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Abstract: Due to the severe imbalance in the quantities of normal samples and attack samples,
as well as among different types of attack samples, intrusion detection systems suffer from low
detection rates for rare-class attack data. In this paper, we propose a geometric synthetic minority
oversampling technique based on the optimized kernel density estimation algorithm. This method
can generate diverse rare-class attack data by learning the distribution of rare-class attack data while
maintaining similarity with the original sample features. Meanwhile, the balanced data is input
to a feature extraction module built upon multiple denoising autoencoders, reducing information
redundancy in high-dimensional data and improving the detection performance for unknown attacks.
Subsequently, a soft-voting ensemble learning technique is utilized for multi-class anomaly detection
on the balanced and dimensionally reduced data. Finally, an intrusion detection system is constructed
based on data preprocessing, imbalance handling, feature extraction, and anomaly detection modules.
The performance of the system was evaluated using two datasets, NSL-KDD and N-BaIoT, achieving
86.39% and 99.94% multiclassification accuracy, respectively. Through ablation experiments and
comparison with the baseline model, it is found that the inherent limitations of a single machine-
learning model directly affect the accuracy of the intrusion detection system, while the superiority
of the proposed multi-module model in detecting unknown attacks and rare classes of attack traffic
is demonstrated.

Keywords: intrusion detection; internet of things; deep learning; autoencoder; network security

1. Introduction

The Internet of Things (IoT) is one of the biggest technological advances in the last few
years [1]. One of the main tasks of IoT technology is to sense the surrounding environment
through IoT devices and collect target data for relevant devices to take action based on the
acquired information. Cisco estimates that, by 2030, there will be approximately 203 billion
IoT devices in use worldwide [2]. The explosive growth of IoT devices has made the form
of IoT security increasingly critical, and general IoT systems are vulnerable to various
cyber attacks [3,4], and common attacks in various fields are shown in Table 1. While
the IoT brings many advantages to our production and life, there are serious security
challenges with this technology. The Intrusion Detection System (IDS) [5–8] is an intelligent
and proactive security method which can effectively face all kinds of cyber attacks within
the IoT. IDSs are able to identify unauthorized attacks and are one of the most effective
methods to ensure the security of the IoT.

Compared with traditional rule- or signature-based intrusion detection methods [9,10],
machine learning-based Intrusion Detection Systems (IDSs) [11,12] can identify anomalous
attacks by learning a large amount of IoT security data. Although some achievements have
been made, there are still some shortcomings.

First, data imbalance can affect the performance of intrusion detection classifiers [13].
For example, in the NSL-KDD dataset, there are 67,343 normal data out of 125,973 training
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data, and 58,630 attack data. The attack data can be further divided into four major
categories, among which the rarest User to Root attack occurs only 52 times. The rare
class of attack data often accounts for only a small fraction of the normal data, and when
using a single machine-learning algorithm for classification, the classifier tends to favor
the majority class of data and misclassify the rare class of attack data into normal data.
Common solutions include the use of oversampling algorithms such as Synthetic Minority
Over-sampling Technique (SMOTE), Borderline-SMOTE, Adaptive Synthetic Sampling
(ADASYN), Generative Adversarial Networks (GAN), etc. to generate rare classes of attack
data. Although IDSs based on these traditional oversampling techniques alleviate the
imbalance problem to some extent, the generated attack samples lack diversity and tend to
generate bad samples.

Table 1. Common network attacks in various fields.

Industry 5.0 Autonomous
Driving Smart City Smart Factory

Ransomware Jamming DDoS APT
Malware Spoofing Cyber Espionage Phishing

APT Disrupting APT Malware
Phishing Injecting IoT device hacking Social Engineering

Second, due to the influence of data dimensionality, the trained model has a low
detection rate for certain classes of attacks, especially unknown attacks. In the face of
IoT security data with high-dimensional characteristics [14], IDSs based on techniques
such as principal component analysis and Pearson correlation have improved detection
performance to some extent. However, these traditional dimensionality reduction methods
have a limited ability to extract effective information from high-dimensional data and poor
generalization of extracted features, which affect the overall detection rate of IDSs.

To overcome these drawbacks, this paper proposes an IDS for high-dimensional
unbalanced IoT traffic, called KGMS-IDS. The contributions of this paper are threefold:

1. Geometric SMOTE (G-SMOTE) enhances the linear interpolation mechanism by in-
troducing geometric transformations in the feature space, allowing for a better ap-
proximation of the distribution of minority class samples. The G-SMOTE algorithm
is applied to the intrusion detection field, and the Kernel Density Estimation (KDE)
algorithm is adopted to improve the G-SMOTE algorithm to handle imbalanced
processing in high-dimensional and imbalanced IoT traffic.

2. A feature extraction module, Multi-Noise and Attention Mechanism-based Denois-
ing Autoencoder (MDSAE), is proposed to extract deep feature representations of
high-dimensional IoT data, thereby enhancing the robustness of the data after dimen-
sionality reduction.

3. The integration of three modules, KGSMOTE, MDSAE, and Soft-Voting Ensemble
Model (SVEDM), for multi-category anomaly detection of IoT traffic effectively im-
proves the overall detection rate of the IDS. The ablation experiments show that these
modules are interrelated and mutually reinforcing, and the detection performance
of the multi-module IDS is better than that of the single-module intrusion detection
model. The comparison experiments show that KGMS-IDS has higher overall detec-
tion rate and lower false alarm rate compared with other intrusion detection methods.

The rest of this paper is organized as follows: Section 2 provides an overview of
current intrusion detection methods. Section 3 describes KGMS-IDS and its modules.
Section 4 evaluates the proposed approach through experiments. Section 5 summarizes the
research results.
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2. Related Work

The concept of intrusion detection was first introduced by Anderson [15]. Intrusion
detection can be used to detect any attack that damages the host system. The main objective
of implementing intrusion detection is to find an effective algorithm for network data
analysis and detection. Wang et al. [16] preprocessed the dataset and constructed 98 models
such as Deep Neural Network (DNN), Convolutional Neural Network (CNN), and Long
Short-Term Memory (LSTM) to determine whether the network traffic constitutes a ma-
licious attack. The proposed intrusion detection mechanism was evaluated by using the
comprehensive and advanced CSE-CIC-IDS2018 dataset, and good detection results were
achieved. Khraisat et al. [17] proposed a taxonomy of IoT attacks and classified various
types of IoT-based intrusion detection techniques based on deployment and verification
policies. The authors also discussed the availability of IDS datasets and the challenges
faced by IoT-based IDSs. In addition to IDSs, Dutta et al. [18] have also discussed Intrusion
Prevention Systems (IPS) and Intrusion Response Systems (IRS). The authors included
works that depend on security in the IoT standardized protocol stack by considering nine
different dimensions and characteristics. These dimensions are (1) detection techniques,
(2) layout strategies, (3) location/visibility, (4) frequency of use, (5) authentication meth-
ods, (6) types of attacks, (7) evaluation metrics, (8) datasets and data preprocessing, and
(9) feature reduction techniques.

2.1. Dealing with High-Dimensional Data

In recent years, IoT security has received increasingly widespread attention due to the
explosive growth of IoT traffic. Machine learning-based IDSs as a defense method capable
of proactively detecting attacks remain a hot research topic in the field of IoT security [19].
The network traffic generated by IoT systems has a high-dimensional character. Since
the high-dimensional features contain a lot of redundant information, this poses a great
challenge for machine learning-based IDSs. For high-dimensional IoT data, efficient feature
extraction has become a hot topic in the field of intrusion detection. Mehmood et al. [20] ap-
plied the Random Forest Recursive Feature Elimination (RFRFE) method to filter important
features in network traffic and improve the overall detection rate of network attacks.

