
Citation: Vinagrero Gutiérrez, S.; Di

Natale, G.; Vatajelu, E.-I. Python

Framework for Modular and

Parametric SPICE Netlists

Generation. Electronics 2023, 12, 3970.

https://doi.org/10.3390/

electronics12183970

Academic Editors: Manuel Fernando

Silva, Graça Minas and João Paulo

Pereira do Carmo

Received: 14 August 2023

Revised: 9 September 2023

Accepted: 13 September 2023

Published: 20 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Python Framework for Modular and Parametric SPICE
Netlists Generation
Sergio Vinagrero Gutiérrez 1,* , Giorgio Di Natale 2 and Elena-Ioana Vatajelu 2

1 TIMA Laboratory, University Grenoble Alpes, 38100 Grenoble, France
2 CNRS, 38000 Grenoble, France; giorgio.di-natale@univ-grenoble-alpes.fr (G.D.N.);

ioana.vatajelu@univ-grenoble-alpes.fr (E.-I.V.)
* Correspondence: sergio.vinagrero-gutierrez@univ-grenoble-alpes.fr

Abstract: Due to the complex specifications of current electronic systems, design decisions need to
be explored automatically. However, the exploration process is a complex task given the plethora
of design choices such as the selection of components, number of components, operating modes of
each of the components, connections between the components and variety of ways in which the same
functionality can be implemented. To tackle these issues, scripts are used to generate designs based
on high-level abstract constructions. Still, this approach is usually ad hoc and platform dependent,
making the whole procedure hardly reusable, scalable and versatile. We propose a generic, open-
source framework tackling rapid design exploration for the generation of modular and parametric
electronic designs that is able to work on any major simulator.
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1. Introduction

Design complexity, ultra-low-power requirements, reliability, robustness and security
are becoming increasingly important concerns when designing electronic systems. Due to
the increasing complexity of analogue circuits, it is more difficult to design and assess their
performance. Moreover, the aggressive scaling of CMOS technology makes the process of
testing the same design under different technologies very tedious, as normally the process
has to be repeated for every technology node. Moreover, the aggressive scaling of CMOS
technology makes the process of testing the same design under different technologies
very tedious, as the circuit needs to be redesign from scratch to account for the different
technology characteristics. Furthermore, several issues must be considered at design time
such as fabrication-induced variability, technology-dependent defects, extreme operat-
ing/environmental conditions, stochastic behaviours, ageing and possible perturbations
(noise, radiations, malicious attacks). All these factors make the verification and testing of
each circuit an arduous process.

To explore the behaviour of an electrical circuit under different designs and conditions,
multiple iterations and simulations need to be performed under the desired environment.
The interdependencies of large and complex circuits can quickly become a significant
challenge due to the extensive amount of choices at play. Design space exploration (DSE)
examines the different possibilities and design options within the allowed design space
considering the constraints and requirements in order to fulfil the specified performance
goals. DSE normally involves the use of tools as well as high-level abstract models of
the system, to automate and streamline the exploration process since the design space is
too large to be explored by hand. There is an interest in the industry to accelerate this
process and reduce the time between iteration cycles. Computer Aided Design (CAD) and
Electronic Design Automation (EDA) have drastically improved in recent decades, thanks
to new methodologies, tools (i.e., cadence, synopsys, xyce) and very recently the addition
of artificial intelligence, like genetic algorithms [1,2] or machine learning.
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The idiosyncrasies of some technologies are very well understood and can be trans-
lated to higher levels of abstraction. However, with the present issues faced by today’s
designs, electrical-level simulations are unavoidable since they allow designers to accu-
rately model and understand the behaviour of the target system. They are a crucial pillar
of analogue and mixed signal design space exploration, simulation of circuit under the
presence of perturbations and research of novel computation paradigms. But unlike digital
circuits, where the low-level phases of the design process are automated using fairly stan-
dard methodologies, synthesis and layout of analogue circuits are still carried out manually
or through some sort of ad hoc automated solution.

