,
respectively. Hence, the BP increment is negligible in the ML (R,R) scenario for both cases of PRB
assignments (5/15).

6. Conclusions
The performance of an adaptive beamforming approach for mmWave m-MIMO multicellular

orientations has been evaluated via extensive system-level simulations. To this end, the goal was to
reduce the complexity of beamforming calculations via ML. In particular, two neural networks were
considered in order to predict the optimum configuration for a particular spatial distribution of the
served users. The key novelty of the presented approach is that both spectral and energy efficiency
were considered during neural network training. According to the presented results, for low data
rate services, energy efficiency can be significantly improved with a reduced number of radiating
elements compared to the standard non-ML approach. For high data rate services, although energy
efficiency is again significantly improved, an additional number of radiating elements is required
compared to the non-ML case. Even so, the corresponding increase in terms of percentage (i.e., 20%)
is significantly reduced compared to the corresponding energy efficiency gain. In both cases, the
increase in blocking probability is negligible.

In all cases of deviations from the standard non-ML framework, it becomes apparent that the
proposed approach either underestimates (e.g., increased blocking probability) or overestimates
(e.g., increased number of radiating elements) the appropriate beamforming configuration. Although
a potential solution could be the incorporation of additional training samples or the deployment of
additional training methods with stricter converge criteria compared to the Levenberg–Marquardt
backpropagation method, these might increase the overall system’s latency. In this context, a promis-
ing approach could be the deployment of deep reinforcement learning methods, since beamforming
configurations are selected from a predefined discrete set of radiating elements. Therefore, instead
of defining the appropriate beamforming configuration via regression methods which unavoidably
introduce an estimation error, transitions among configurations could be defined according to the
requested spectral or energy efficiency in a sector’s angular space. The aforementioned approach is
among others part of our future work.
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