Due to the high computational overhead of RFRFE, in order to solve this problem,
Hammad et al. [21] used correlated feature selection and T-distributed random neighbor-
hood embedding for feature reduction. The method achieved a good attack detection rate at
CSE-CIC-IDS2018 (CIC-IDS2018). Xie et al. [22] proposed a network intrusion detection al-
gorithm based on dynamic intuitionistic fuzzy sets and used the cardinality test to select the
best features. Experiments showed that the intrusion detection model after fusion feature
selection outperforms the method using a single classification algorithm. Prajisha et al. [23]
focused on cyber attacks in the IoT domain and proposed an enhanced chaotic swarm opti-
mization algorithm to reduce the dimensionality of attack data. By experimenting on three
IoT datasets, it is shown that the proposed feature selection method effectively improves
the detection rate of IoT attacks. To address the difficulty of DDoS attack detection within
the IoT, Kumar et al. [24] proposed training Random Forest (RF) and an optimal gradient
tree boosting system (XGBoost) on distributed fog nodes to detect DDoS attacks against
mining pools within the IoT, which was validated on public IoT datasets.

However, all the above IDSs use feature selection methods to downscale the high-
dimensional network data. These feature selection methods remove a portion of useful
features and are sensitive to noise and redundant features. To address this problem, Ku-
nang et al. [25] used deep autoencoder for feature extraction, which reduced the redundancy
of high-dimensional data and better preserved the information of the original network
data. Lv et al. [26] proposed an intrusion detection model based on Stacked Denoising
Autoencoder-Support Vector Machine (SDAE-SVM), and experiments showed that the
network data after SDAE dimensionality reduction improved the detection effect of the
classifier. Wang et al. [27] extracted representative features of normal data by applying
AE, and then trained One-Class Support Vector Machine (OCSVM) and Gaussian Mixture



Electronics 2023, 12, 3911 4 of 26

Model (GMM) on the reduced features. The experimental results show that AE improves
the detection rate and the combination of two detectors is better than a single detector.
Muhammad et al. [28] proposed an IDS based on stacked AE and DNN. The stacked AE
learns the features recorded by the input network in an unsupervised manner to reduce the
feature width. The DNN was then trained in a supervised manner to extract deep-learning
features for classifiers and was validated on three publicly available cybersecurity datasets.

2.2. Machine-Learning Ensembles

The rapidly evolving and diverse range of attack data within the IoT leads to a high
false positive rate in intrusion detection models based on single machine-learning algo-
rithms. To address this issue, Khan et al. [29] proposed an intrusion detection method
based on AutoML and soft voting, which improved the detection accuracy on two network
security datasets. Aburomman et al. [30] introduced an ensemble intrusion detection model,
combining k-nearest neighbors, artificial neural networks, and naive Bayes. This model
achieved a 83.43% detection rate for five-class attack detection on the complete NSL-KDD
dataset, resolving the issue of unstable training with single classifiers. Hossain et al. [31]
proposed a novel integration-based machine-learning technique for intrusion detection,
where the integration strategies include Random Forest, Gradient Boost, Adaboost, Gradi-
ent XGBoost, Bagging, and Simple Stacking. The performance of the proposed method was
evaluated on ten public cybersecurity datasets and good detection results were achieved.

2.3. Dealing with Imbalanced Data

The imbalanced distribution of attacks is one of the challenging research problems
in intrusion detection and IoT security. In response to this issue, Zhang et al. [32] utilized
Borderline-SMOTE to oversample rare-class attack traffic within the IoT, effectively improv-
ing the accuracy of IoT attack detection under sample imbalance conditions. To address
the low detection rate of traditional classifiers for rare-class attack traffic within the IoT,
Andresini et al. [33] employed GAN to learn the distribution of rare-class attack traffic and
generate synthetic rare-class attack data, which partially improved the detection efficiency
of intrusion detection models based on Convolutional Neural Networks (CNNs). Ku-
mar et al. [34] utilized Wasserstein Conditional Generative Adversarial Network (WCGAN)
to generate rare-class attack samples and then trained an XGBoost classifier with a balanced
dataset. Through testing on publicly available IoT datasets, the training data oversampled
by WCGAN demonstrated better classifier training and improved the recognition rate of
intrusion detection models for rare-class attacks.

SMOTE [35,36], Borderline-SMOTE, ADASYN, and other algorithms [37,38] are classi-
cal oversampling methods. However, they all generate synthetic samples along the line
segments connecting minority class instances, making it difficult to improve the distri-
bution of minority class samples. G- SMOTE [39] is a synthetic minority oversampling
technique designed to address the issue of imbalanced data. It is an improved version
based on the SMOTE algorithm. Unlike the aforementioned SMOTE-based algorithms,
G-SMOTE does not simply generate synthetic samples along the line segments connecting
minority class instances. Instead, it expands the linear interpolation mechanism by intro-
ducing geometric transformations in the feature space, better simulating the distribution of
rare-class samples.

2.4. Our Approach

Although the above methods have improved the detection rate of IoT attack traf-
fic, they have shown less satisfactory performance in training and detecting unknown
attacks. Additionally, the IDSs mentioned above have not simultaneously addressed the
challenges posed by high-dimensional class imbalance. In this study, based on previous
research, we propose an integrated IDS to address these issues. The system consists of three
main modules.
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The MDSAE module is used for feature dimensionality reduction. Based on [26–28],
by adding the self-attention mechanism and multiple noise, MDSAE can enhance the
robustness of the dimensionality reduction data and improve the detection rate of SVEDM
for unknown attacks. The KGSMOTE module is used to generate rare-class attack data.
On the basis of [35–39], by improving the G-SMOTE mechanism, rare-class attack samples
with diversity are generated to enhance the detection rate of SVEDM on rare-class attacks.
Based on [29–31], through a large number of experiments, the combination model with
superior performance is selected, and the low-dimensional balanced data are fed into
SVEDM for multiclassification anomaly detection. These modules are interconnected and
enhance each other to improve the detection rate of IDS for unknown and rare-class attack
traffic. Table 2 compares the detection methods of the various models mentioned above
with the proposed method presented in this study.

Table 2. Comparison with relevant survey results.

Problem Solved Methods Datasets Ensemble Leaning Unknown Attack Year

Feature
Dimensionality

Reduction.

RFRFE-FGSVM [20] NSL-KDD - - 2022
MMM-RF [21] CSE-CIC-IDS2018 - - 2022

IFSs [22] KDD 99/NSL-
KDD/UNSW-NB15 - - 2021

ECSSA-
LightGBM [23]

MC-
IoT/MQTTset/MQTT-

IoT-IDS2020
- - 2022

RF/XGBoost [24] BoT-IoT - - 2022

PTDAE-DNN [25] NSL-KDD/CSE-CIC-
IDS2018 - - 2021

SDAE-SVM [26] NSL-KDD - - 2020
AE-OCSVM-

GMM [27]
NF-BoT-IoT-V2/NF-
CSE-CIC-IDS2018-

V2
- - 2023

SAE-DNN [28]
KDDCup99/NSL-

KDD/aegean
WIFI

- - 2023

Machine-learning
classifier.

OE-IDS [29] UNSW-NB15/CIC-
IDS2017 X - 2023

ACOR-WMV [30] NSL-KDD X - 2022

PCA-EL [31]
Ten public

cybersecurity
datasets

X - 2023

Imbalance processing.

ICVAE-BSM [32]
NSL-KDD/CIC-

IDS2017/
CIC-IDS2018

- - 2022

GAN-CNN [33] KDDCUP99/UNSW-NB15/
CIC-IDS2017/AAGM17

- - 2021

WCGAN-
XGBoost [34]

NSL-KDD/BoT-
IoT/UNSW-NB15 - - 2023

SCADA-IDS [35]
Morris power
dataset/CIC-

IDS2017
- - 2023

Both Proposed method NSL-KDD/N-BaIoT X X 2023

3. Method
3.1. Model Structure

The structure of the KGMS-IDS proposed here is shown in Figure 1. It mainly consists
of three modules: imbalance processing module, feature dimensionality reduction module,
and classification module. Each module is optimized by a hyper-parameter search through
experience and a large number of experiments, and good detection results are obtained,
with specific parameters shown in Table 3.