In this paper, we show a Python framework [3] for the generation of modular and
reusable electronic designs through the use of powerful manipulation primitives. The pur-
pose of this framework is twofold: (i) to provide tools to create electrical components whose
characteristics can be expressed through dynamic models or defined by logical rules and
(ii) to provide powerful manipulation primitives to quickly create complex arrangements
of components in a simple fashion. This framework benefits from the utilities and flexibility
of a programming language like Python to generate modular and re-usable components.
The designs created in Python can then be converted to any text format specified by the
user (special focus on SPICE netlists). The framework is focused on the quick generation
of complex designs. However, users could write extensions to automatically simulate the
generated designs or perform other tools such as Electrical Rule Checker (ERC).

This paper is organised as follows: the current state of the art is summarised in
Section 2, followed by the motivation for this project in Section 3. In Section 4, the frame-
work is described in detail and some use cases are provided in Section 4.4. Future lines of
work are discussed in Section 5, and, finally, our conclusions are extracted in Section 6.

2. State of the Art

There are currently a plethora of tools available that tackle design space exploration.
Chisel [4] and PyMTL3 [5] provide frameworks with a high abstraction level that are able
to compile a high level language code, like Scala and Python, into fully functional Verilog
code for hardware description. In this way, circuit designers have the expressiveness and
power of a programming language in order to quickly create reusable circuits. These tools
target Register Transfer Level (RTL) and thus are not very well suited for analogue and
mixed signal designs.

PySpice [6] is an utility to generate SPICE netlists and launch simulations by embed-
ding the design and the simulator configuration under the same language, which facilitates
the whole design iteration process. However the simulator is limited to NGspice and Xyce
and the netlists can only be exported for PCB designs. Skidl [7] is a layer built on top of
PySpice that attempts to to facilitate the process of connecting different components. SPICE
netlists are the universal format that any available electronic simulator uses, albeit each
simulator has it’s slightly different format. Our framework seeks to provide designs for
any available simulator by providing the necessary tools to export the designs to different.

Alongside these tools, there are projects that provide automatic layout generation
mechanism. One of the most famous known tools in this category is Magic [8]. Magic
(available online at http://opencircuitdesign.com/magic/) is an interactive software for
creating and modifying very large scale integration (VLSI) circuit layouts. Its most impor-
tant feature is the creation of a layout and plowing it to scale it for different technology
nodes. The ease of use of this utility comes with a penalty of 5 to 10% increase in area usage.
Other tools found online like LibreCell [9] try to reduce this tradeoff by reducing the fan
of possibilities that are provided to the user. Lower level tools such as GDSTK [10] and
GDSFactory [11] enable the creation and manipulation of GDSII and OASIS files, which are
the standard file format for foundries to specify circuit layouts. These tools can be used
as the basis of a much more complete software that is able to generate the layout based
on a circuit definition. Researchers have also put focus on intelligent methodologies for
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automatic layout generation for both PCB [12–14] and ASIC [15]. Genetic algorithms have
proven very useful and performant for this type of tasks.

AIDA [16] is a tool that tackles analogue IC sizing and layout. It provides powerful
utilities to perform parametric analysis, where the underlying parameters and properties
of a circuit can be generated and swapped in place before every simulation cycle. However,
the user needs to generate the design beforehand, which does not solve the issue of
design exploration.

There are complete projects like OpenRAM [17] that provide a Python framework to
create the layout, netlists, timing and power models, placement and routing models to use
SRAMs in ASIC design. This tool provides an easy interface to configure the characteristics
of the SRAM. This is a very powerful tool but is limited to SRAMs and a selected number of
technology nodes (currently NCSU FreePDK 45 nm, MOSIS 0.35 µm and Skywater 130 nm).

There are other projects found in the literature like [18,19] which showcase how
certain designs can be optimised. Although these tools perform an optimisation and netlist
generation development cycle, they are ad hoc solutions that are by no means extensible to
other designs.

3. Motivation

The proposed framework focuses on providing utilities that enables users to perform
quick design space exploration and parametrization of electronic designs. A high-level
abstract interface is provided in order to create modular and reusable components, that
can be seamlessly parametrised in order to provide users a general overview of the design
under different design constraints and environments.

The advantage of using a programming language like Python as an abstraction layer
to generate circuits is that we are not limited by a drag-and-drop graphical user interface
and we can exploit the expressiveness of Python to quickly generate complex structures as
well as having support for the plethora of available scientific libraries. Graphical Interfaces
tend to change in time, while a programming language stays fixed. This eliminates the
need of learning different software and users can quickly start designing. Moreover,
changes in the design are represented as changes in the source code which can make the
process of versioning much simpler. Moreover, using a tool that is properly debugged and
formalised provides also the advantage of not having to check the finished netlist, whereas
in the case where the netlist is created by hand, it needs to be checked and corrected for
every modification.