The main contributions and roles of each module of KGMS-IDS are as follows. The
KGSMOTE module is used to generate rare-class attack data, which makes a major con-
tribution to improving the detection rate of KGMS-IDS. The MDSAE module can reduce
the information redundancy of the original high-dimensional data, and at the same time
improve the robustness of the reduced-dimensional data through multiple noise, which
makes a major contribution to improving the detection capability of KGMS-IDS for un-
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known attacks. The SVEDM module is the last module of KGMS-IDS, which implements
the classification of the improved data to detect anomalous attacks among them. The ex-
periments show that the KGMS-IDS modules are interrelated and contribute to each other,
and each module contributes to improving the detection capability of the system. Overall,
KGMS-IDS is able to effectively improve the detection rate of rare-class attacks and un-
known attacks within the IoT through the proposed KGSMOTE and MDSAE, combined
with SVEDM. The specific workflow for the implementation and integration of the modules
in KGMS-IDS is divided into the following four steps.

Training
Dataset

Testing
Dataset

Missing value and 
outlier treatment

MinMaxScaler

One-Hot Encoding 

Pre-processing Imbalanced 
processing 

module based on 
KGSMOTE

Feature dimension 
reduction module 
based on MDSAE

SV
ED

M

Train

Test

Attack1

Attack2

Attack3

Attack4

Attackn

Figure 1. Framework of the proposed model.

Table 3. Parameters of KGMS-IDS.

Module Parameter Settings

KGSmote

K(x) = Gaussian kernel
bandwidth = 0.2
truncation_factor = 1, sampling_rate = 0.8/0.3
k_neighbors = 5

MDSAE

Batch size = 1024
Optimizer = Adam, learning rate = 0.001
Epoch = 50
Activation = Relu
Loss function = Huber Loss
Hidden layer1 = 80, Hidden layer2 = 30

SVEDM

XGBoost
(weights = 0.286)

max_depth = 10
learning_rate = 0.4
subsample = 0.8
n_estimators = 400

RF
(weights = 0.571)

n_estimators = 100
max_depth = 10

C4.5
(weights = 0.143)

n_estimators = 100
max_depth = 10

1. Data pre-processing module: The training and test sets are input into the data pre-
processing module, and the data are cleaned and transformed to form clean data
for model training. Firstly, the data are processed by missing values and outliers,
and the irregular data in the original data such as the rows containing None, NaN, inf,
and nan in the numerical feature columns are removed. Secondly, the MinMaxScaler
method is used to normalize the cleaned data and limit the pre-processed data to
[0, 1]. Finally, the one-hot method is used to transform the discrete features in the
data into a vector group of 0, 1 combinations. The data after the data pre-processing
module are input to the next imbalance processing module for imbalance processing.
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2. Imbalance processing module: The imbalance processing module is mainly based on
the random downsampling algorithm and the KGSMOTE algorithm. The training
set in the data after pre-processing is taken out, and the training set is input into
the imbalance processing module based on KGSMOTE. The majority class traffic in
the dataset is first randomly downsampled, and then the rare-class attack data are
generated by the KGSMOTE algorithm. It should be noted that the KGSMOTE model
only performs imbalance processing on the training set to meet the requirements of
an IDS deployed in a real IoT environment. The data after the imbalance processing
module are input to the feature downsampling module for feature downsampling.

3. Feature reduction module: The training data processed by the imbalance processing
module are input into the MDSAE-based feature reduction module to train the MD-
SAE model. The encoder part of the trained MDSAE model is taken out and the trained
parameters are kept. The trained encoder is then used to perform feature downscaling
on the training and test sets of the IoT dataset, respectively. The dimensionality
reduction removes the redundant information from the original high-dimensional
data and improves the robustness of the data. The processed data from the feature
dimensionality reduction module are input into the classification module to detect
multi-class anomalous attacks.

4. Classification module: First, the SVEDM-based classification module is trained using
the training dataset processed by the dimensionality reduction module. Then, the test
dataset is input into the trained classification module for multi-classification anomaly
detection, and the final detection results are obtained.

3.2. Imbalanced Data Processing Module Based on KGSMOTE

In IoT data, the imbalance between normal and attack traffic makes classifiers prone
to misclassify rare-class attack data as normal data. To address this issue, we adopt the
Random Under-Sampling (RUS) algorithm to undersample majority class data and filter
out redundant samples. Meanwhile, we use our proposed KGSMOTE model to oversample
rare-class attack samples, generating new rare-class attack samples and improving the
detection rate of rare-class attacks.

G-SMOTE introduces a geometric region, i.e., a hypersphere, wherein rare-class attack
data are synthesized around each rare-class attack sample with a safe radius. Typically,
this geometric region in input space is a truncated hyperellipsoid. Specifically, instead
of synthesizing new rare-class attack data along line segments connecting minority class
instances, G-SMOTE defines a flexible geometric region around each selected rare-class
attack sample and increases the diversity of generated samples by expanding the area of
the minority class.The core idea of G-SMOTE is to generate a random point, esphere, on the
surface of the unit hypersphere using Equation (1). By applying Equation (2), the esphere
point is transformed into a randomly generated xgen point within the unit hypersphere.
The end result of this process is the generation of a uniformly distributed random point
within the unit hypersphere.

esphere ←
vnormal

‖vnormal ‖
(1)

xgen ← r1/pesphere (2)

vnormal is generated by p random numbers from the normal distribution N (0, 1). r is a
random number from the uniform distribution U (0, 1).

While the G-SMOTE algorithm largely addresses the problems of generating noisy data
and excessive interpolation in some samples, the severe imbalance between normal and
attack traffic in IoT data and the small sample size of rare data pose challenges. When using
only the G-SMOTE algorithm to synthesize new rare-class attack samples, it is difficult to
focus on the most important information, and the distribution of synthesized new samples
may not be diverse enough. The KGSMOTE module integrates KDE into G-SMOTE to
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generate more diverse and fitting data for original rare-class attack samples, as shown in
Figure 2. Algorithm 1 illustrates the operation process of the KGSMOTE module.

Training
Dataset

Rare class 
attack data

KDE
generate rare class 

attack data
estimate density 

distribution of rare 
class attack data

Preliminarily 
balanced data

G-SMOTE
perform oversampling 
on the augmented rare 

class attack data

Training
Dataset

(Balanced)

Random 
Downsampling

Preliminarily 
balanced data

Majority 
class data

Figure 2. Imbalanced data processing module based on KGSMOTE.

Algorithm 1: Oversampling algorithm of KDE-based G-SMOTE.
Input: Rare-class attack data R = {r1, r2, r3, . . . , rn}
Output: Augmented rare-class attack data
1: Use KDE to estimate density distribution of rare-class attack data
density = kernel_density_estimation(rare_class_attack_data, h)
2: Generate new rare-class attack data based on the estimated density distribution
new_rare_class_attack_data = generate_data_from_density(density)
3: Combine new rare-class attack data with original training data
training_data = combine(original_training_data, new_rare_class_attack_data)
4: Use G-SMOTE to perform oversampling on the augmented rare-class attack data
oversampled_data = G_Smote(training_data)
5: Return oversampled_data
6: End

Firstly, the KDE [40] is used to estimate the probability density function of rare-
class attack samples. Then, the generated rare-class attack data distribution is extracted
from this probability density function, as shown in Equation (3). This method essentially
characterizes the probability distribution of data sample points, estimates the probability
density of an unknown distribution without relying on any prior assumptions, and uses a
smooth function to approximate this probability density. Here, xi represents the sample
data, K(x) is the kernel function, h is the bandwidth parameter, and f̂h(x) is the estimated
probability density at x. In this paper, the Gaussian kernel is selected as the kernel function,
and the bandwidth parameter is set to 0.2. The data distribution generated by KDE can
capture the key information of rare-class attack samples and increase the diversity of the
minority class attack distribution. Secondly, the expanded rare-class samples are input
to the G-SMOTE algorithm to generate new minority class attack data. On the one hand,
the data distribution generated by KDE can capture the key information of rare-class
attack samples. On the other hand, the data distribution sampled by KDE is input into
G-SMOTE to expand the diversity of newly generated minority class attacks, thereby
improving the recall rate of the detection module for minority class attacks and enhancing
the generalization performance of the imbalance processing module.

f̂h(x) =
1
n

n

∑
i=1

K
(

x− xi
h

)
(3)
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3.3. Feature Dimension Reduction Module Based on MDSAE

The Autoencoder (AE) [41,42] is an unsupervised neural network model widely used
for feature extraction and anomaly detection. It can extract important features from high-
dimensional raw data as input for the next stage of training or testing to achieve the goal of
data dimensionality reduction. However, AE is a shallow neural network and cannot extract
deep feature representations of the original high-dimensional data. Moreover, the low-
dimensional data extracted by AE is prone to overfitting, which means that it cannot
effectively improve the multi-classification accuracy of the detection model. The Denoising
Autoencoder (DAE) [43,44] is an improved version of AE. By injecting noise at the input end
of the autoencoder, it can enhance the generalization effect of the data after dimensionality
reduction and to some extent increase the robustness of the detection model.

However, it cannot effectively utilize the correlation between various features of IoT
data. Furthermore, in denoising autoencoders with only one noise source, the training
results may be affected by this noise source, which may lead to poor detection perfor-
mance when facing unknown attacks on IoT data. To address this issue, we propose a
feature dimensionality reduction model MDSAE based on multiple noise and attention
mechanisms. Firstly, we add multiple noise sources (Gaussian Noise, Salt and Pepper
Noise, Dropout Noise) at the input end of the model to comprehensively consider the
feature extraction ability under different noisy conditions. Secondly, we incorporate a
self-attention mechanism [45,46] into the hidden layer of the encoder to utilize the cor-
relation between high-dimensional features and use the importance degree to focus the
neural network’s attention more on important information among various features. Fi-
nally, we deepen the autoencoder’s layers and use a deep neural network to learn the
deep feature representation of high-dimensional features to improve the robustness of
the dimensionality reduction model. Specifically, we input high-dimensional data into
MDSAE, perform encoding and decoding operations inside the network to obtain new
data representations, then optimize the network parameters through the backpropagation
algorithm to make the decoder’s output as close as possible to the original data without
noise injection. After training, we save the encoder’s parameters, input the test data into
the encoder, and obtain the reduced feature data. The encoding and decoding process can
be represented by Equations (4) and (5).

z = f (ωex + be) (4)

y = g
(

ωdz + bd
)

(5)

Equation (4) demonstrates how the encoder compresses high-dimensional raw data
into latent features, where we represent the weight matrix and bias vector of the encoder,
respectively. Equation (5) illustrates how the decoder restores low-dimensional latent
features to high-dimensional raw data, where wd and bd are the weight matrix and bias
vector of the decoder, respectively. The encoder and decoder utilize activation functions f
and g, respectively.

Figure 3 displays the basic structure of the Multi-Source Denoising Autoencoder
module. From Figure 3, it can be observed that the MDSAE consists of an encoder and a
decoder. The encoder includes multiple noise sources, an input layer, a hidden layer (z1),
a self-attention mechanism layer, and a final layer (z). Based on experience and a large
number of experiments, it is concluded that MDSAE-IDS achieves excellent classification
results when it contains two hidden layers. The hidden layer (z1) contains 80 neurons
and the final layer (z) contains 30 neurons. The self-attention mechanism layer in the
encoder is added between the hidden layer (z1) and the final layer (z). The number of
output nodes of the self-attention mechanism layer is 50. The self-attention mechanism
layer can improve the ability of AE to capture the relationship between high-dimensional
data, so that it can take more into account the interactions between individual features
in the feature dimensionality reduction process. Meanwhile, adding the self-attention



Electronics 2023, 12, 3911 10 of 26

mechanism layer to the encoder can alleviate the overfitting problem of the self-encoder
and improve the ability of AE to characterize high-dimensional data. Therefore, adding the
self-attention mechanism layer can improve the robustness of AE together with multiple
noise. The decoder, which is symmetric to the encoder, does not have noise sources or a
self-attention mechanism layer. Its purpose is to reconstruct the original data as accurately
as possible. During the reconstruction process, the decoder continuously trains the neural
network, allowing the final layer (z) to effectively represent the original high-dimensional
data. The training of the MDSAE involves finding the optimal values of w, minimizing the
reconstruction loss functions, L, with respect to be and bd using standard backpropagation
algorithms. It is important to note that the MDSAE utilizes triple noise sources, which are
injected only at the input end of the encoder during training. However, when decoding to
restore the original data information, the decoder is trained using the noise-free original
data, explaining why the dimensionality reduced data after MDSAE exhibit improved
robustness. Additionally, the MDSAE module employs the Huber Loss [47] as the loss
function. Finally, by extracting the trained encoder part from the MDSAE, high-dimensional
features are reduced to 30 dimensions.

Input:x Output:y

z
z1 �1

Encoder Decoder

Self attention

Salt and 
pepper noise

Multiple noise injection z1

Drop out(0.2)

Gaussian 
noise

Figure 3. Traditional autoencoders and multiple denoising autoencoders improved by the self-
attention mechanism.

3.4. A Multi-Class Anomaly Detection Module Based on SVEDM

The Soft-Voting Ensemble Model (SVEDM) is an advanced machine-learning algo-
rithm that is effectively used for multi-class anomaly detection. SVEDM takes the weighted
average of probability values from various classifiers and, based on that, makes a final
classification decision. For each sample that is to be classified, a class probability output
is obtained from each base classifier, and then these probabilities are averaged. The class
with the highest average probability is selected as the final predicted result. Compared to
single machine-learning classifiers and hard-voting ensemble models, SVEDM reduces the
error of individual classifiers by merging the predictions of multiple classifiers, making it
less susceptible to random noise or interference. If the model is underfitting or overfitting,
the addition of different classifiers can improve the generalization performance and robust-
ness of SVEDM. After experimenting with various combinations of base classifiers (SVM,
DT, LightGBM, C4.5, RF, Adaboost, XGBoost, Naive Bayes, Logistic Regression), XGBoost,
RF, and C4.5 were chosen as the base classifiers for SVEDM. The flow chart of SVEDM is
depicted in Figure 4.
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Figure 4. A multi-class anomaly detection module based on SVEDM.

3.5. Dataset Description

Evaluating the performance of IDS is a crucial matter. To address this, the experiment
utilizes two network security datasets, NSL-KDD and N-BaIoT, which are effective in
portraying the current state of IoT security.

3.5.1. NSL-KDD

The NSL-KDD dataset [48] is an improved version of the KDD Cup 99 [49]. NSL-KDD
eliminates duplicate and incomplete records from the KDD Cup 99 dataset, improving
data accuracy. It also includes additional network attack types and real network traffic
to enhance the dataset’s richness and similarity to real-world network environments.
With improved labeling accuracy, the dataset is more reliable for intrusion detection and
better reflects real-world network intrusion scenarios. The NSL-KDD dataset consists of
two training sets (KDDTrain+ and KDDTrain+_20Percent) and two testing sets (KDDTest+
and KDDTest−). The training set is KDDTrain+, and the test set is KDDTest+.

Table 4 shows that the test set includes unknown attacks not present in the training set.
The normal and attack data in the NSL-KDD dataset are severely unbalanced, with only
52 instances of U2R rare attacks compared to 67,343 normal instances in the training set,
resulting in a ratio of 1295:1. This imbalance aligns with the security situation in real
IoT environments, but it can significantly impact the classifier’s judgment, leading to
misclassification of rare-attack data as other attack classes or even normal data, posing a
severe threat to users. Additionally, KDDTrain+ includes 22 attack types and 1 normal data
type, while KDDTest+ has a total of 37 attack data types and 1 normal data type. Notably,
KDDTest+ includes 17 attack types absent from KDDTrain+ (i.e., unknown attacks), which
tests the model’s ability to detect unknown attacks.This setup aims to better simulate real-
world scenarios because, in the real world, new types of attacks are constantly emerging and
many of them evolve and modify to evade existing defense systems. Therefore, in order to
effectively evaluate the performance of intrusion detection systems in the face of unknown
attacks, these unknown attacks are included in the test set. For the unknown attacks
in the test set, machine-learning algorithms and detection methods are usually used for
classification and detection. Using the information of known attacks in the training set,
attack patterns and features are learned to try to identify and classify unknown attacks.

Table 4. Categories and partitioning of the NSL-KDD dataset.