Most of the commercially available software provides an interface to perform paramet-
ric analysis on a design. However, if we want to generate different versions of a circuit, each
version has to be generated by hand (e.g., a flash ADC with different number of bits), thus
reducing the possible space of exploration due to time or complexity constraints. With our
tool, parametric characteristics can be embedded directly into the components and the
multiple designs can be generated in a modular and programmable fashion.

Furthermore, most of the available tools that perform automatic circuit generation
are either closed-source or they are application-specific tools (e.g., SRAM generators).
The Python tools described in the section before (PySpice and Skidl) are focused on PCB
design, which is out of the scope of this paper.

4. Overview of the Tool
4.1. Electrical Components and Parameters

The parameters of an electronic component can be described easily with a Python
dictionary. They can also be defined defined statically or dynamically calculated (i.e.,
through Python functions or SymPy formulas, that may not be available or accessible in
EDA tools). Dynamic parameters bring the possibility of embedding parametric analysis
directly into the circuit definition. These parameters can be grouped into ParamSets that
behave similar to process corners. The following example shown in Listing 1 shows a
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reduced number of parameters for a NMOSFET transistor, where the vth of the transistor is
drawn from a Gaussian distribution.

Listing 1. Example parameters for a NMOSFET transistor where the vth is defined dynamically.

1 def params():
2 return {"w": 0.135, "vth": random.gauss(0.4, 0.1)}
3

4 NMOS = Component('NMOS', ['D', 'G', 'S'], {'w': 0.140})
5 NMOS.new(D=1, G=2, S=3, params=params())
6

7 # Creates the following instance
8 # M1 (1 2 3) NMOS vth=0.43756 w=0.135

In order to automatically generate parameters from files that are commonly used, this
framework provides a parser interface to extract information from different file formats and
Process Design Kits (PDKs). Multiple parsers are already available but users can extend
this functionality by defining their own custom parsers. Certainly this functionality makes
the process of testing different technology nodes or constraints more accessible, as the
parameters and component names can be updated in the moment and swapped in place
depending on the desired environment. Since the parsing and translation procedures are
independent processes, users can read data from one SPICE format and output their new
design to a different format, which enables quick prototyping.

This also allows a progressive adaptation of the framework by users, or easy change
between different architectures. The same complex circuit can be generated using different
basic cells by providing netlists that defined the same subcircuit defined in different
architectures. The example shown in Listing 2 describes how a netlist can be parsed
and converted into a Circuit object that we can manipulate in Python. The parser also
retrieves information about directives so simulators can also be configured directly from
the Circuit object.

Listing 2. Example netlist containing multiple spectre directives a subcircuit definition and 2 instances.

simulator lang=spectre
global 0 vdd!

subckt pmos_custom p n
parameters Wn=0.135 Wp=0.27 Ln=0.06 Lp=0.06 vthp=-0.6915
M0 (p n vdd! vdd!) psvtlp w=Wn l=Ln nfing=1 mult=1 \

srcefirst=1 ngcon=1 mismatch=1 lpe=0 dnoise_mdev=0 dmu_mdev=0 \
dvt_mdev=0 dvthtot=vthp

ends pmos_custom

V0 (vdd! 0) vsource dc=1.0 type=dc
V1 (net1 0) vsource type=pwl wave=[ 0 0 19n 0 20n 1 ]

finalTimeOP info what=oppoint where=rawfile
modelParameter info what=models where=rawfile
designParamVals info what=parameters where=rawfile
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The previous netlist is parsed into the following Python object.