Class KDDTrain+ Number KDDTest+ (Unknow Attack) Number

Normal normal 67,343 normal \ 9711
DoS back, land, neptune,

pod, smurf, teardrop
45,927 back, land, neptune,

smurf, teardrop, pod
apache2, mailbomb,
processtable, udpstorm

7458

Probe ipsweep, nmap,
portsweep, satan

11,656 ipsweep, nmap,
portsweep, satan

saint, mscan 2421

R2L buffer_overflow,
loadmodule, perl, rootkit

995 buffer_overflow,
rootkit, perl,
loadmodule

xterm, sqlattack,
ps, httptunnel

2754

U2R ftp_write, guess_passw,
imap, warezmaster, spy
multihop, phf, warezclient

52 ftp_write, imap
guess_passwd, phf
warezmaster, multihop

snmpgetattack, worm
xlock, sendmail,
xsnoop, named, snmpguess

200

Total 23 125,973 21 17 22,544
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The NSL-KDD dataset contains a total of 41 feature columns and 1 label column. Out
of the 41 feature columns, 38 are numerical features while the remaining 3 are categorical
features. These 3 categorical features are converted into numerical features through one-hot
encoding to make them suitable for model training. Consequently, the data dimension is
expanded from 41 to 122 dimensions.

3.5.2. N-BaIoT

The N-BaIoT dataset [50,51] was specifically developed for intrusion detection in IoT
devices. It contains normal and malicious traffic data collected from various IoT devices,
including doorbells, thermostats, baby monitors, cameras, and more. The data are collected
from both public networks and LAN environments within the laboratory. The N-BaIoT
dataset is comprised of 115 feature columns and one label column. Its attack data includes
ten categories primarily from two botnets (BASHLITE and Mirai), which can be divided
into three major categories (Normal, BASHLITE, and Mirai) and eleven subcategories. We
utilized traffic extracted from an intelligent video surveillance camera (Provision PT-737E)
as our experimental data. During the partitioning of the dataset into training and testing
sets, we added attack types that were not present in the training set to the test set, as shown
in Table 5.

From Table 5, it is evident that the test set displays three types of attacks (TCP flooding,
Scan (Mirai), UDP (Mirai)) that were not present in the training set. Additionally, there
is an imbalance between normal and attack data, with the former being more dominant.
This scenario mirrors the security conditions prevalent in real-world IoT environments.
However, detecting these unknown attacks can be challenging due to their previously un-
seen features and behaviors. When evaluating with the N-BaIoT dataset, for the unknown
attacks in the test set, we focus more on metrics such as the accuracy, recall, and false alarm
rate of the system. These metrics will evaluate whether the system is able to correctly
identify unknown attacks in order to validate the system’s detection capability in the face
of novel attacks.

Table 5. Categories and partitioning of the N-BaIoT dataset.

Class N-BaIoT Train Number N-BaIoT Test (Unknow Attack) Number

Normal normal 34,806 normal \ 14,917
BASHLITE Attack Scan(BASH), Junk

COMBO, UDP(BASH)
6869 Scan(BASH), COMBO

Junk, UDP(BASH)
TCP flooding 5778

Mirai Attack Ack, Syn, UDPplain 6051 Ack, Syn, UDPplain Scan(Mirai), UDP(Mirai) 5663

Total 8 47,726 8 3 26,358

4. Experimental Results and Analysis

This section focuses on the experimental results obtained from using the proposed
KGMS-IDS architecture. Ablation experiments were conducted to analyze the significance
and roles of individual modules. The experiment was conducted on a personal computer,
and Table 6 illustrates the overall configuration.

Table 6. Experimental operating environment.

Project Parameters

CPU Intel Core i7-11800H 2.30 GHz
GPU NVIDIA RTX3070

Python version 3.9.13
TensorFlow version 2.8.0

Keras version 2.8.0
Pytorch version 1.10.1

4.1. Evaluation Metrics

The amount of normal and attack data within IoT environments is significantly imbal-
anced, which is a characteristic demonstrated by both the NSL-KDD and N-BaIoT datasets.
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In IoT intrusion detection, the detection model can still exhibit high accuracy, even when
rare-attack data is incorrectly categorized as normal data. However, mistakenly classifying
rare-attack data as normal data can also pose a threat to IoT security; thus, this study
selected four classification evaluation metrics, including accuracy, recall, precision, and F1
score. The formula for the evaluation metric is as follows:

Accuracy =
TP + FN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(9)

Accuracy (Acc) represents the proportion of samples that the classifier correctly classi-
fied among all the samples, in other words, the ratio of correct predictions made by the
classifier to all samples. Precision (Pre) represents the proportion of truly positive samples
predicted as positive by the classifier, out of all samples predicted as positive by the clas-
sifier. Recall (Re) represents the proportion of true positive samples correctly predicted
by the classifier among all the positive samples. The F1-score (F1) is a comprehensive
metric that takes into account both Precision and Recall metrics and calculates a weighted
harmonic average between them. In addition, this paper evaluates the performance of the
proposed model using the confusion matrix and Kappa coefficient. The confusion matrix is
a situation analysis table used in machine learning to summarize the predictions of classi-
fication models. It summarizes the records in the dataset in a matrix form based on two
criteria, i.e., the true categories and the category judgments predicted by the classification
model. Kappa is a statistical metric used to measure the consistency between classifiers
or evaluators. It evaluates classification tasks by calculating the level of consistency as a
means of evaluating more than accuracy. Its core idea is shown in Equation (10).

Kappa =
(po − pe)

1− pe
(10)

where Po is the observed exact agreement between classifiers or evaluators and Pe is the
consistency achieved by the classifier or evaluator in a randomized situation.

4.2. Imbalanced Processing Based on KGSMOTE

First, the training data are divided into a training set and a test set. NSL-KDD uses
the pre-divided KDD Train+ and KDD TEST+ as the training and test sets, respectively.
As the creators of N-BaIoT did not divide the training and test sets, this paper uses the
newly divided N-BaIoT Train and N-BaIoT Test for training and testing. It is worth noting
that the newly divided test set includes attack data that did not appear in the training set,
in order to simulate the real IoT environment. In the imbalance processing module based
on KGSMOTE, only the training set is subject to imbalance processing. First, ROS is used to
down-sample the majority class data in the training set, followed by the use of KGSMOTE
to over-sample rare-class attacks to balance multi-class attacks and normal traffic. To better
illustrate the changes in the training set before and after sampling, the UMAP method is
used to visualize the data, as shown in Figures 5 and 6.

Figures 5a and 6a represent the original data distribution of KDDTrain+ and N-
BaIoT Train, respectively. It can be seen that both training sets are severely imbalanced,
with Normal traffic and Dos attack traffic being the majority class in KDDTrain+, while
R2L and U2R attack traffic are rare classes. In N-BaIoT Train, Normal traffic is the majority
class, while Gafgyt and Mirai attack traffic are rare classes. Correct classification of attack
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traffic is crucial for IoT security; therefore, Normal traffic is down-sampled and rare-class
attack traffic is over-sampled to balance the training set, as shown in Figures 5b and 6b.
The balanced training set not only has equal numbers of each class of traffic, but also
enriches the distribution of rare-class attack traffic. This is because the over-sampling
strategy in this paper is based on KDE to extract the probability density distribution of
rare-class traffic, and the G-SMOTE algorithm is used to expand the rare-class traffic based
on the extracted probability density distribution. The KDE algorithm provides a richer
distribution of rare-class attack samples for the G-SMOTE algorithm, which solves the
deficiency of traditional over-sampling algorithms that only use line connections between
samples for single over-sampling. To better evaluate the functions of the KGSMOTE
module and its parts, the original training set is used for imbalance processing and tested
on the test set using the SVEDM module, as shown in Figures 7 and 8.

(a) The distribution of KDDTrain+ (b) The distribution of balanced KDDTrain+

Figure 5. UMAP visualization based on KDDTrain+.

(a) The distribution of N-BaIoT Train (b) The distribution of balanced N-BaIoT Train 

Figure 6. UMAP visualization based on N-BaIoT Train.

The results of multi-class anomaly detection using the SVEDM module after imbal-
anced processing on training sets of NSL-KDD and N-BaIoT using the KGSMOTE module
and its parts are presented in Figures 7 and 8, with Acc, Pre, Re, and F1 used as evaluation
metrics, with a focus on accuracy and recall, where higher recall indicates a higher proba-
bility of correctly detecting an attack category. It can be observed that KGSMOTE achieved
the highest Acc, Re, and F1 values for all categories on the NSL-KDD dataset, at 80.50%,
58.22%, and 61.75%, respectively, while the N-BaIoT dataset achieved the highest Acc, Pre,
Re, and F1 values, at 99.74%, 99.61%, 99.59%, and 99.6%, respectively. The higher preci-
sion (Pre) for G-SMOTE than KGSMOTE in the NSL-KDD dataset was due to SVEDM’s
ability to classify small amounts of traffic from the minority class, which could result in
some classes having a high Pre if no misclassifications occurred. This also increased the
average value and resulted in an overall improvement in Pre. Furthermore, it can be
observed that the evaluation scores for the NSL-KDD dataset were significantly lower
than those for the N-BaIoT dataset, which is related to its data distribution. KDD TEST+
contained more features not found in the training set, which was primarily used to test the
model’s generalization performance and its ability to detect unknown attacks. It can also
be seen that KGSMOTE has more powerful generation capability than the baseline model
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G-SMOTE, and the generated rare-class attack data effectively improves the detection rate
of the classifier for rare-class attacks. In IoT intrusion detection, KGSMOTE is only used in
the training phase in intrusion detection, and the significance of this module is to generate
rare-class attack data and improve the performance of the classifier in detecting rare-class
attack data. Due to the poor computing power of IoT devices, this module is only deployed
in the training phase of KGMS-IDS, so it does not increase the computing overhead of IoT
devices when actually deployed in IoT environments for detection.
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Figure 7. The classification results after performing imbalance treatment on NSL-KDD dataset using
KGSMOTE module and its components.
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Figure 8. The classification results after performing imbalance treatment on N-BaIoT dataset using
KGSMOTE module and its components.

4.3. Deep Feature Extraction Based on MDSAE

The MDSAE module serves as an intermediate module of the integrated model,
used for dimensionality reduction of high-dimensional data and extracting deep feature
representations of high-dimensional features. The MDSAE module is applied to both the
training and testing sets. Firstly, the encoder and decoder of the MDSAE are trained on the
balanced training set. Then, the trained encoder is extracted and used to perform feature
dimensionality reduction on both the training and testing sets, in order to extract deep
feature representations of high-dimensional feature data and improve the generalization
ability of the detection model. The training process is illustrated in Figures 9 and 10.
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Figure 9. MDSAE loss-epoch curves trained on the NSL-KDD dataset.

Figure 10. MDSAE loss-epoch curves trained on the N-BaIoT dataset.

Figures 9 and 10 display the training loss curves of the MDSAE module on the NSL-
KDD and N-BaIoT datasets. The curves demonstrate that the Huber loss of the MDSAE
module converges rapidly during training. Based on the trend of the validation loss and
training loss, the MDSAE module can effectively filter out noise, restore high-dimensional
features from hidden features, and learn deep feature representations of high-dimensional
features. To further assess the dimensionality reduction effect and the role of each part
of the MDSAE module, the unbalanced NSL-KDD and N-BaIoT datasets are utilized as
inputs to the MDSAE module, and the SVEDM module is employed to test the datasets,
aiming to evaluate the dimensionality reduction effect and generalization ability of the
MDSAE module and its parts on high-dimensional data. The results are presented in
Figures 11 and 12.

Figures 11 and 12 display the results of multi-class anomaly detection using the
SVEDM module on the NSL-KDD and N-BaIoT datasets, respectively, after performing
dimensionality reduction and extracting deep feature representations using the MDSAE
module and its parts. The evaluation metrics used are Acc, Pre, Re, and F1, with a focus on
accuracy and recall. MDSAE outperformed the baseline model AE in all four metrics. In
addition, the highest Acc, Re, and F1 metrics were achieved on both NSL-KDD and N-BaIoT
datasets using the MDSAE module. The Multiple Denoising Autoencoder (MDAE) also
achieves good detection results, achieving the first metrics on Pre with 81.89% and 99.22%,
respectively, and the second highest scores on Acc, Re, and F1 after MDSAE. This indicates
that the multiple noise reduction of the decoder and the addition of the self-attention
mechanism in the encoder have good effects on enhancing data robustness and improving
the detection of unknown attacks by the classifier.
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Figure 11. The classification results after performing dimensionality reduction on NSL-KDD dataset
using MDSAE module and its components.
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Figure 12. The classification results after performing dimensionality reduction on N-BaIoT dataset
using MDSAE module and its components.

Mutual Information (MI) is able to quantify the amount of information contained in
one variable about another variable and express their relevance by measuring the degree
of dependence between variables. In order to show the effect of the MDSAE module
features after dimensionality reduction more intuitively, MI is used to calculate the impor-
tance degree between each feature and the target variable, as shown in Figures 13 and 14.
Figures 13a and 14a show the importance of the original high-dimensional features in the
NSL-KDD and N-BaIoT datasets without dimensionality reduction by the MDSAE module
relative to the target variables: 122 dimensions of the original high-dimensional features of
NSL-KDD and 115 dimensions of the original high-dimensional features of N-BaIoT. It can
be seen that many of the original high-dimensional features carry only little information
relative to the target variables and have high redundancy. Figures 13b and 14b show
the importance between the features in the NSL-KDD and N-BaIoT datasets after feature
extraction by the MDSAE module relative to the target variables. The features in the NSL-
KDD and N-BaIoT datasets after dimensionality reduction are both 30-dimensional and
numbered as [e1, e2 . . . , e30]. The importance of both the reduced-dimensional data relative
to the target variables is significantly increased, eliminating the redundant information
of the original high-dimensional data and improving the robustness of the network data.
Although the use of the reduced-dimensional data avoids the high complexity caused by
the machine learning-based model with high-dimensional features as input, the addition of
this module also increases the computational effort of KGMS-IDS, which slows down the
detection efficiency of the IDS to some extent.
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(a) Unprocessed original features (b) Features after dimensionality reduction by MDSAE

Figure 13. The importance level between each feature and the target variable on the NSL-KDD dataset.
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(a) Unprocessed original features (b) Features after dimensionality reduction by MDSAE

Figure 14. The importance level between each feature and the target variable on the N-BaIoT dataset.

4.4. Intrusion Detection Based on SVEDM

The multi-class anomaly detection module takes the low-dimensional balanced data
after imbalance and dimensionality reduction processing as input to improve its detection
rate for rare-class attack traffic and unknown attacks. Multiple machine-learning and deep-
learning models were experimented with to test the detection performance of SVEDM,
as illustrated in Figure 15.
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Figure 15. Using the SVEDM module for multi-class anomaly detection on dimensionality reduced
and balanced dataset.

Figure 15 illustrate the detection performance of different detection models on two
datasets, using data processed by the KGSMOTE and MDSAE modules for multi-class
anomaly detection. Various machine-learning and deep-learning models achieved good
detection results on both datasets, as the input data to the classifiers were processed for
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imbalance and dimensionality reduction. Integrating the proposed imbalance processing
and dimensionality reduction modules into the intrusion detection module significantly
improved the detection performance of various base classifiers for rare-class attack traffic
and unknown attacks, demonstrating the generalization performance of the proposed
modules. This confirms that the KGSMOTE and MDSAE modules are not only suitable
for the SVEDM detection model but also for other machine-learning and deep-learning
detection models. To validate the multi-class anomaly detection performance of the pro-
posed SVEDM, a comparison was made between combinations of five base classifiers,
and the optimal detection model, SVEDM, was obtained through analysis, as shown in
Tables 7 and 8.

Table 7. Comparison of combinations between ensemble models with different base classifiers on the
NSL-KDD dataset.