1 {
2 'instances': [
3 Instance(
4 name='vsource', nodes=['vdd!', '0'],
5 params={'dc': 1.0, 'type': 'dc'},
6 ctx=None, cap=None, uid=0
7 ),
8 Instance(
9 name='vsource', nodes=['net1', '0'],

10 params={'type': 'pwl', 'wave': [0.0, 0.0, '19n', 0.0, '20n', 1.0]},
11 ctx=None, cap=None, uid=1
12 )
13 ],
14 'subcircuits': [
15 Subcircuit(name=pmos_custom, nodes=['p', 'n'], params={'Wn': 0.135, 'Wp':
16 0.27, 'Ln': 0.06, 'Lp': 0.06, 'vthp': -0.6915},instances=[Instance(name='psvtlp',
17 nodes=['p', 'n', 'vdd!', 'vdd!'], params={'w': 'Wn', 'l': 'Ln', 'nfing': 1.0, 'mult':
18 1.0, 'srcefirst': 1.0, 'ngcon': 1.0, 'mismatch': 1.0, 'lpe': 0.0, 'dnoise_mdev': 0.0,
19 'dmu_mdev': 0.0, 'dvt_mdev': 0.0, 'dvthtot': 'vthp'}, ctx='pmos_custom', cap=None,
20 uid=0)])
21 ],
22 'directives': [
23 Directive(name='simulator', args={'lang': 'spectre'}),
24 Directive(name='global', args={0.0: None, 'vdd!': None}),
25 Directive(
26 name='finalTimeOP',
27 args={'info': None, 'what': 'oppoint', 'where': 'rawfile'}
28 ),
29 Directive(
30 name='modelParameter',
31 args={'info': None, 'what': 'models', 'where': 'rawfile'}
32 ),
33 Directive(
34 name='designParamVals',
35 args={'info': None, 'what': 'parameters', 'where': 'rawfile'}
36 )
37 ]
38 }

Electronic components themselves can be created through the Component class as it
is shown in Listing 3. Besides the basic properties like component name, connected nets
and parameters, users can embed metadata to provide additional information that can
be shared between different tools. These components serve as templates to generate the
modular circuits. Since electrical components can be treated as black boxes with inputs,
outputs and parameters. Other type of components, like the ones described in Verilog-A,
can also be used without problem (as long as the simulator accepts them) as it is shown in
Listings 3, 9 and 10.

Listing 3. Example creation of a capacitor and a custom NMOS model. The parameters are extracted
from a file using an example Reader.

1 params = Reader.load("/path/to/params_file")
2

3 Cap = Component("Cap", [0, 1], params['cap']['TT'], prefix = "C")
4 model = Model("custom_nmos", "nmos", {"TYPE": 1})

Once the components have been defined, it can be instantiated multiple times by using
the operators @ and % which are overloaded to quickly modify the connections and the
parameters of a component.

4.2. Manipulations and Operations

As it has been show in Section 2, there are already tools that allow to generate netlists.
The core objective of this framework is to provide very efficient manipulation primitives to
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quickly create complex and reusable connection patterns that can be customised through
variables. This framework provides a small list of operations that can be used to create more
complex patterns, like the Parallel and Chain operations that create components in parallel
and in a daisy chain as their name imply. The manipulations automatically instantiate the
number of desired components and update their connections or parameters as it can be
seen in Listing 4. In this way, the connection between components occurs in a deterministic
and reusable way so it’s easier to avoid mistakes when connecting components, which
could minimise the need of Electrical Rule Checking (ERC) tools.

Listing 4. Example of the basic manipulation operations.

1 NMOS = Component("nmos", [1, "INPUT", 3, "GND"])
2 Res = Component("res", [1, "GND"])
3 parallel = Parallel(Res, 3)
4 chain = Chain(NMOS, 3, in_port = 0, out_port = 2)

Although only a limited number of manipulations are already provided by the library,
users can use them to create and extend their own manipulation operations. The com-
ponents generated by a manipulation can be accessed and modified directly. This ease
of modification is handy to simulate process-induced variability or even to evaluate the
resilience of a system to faults or errors. Said faults can be injected, as an example, into a
list of components and their behaviour can be measured. In the Listing 5, the manipulation
Inject receives a chain of components and a probability of defect injection. For each
component in the chain it has a chance of generating the desired defect and connecting it to
the output of the component. We can also see in this example how the Inject and Chain
manipulation can be concatenated to produce the desired circuit.

Listing 5. Example of defect injection in a chain of 7 transistors.

1 class Inject(Manip):
2 def __init__(self, comps, p = 0.5, defect = None):
3 super(Inject, self).__init__()
4 defect = defect or Component("Res", ["", "GND"], {"R": 1e4})
5 for comp in comps:
6 if random.random() <= p:
7 # Inject the defect and reconect
8 self.children.append(defect @ [comp.ports[-1], "GND])
9 self.children.append(c)

10

11 chain_defects = Inject(Chain(mosfet, 7), p = 0.7)

Another useful manipulation is the Array, which that allows instantiating components
in a 1D or 2D array and their connections can be updated dynamically trough their coor-
dinates, as it is shown in the Listing 6. This array generation utility can be of great use
to create crossbar arrays, two-dimensional CMOS sensors and Micro Electro-Mechanical
Systems (MEMS) matrix that contain a very large number of components.

Listing 6. Example of 2D crossbar array. The size of the array is determined by the arr_size variable.

1 mem = Component('MEM', ['P', 'N'])
2

3 def callback(coords):
4 "Custom Instances depending on the array coordinates"
5 x, y = coords
6 return mem.inst([f'WL_{x+1}', f'BL_{y+1}'])
7

8 array_size = (3, 4)
9 arr = array(array_size, mem)

10 netlist.add(arr.flatten())

The previous code results in the following netlist. We can see that the array dimensions
is parametrized and we can quickly create very large 1D or 2D arrays.
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M1 (WL_1 BL_1) MEM
M2 (WL_1 BL_2) MEM
M3 (WL_1 BL_3) MEM
M4 (WL_1 BL_4) MEM
M5 (WL_2 BL_1) MEM
M6 (WL_2 BL_2) MEM
M7 (WL_2 BL_3) MEM
M8 (WL_2 BL_4) MEM
M9 (WL_3 BL_1) MEM
M10 (WL_3 BL_2) MEM
M11 (WL_3 BL_3) MEM
M12 (WL_3 BL_4) MEM

Both 2D and 1D arrays are very easy to implement with this framework due to the
expressiveness of Python. The following examples shown in Listing 7 illustrate how easy
it is to implement a chain and a matrix of components just by exploiting the list compre-
hensions or for loops. The matrix of size n × m is generated using only two lines. While
this example is intentionally simple, it can be more complex for example by providing
different parameters depending on the position of the component in the matrix or chain.
These type of modular circuits can be easily created since they be mapped from a math-
ematical construct, like vectors, arrays or recursive formulas, directly into programming
constructs like loops or lists, that can then be shortened through Python expressions, like
lists comprehension.

Listing 7. Example of a matrix and component chain generation using list comprehensions.
1 # Matrix generation
2 coords = itertools.product(range(n), range(m))
3 matrix = [comp.new([x, y]) for x, y in coords]
4

5 # Chain generation
6 pairs = itertools.pairwise(range(n)) # [(0,1), (1, 2), ...]
7 chain = [comp.new([f,s]) for f,s in pairs]

It is this direct mapping from mathematical to programming constructs that allow
generating large number of parametric components very easily. This means that the
weakness of this framework lies on circuits that cannot described easily with loops or by
composition of basic blocks and it does not offer any advantage over the usual CAD tools.
But in this case we can argue that is infeasible to create a tool for the automatic generation
of a non modular or reusable circuit.

To allow for reusable designs and more complex logic, multiple components can be
grouped inside a subcircuit, just like SPICE subcircuits. Subcircuits can be fixed so that
no more components can be added. This can be used to stop the addition of components
in a loop based on logical tests. Once a subcircuit has been defined, it can be used as a
component and thus the manipulation primitives can be applied. The components and
subcircuits created can be grouped inside a Circuit. A circuit behaves very similarly to a
SPICE netlist and can be then converted into a subcircuit to be used in other designs. This
is the one of the main interfaces for code re-usability and modular designs.

4.3. Exporting Elements

All the elements created can be exported to text files so that they can be shared between
different utilities or read back in a later future. Moreover, this framework provides an
interface to export the elements to different file formats that users can extend to create
their desired exporters. This process makes the framework simulator agnostic, as the same
design can be exported to different simulators just by using different Exporters as it is
shown in the Listing 8. Furthermore, users are not only bounded to simulators as the
different components and nets can be exported to other kind of file formats for analysis.
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Listing 8. Example exporting a design into a file.

1 exporter = CustomExporter()
2 exporter.dump(circuit)
3 # Or directly to a file
4 exporter.dump_to_file("/path/to/file")

4.4. Circuit Examples

This tool has been used to create the circuits used in the study [20]. A ring oscillator
is a chain of inverters, designed normally as shown in Figure 1, that oscillates when an
input signal is applied to the first inverter in the chain due to the gate delay. Multiple of
this ring oscillators can be connected to multiplexers that allow the selection of a pair of
ring oscillators. The output signal of the multiplexer can be fed to a counter to measure the
oscillation frequency of the ring oscillators.