XGBoost C4.5 RF Adaboost LightGBM Accuracy Precision Recall F1-Score

X - X X - 85.41% 72.79% 70.46% 71.30%
X - X - X 85.31% 72.61% 70.61% 71.30%
X X - - X 85.11% 72.48% 69.36% 70.52%
X X - X - 84.95% 71.28% 69.18% 69.82%
X - - X X 84.56% 72.65% 68.83% 70.23%
- X X X - 84.09% 69.42% 69.42% 69.02%
- X X - X 84.94% 72.60% 69.76% 70.62%
- X - X X 85.58% 72.96% 70.95% 71.62%
- - X X X 85.30% 73.33% 70.37% 71.38%
X X X X X 85.53% 73.35% 70.44% 71.51%
X X X - - 86.39% 73.62% 70.22% 71.49%

Table 8. Comparison of combinations between ensemble models with different base classifiers on the
N-BaIoT dataset.

XGBoost C4.5 RF Adaboost LightGBM Accuracy Precision Recall F1-Score

X - X X - 99.79% 99.69% 99.69% 99.69%
X - X - X 99.86% 99.80% 99.80% 99.80%
X X - - X 97.75% 96.90% 96.52% 96.54%
X X - X - 98.74% 98.19% 98.06% 98.07%
X - - X X 99.55% 99.34% 99.32% 99.32%
- X X X - 98.59% 97.98% 97.85% 97.86%
- X X - X 98.60% 98.01% 97.85% 97.87%
- X - X X 96.07% 94.92% 93.93% 93.92%
- - X X X 99.68% 99.53% 99.52% 99.52%
X X X X X 99.01% 98.56% 98.48% 98.49%
X X X - - 99.94% 99.92% 99.92% 99.92%

Tables 7 and 8 present the detection performance of soft-voting ensemble models with
different combinations of five machine-learning algorithms (XGBoost, C4.5, RF, Adaboost,
LightGBM) as base classifiers on two datasets. It is observed that the classification per-
formance of the soft-voting ensemble model is not directly proportional to the number
of base classifiers used. For instance, the soft-voting ensemble model using five base
classifiers ranks third and sixth in terms of Acc on the two datasets, respectively. Fur-
thermore, the training and testing time of the soft-voting ensemble model using five base
classifiers is slower than that of the model using three base classifiers. On the NSL-KDD
dataset, the soft-voting ensemble model using XGBoost, C4.5, and RF as base classifiers
achieved the highest Acc and Pre scores, while the model using C4.5, Adaboost, and Light-
GBM as base classifiers achieved the highest Re and F1-score. On the N-BaIoT dataset,
the model using XGBoost, C4.5, and RF as base classifiers achieved the highest Acc, Pre, Re,
and F1-score. Considering the overall generalization performance, the proposed multi-class
anomaly detection module (SVEDM) uses XGBoost, C4.5, and RF as base classifiers, as they
achieve the best performance. Compared with intrusion detection models using a single
machine-learning classifier, although SVEDM improves the overall detection rate of the
IDS, it computes a higher overall overhead than the single classification model due to the
integration of three base classifiers.
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4.5. Performance Evaluation and Ablation Study of the Proposed Model

Tables 9 and 10 present the multi-class anomaly detection metrics of multiple models
on the NSL-KDD and N-BaIoT datasets. To provide a clearer demonstration of the per-
formance of the proposed KGMS-IDS model, the input for each method is the original
data. On the NSL-KDD dataset, the proposed model achieved the highest Acc, Re, F1-
score and Kappa, while RF achieved the highest Pre score of 88.68%, as explained in the
KGSMOTE module. On the N-BaIoT dataset, the proposed model achieved the highest
Acc, Pre, Re, F1-score, and Kappa. It is worth noting that using SMOTE for oversampling,
DAE for dimensionality reduction, and DNN for multi-class anomaly detection achieved
good classification metrics on both datasets, with Acc of 81.31% and 99.78%, respectively.
However, they are still inferior to the proposed model, which achieved Acc of 86.39% and
99.94%, respectively, demonstrating the superior performance of the proposed model. It
is observed that using a single classification algorithm can still achieve high classification
metrics on the N-BaIoT dataset. For instance, using the C4.5 algorithm achieved an Acc of
97.28% and Re of 95.85%, while using the CNN algorithm achieved an Acc of 99.68% and
Re of 99.52%. However, directly using a classification algorithm to classify the original data
on the NSL-KDD dataset resulted in lower metrics, such as an Acc of only 79.75% and Re
of 56.96% when using the CNN algorithm. Additionally, the same classification algorithm
showed significant differences in performance on different datasets. This is because the
NSL-KDD dataset contains more unknown attacks that did not appear in the training
set, making it difficult to detect them using a single machine-learning or deep-learning
algorithm. Moreover, rare-class attack traffic may be misclassified as normal traffic or other
majority class attack traffic, reducing the overall recall rate, as shown in Figures 16 and 17.

Table 9. Different methods on the NSL-KDD dataset.

Method Accuracy Precision Recall F1-Score Kappa

RF 75.88% 88.68% 49.11% 50.36% 61.40%
C4.5 75.62% 79.03% 49.68% 49.48% 65.70%
XGBoost 75.52% 68.08% 46.81% 48.01% 60.54%
LightGBM 75.70% 80.00% 49.36% 52.69% 60.91%
CNN 79.75% 86.46% 56.96% 59.71% 67.90%
CNN-LSTM 78.14% 67.27% 53.52% 53.10% 65.70%
DAE-SMOTE-DNN 81.31% 68.18% 61.59% 63.78% 71.62%
Proposed method 86.39% 73.62% 70.22% 71.49% 79.74%

Table 10. Different methods on the N-BaIoT dataset.

Method Accuracy Precision Recall F1-Score Kappa

RF 93.79% 92.64% 90.36% 90.24% 89.39%
C4.5 97.28% 96.20% 95.85% 95.84% 95.36%
XGBoost 90.36% 89.59% 85.04% 84.55% 83.45%
LightGBM 88.42% 88.46% 82.03% 80.94% 80.14%
CNN 99.68% 99.52% 99.61% 99.56% 99.46%
CNN-LSTM 88.13% 87.77% 81.71% 80.34% 79.73%
DAE-SMOTE-DNN 99.78% 99.86% 99.69% 99.77% 99.64%
Proposed method 99.94% 99.92% 99.92% 99.92% 99.90%

Figures 16 and 17 present the classification performance of various intrusion detection
methods on different attack types in the NSL-KDD and N-BaIoT datasets. Figure 16 shows
that Probe, U2R, and R2L attacks are challenging to classify in the NSL-KDD dataset.
For instance, when using RF for detection, these attacks only achieved 58.61%, 0.5%,
and 8.75% of Re scores, whereas the proposed method achieved 78.69%, 19.5%, and 74.18%
of Re scores for the same attacks on the same dataset. By integrating the three modules
(KGSMOTE, MDSAE, and SVEDM), the intrusion detection system’s detection metrics
for unknown attacks and rare-class attack traffic were improved. Figure 17 shows that
attacks from the Gafgyt network are also challenging to classify in the N-BaIoT dataset.
For example, when using RF for detection, only 71.11% of Re score was achieved for these
attacks. Note that when RF was used to detect U2R attacks, a 100% Pre score was obtained,
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despite achieving only 0.5% of Re score, which supports the statement in the KGSMOTE
module that Pre scores are susceptible to interference from FP, leading to overestimation.
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Figure 16. The performance of KGMS-IDS on the NSL-KDD dataset.
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Figure 17. The performance of KGMS-IDS on the N-BaIoT dataset.

This result is further illustrated in the confusion matrices shown in Figures 18 and 19.
Figures 18 and 19 present the classification confusion matrices of RF, CNN-LSTM, DAE-
SMOTE-DNN, and the proposed KGSMOTE-MDSAE-SVEDM model on the NSL-KDD
and N-BaIoT datasets. The confusion matrices demonstrate that in comparison to CNN-
LSTM and DAE-SMOTE-DNN, the proposed model accurately detected 1729 and 727 more
R2L attacks on the NSL-KDD dataset, and 8 and 46 more Mirai attacks on the N-BaIoT
dataset, respectively. These results indicate that the proposed model has excellent perfor-
mance in detecting rare-class attack traffic and unknown attacks. Finally, ablation studies
were conducted on KGMS-IDS to verify the effectiveness of each module, as shown in
Tables 11 and 12.

Table 11. Ablation study on NSL-KDD.

Method
Module NSL-KDD

KGSMOTE MDSAE SVEDM Acc Pre Re F1

Proposed method X X X 86.39 73.62 70.22 71.49
(1) Only SVEDM - - X 76.10 69.25 48.10 48.90
(2) w/o KGSMOTE - X X 79.19 80.25 55.86 56.98
(3) w/o MDSAE X - X 80.50 73.29 58.22 61.75
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Table 12. Ablation study on N-BaIoT.

Method
Module N-BaIoT

KGSMOTE MDSAE SVEDM Acc Pre Re F1

Proposed method X X X 99.94 99.92 99.92 99.92
(1) Only SVEDM - - X 93.15 92.06 89.38 89.18
(2) w/o KGSMOTE - X X 99.37 99.06 99.04 99.05
(3) w/o MDSAE X - X 99.74 99.61 99.59 99.60

(a)RF (b)CNN-LSTM

(c)DAE-SMOTE-DNN (d) Proposed method

Figure 18. Confusion matrix on the NSL-KDD dataset.

(a)RF (b)CNN-LSTM

(c)DAE-SMOTE-DNN (d) Proposed method

, ,

, ,

Figure 19. Confusion matrix on the N-BaIoT dataset.

1. Only SVEDM: The intrusion detection system will solely use the SVEDM module to
only evaluate the classification performance of this module.

2. w/o KGSMOTE: The KGSMOTE module is excluded from KGMS-IDS, while retain-
ing the MDSAE and SVEDM modules, to assess the feature extraction capability
of MDSAE.

3. w/o MDSAE: The MDSAE module is removed from KGMS-IDS to examine the
imbalance handling ability of the KGSMOTE module for high-dimensional data.
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Tables 11 and 12 present ablation experiments on the NSL-KDD and N-BaIoT datasets,
respectively. Each module of KGMS-IDS performs well. Compared to Model (1), Model
(2) demonstrates that the MDSAE module optimizes deep feature extraction from high-
dimensional data, reduces classifier interference from redundant features, and enhances
the detection performance of the classifier. Similarly, when compared to Model (1), Model
(3) shows that the KGSMOTE module generates more diverse rare-class attack traffic, mit-
igates data imbalance issues, and reduces the impact of data imbalance on the classifier,
thereby improving its detection performance. Applying all modules together achieves
better performance. MDSAE reduces balanced data to extract a more robust feature distri-
bution, enabling the classifier to better fit the data distribution and detect unknown attacks.
This indicates the proposed integrated model framework is rational and effective.

Additionally, KGMS-IDS has been compared to state-of-the-art intrusion detection methods
in recent years, as shown in Table 13. It can be seen that all the detection methods [52–56] for
the NSL-KDD dataset are effective in detecting unknown attacks. In particular, CS-NN achieved
an accuracy of 85.56%, which is better than several other models. However, the above models
are less effective in detecting rare-class attack data. Methods [57–60] were tested on the N-BaIoT
dataset, and all of them achieved high detection rates, but the above methods did not validate the
detection effect on unknown attacks. Comparing the best performance of the proposed KGMS-
IDS with the above state-of-the-art intrusion detection methods, KGMS-IDS achieves the highest
accuracy rate on both datasets. In addition, by comparing with the baseline model (GSMOTE-
AE-RF), the proposed model improves the accuracy by 5.4% on the NSL-KDD dataset and the
overall detection rate by 1.47% on the N-BaIoT dataset. By comparison, the proposed model
significantly outperforms the baseline model in terms of detection performance, which proves
that the improvements of the three modules of KGSMOTE, MDSAE, and SVEDM are effective.
These comparison results demonstrate that KGMS-IDS can improve the detection accuracy
of rare-class attack traffic in IoT and has a good generalization ability for detecting unknown
attacks. It exhibits excellent performance in the high-dimensional, complex, and imbalanced
security environment of the IoT, achieving intelligent intrusion detection.

Table 13. Comparison results between different detection models and KGMS-IDS.

Model Year Datasets Accuracy Classifification Unknown
Attack

MDPCA-DBN [52] 2019 NSL-KDD 82.08 Multi (5) X
LCVAE [53] 2020 NSL-KDD 85.51 Multi (5) X
CAFE-CNN [54] 2021 NSL-KDD 83.34 Multi (5) X
ID-UL [55] 2022 NSL-KDD 81.48 Multi (5) X
CS-NN [56] 2022 NSL-KDD 85.56 Multi (5) X
LGBA-NN [57] 2022 N-BaIoT 90.00 Multi (11) -
SGAN-IDS [58] 2022 N-BaIoT 99.89 Binary (2) -
EL-DTs [59] 2022 N-BaIoT 99.60 Multi (10) -
Cu-DNNGRU [60] 2022 N-BaIoT 99.39 Multi (9) -
GSMOTE-AE-RF(Baseline) 2023 NSL-KDD 80.99 Multi (5) -
GSMOTE-AE-RF(Baseline) 2023 N-BaIoT 98.47 Multi (3) -
KGMS-IDS(Proposed) 2023 NSL-KDD 86.39 Multi (5) X
KGMS-IDS(Proposed) 2023 N-BaIoT 99.94 Multi (3) X

5. Conclusions and Future Work

IDS is a critical service used to monitor networks for malicious activity, such as security
attacks. Difficulties are encountered due to the complex and dynamic environment of the
network, which may severely impact the performance of existing IDS. These difficulties
include unbalanced, high-dimensional, and asymmetrically distributed datasets. In this
paper, we detect anomalies by proposing an integrated intrusion detection framework,
KGMS-IDS. KGMS-IDS detects anomaly based intrusions in the IoT and also improves the
class imbalance problem that is prevalent in many domain datasets. The multiple noise
reduction technique is implemented to better extract the valid information and improve
the model robustness for the detection of unknown attacks. Comparative experiments with
other advanced intrusion detection models are conducted on two publicly available network
security datasets to verify the effectiveness of KGMS-IDS. The contribution of the proposed
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KGSMOTE, MDSAE, and SVEDM algorithms to imbalance processing, feature reduction,
and classification is verified through ablation experiments. In particular, compared with
the baseline model, it is clear that the detection rate of the proposed intrusion detection
model is significantly improved. Each module of KGMS-IDS is improved and the detection
rate of the rare class of network attacks and unknown attacks is significantly improved by
the integration of multiple modules. The proposed method is oriented to the challenges
posed by the high dimensionality, complexity, and imbalance of IoT data and can effectively
address the problem of low detection rate of rare-class attacks and unknown attacks by
existing IDS methods. Ensemble learning is costly in terms of training time, testing time,
and computational overhead. As a result, this leads to high latency and resource utilization,
which significantly affects the real-time functionality of smart IDS. In addition, KGMS-IDS
is an integrated model, and other intrusion detection methods using a single machine-
learning model, to a certain degree, increased the computational overhead of the deployed
devices. The accuracy and real-time of intrusion detection are contradictory to some extent,
and there is a balance between them. In practical applications, it is necessary to adjust these
two factors according to the specific application environment to find an adaptive balance
to cope with the complex and changing network security environment.

In order to meet the performance requirements of IoT’s high speed and low latency,
IDSs also need to face diverse network attacks. In this case, intrusion detection of large-scale
network traffic is imperative for IoT edge networks. Therefore, lightweight and high-precision
intrusion detection methods for edge networks may be a major research direction in the future.
Distributed intelligent IDS architecture helps to reduce the computational overhead, which in
turn improves the detection rate and performance of KGMS-IDS by reducing the false alarm
rate and training and testing time. Since IoT has a huge amount of data and is limited by
the computational power of IoT devices, our future plan is to continue researching faster and
better feature reduction methods. We also plan to address issues related to latency and resource
utilization, adaptation to dynamic IoT environments, and deployment architecture. The goal is
to minimize the complexity of the model while ensuring the detection accuracy. Meanwhile,
in the future, we plan to capture traffic from enterprise IoT NIC devices via wireshark and
extract features that the model can handle from the captured pcap files. In this way, the proposed
KGMS-IDS will be deployed in a real IoT environment for detecting complex network attacks
and improving the security performance of the IoT.
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