Figure 1. Schematic of a ring oscillator physical unclonable function.

In the Listing 9, it is shown a detailed example, where the number of inverters per
ring oscillator and the total number of chains are determined by the N_RO_PER_CHAIN and
N_CHAINS variables, respectively. The number of inputs of the multiplexer can be defined
dynamically also from the N_CHAINS variable. The Counter component has been created
in Verilog-A.

Listing 9. Example of creating the ring oscillator chains.

1 reader = VerilogAReader()
2 VCounter = reader.load("/path/to/counter.va")
3

4 # Define the size of the Ring Oscillator
5 N_RO_PER_CHAIN = 5
6 N_CHAINS = 3
7

8 # Dynamic generation of the multiplexer
9 MUX = Subcircuit("MUX", [f"IN_{d}" for d in range(N_CHAINS)] + ["Sel", "OUT"], {})

10

11 INV = Subcircuit("INV", ["in", "out"], {})
12 # Components can be added by using the += operator
13 INV += Mosfet(["out", "in", GND, GND], name="nmos")
14 INV += Mosfet(["out", "in", VDD, VDD], name="pmos")
15 inv = INV @ ["in_chain", "1"]
16

17 chain = Circuit()
18 chain += NamedChain(inv, N_RO_PER_CHAIN, out_name="OUT")
19 ro_chain = chain.into_subckt("RO_CHAIN", ["in_chain", "OUT"], {})
20

21 chains = Chain(ro_chain @ ("INPUT", "OUTPUT"), N_CHAINS)
22 netlist += chains
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23 nodes = []
24 for comp in chains:
25 nodes.append(comp.nodes)
26

27 counters = Parallel(VCounter([""]), N_CHAINS)
28 for i, comp in enumerate(counters):
29 comp @= nodes[i][-1]
30

31 netlist += counters

As it has been said before, the framework is not limited to basic HDL components.
Any kind of component that is valid in SPICE can be created with this framework. As an
example, the BSIM Common Multi-Gate Model (BSIM-CMG) http://bsim.berkeley.edu/
models/bsimcmg/ (accessed on 12 September 2023) which allows FinFET to be modelled,
can be used directly by many SPICE simulators, even if the model is described in Verilog-A.
The component, called bsimcmg_va, needs to be created in the Python code to instantiate
FinFET transistors, as the Listing 10 shows.

Listing 10. FinFET component through the BSIM-CMG model.

1 FinFet = Component("bsimcmg_va", ["d", "g", "s", "e", "t"])

Other type of circuits that could benefit from this framework are Analogue to Digital
Converters (ADC) and Digital to Analogue Converters (DAC).

5. Discussion

The framework described here is a powerful interface between Python and SPICE. It
can be used as the basis to implement more complex methodologies such as prototyping,
design optimisation and variability simulations. Other advantages of using Python to
generate netlists is the speed improvement, as compared to generating the circuit by
hand. The framework does not impose any time overhead as it can be seen from the next
benchmark. The framework is able to create create 1 million instances in approximately 4 s
and the SPICE netlist itself can be exported in less than 2 s as it can be seen from the results
of a benchmark in Figure 2.

Figure 2. Benchmark for the generation of Inverter chains. X axis in logarithmic scale.

These benchmarks were performed on a ASUS ZenBook (Intel® Core™ i5-8250U
processor 1.6 GHz Quad-core, 8 GB RAM DDR3 sourced from ASUS, Madrid, Spain).
The graph from the benchmark shows that the initial time complexity of the generation
of components is linear. However, the time complexity of the circuit generation is heavily

http://bsim.berkeley.edu/models/bsimcmg/
http://bsim.berkeley.edu/models/bsimcmg/
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dependent on the circuit itself. If components are simply instantiated directly in the circuit,
the time complexity is O(n). If every instance needs to run a specific calculation of each
instance (e.g., unique parameter values) the time complexity can quickly increase. However,
due to the nature of most test circuits, the timing overhead of this tool should be negligible,
specially when iterating multiple times since most transient simulations can take minutes
or even hours to finish.

Moreover, we have at our disposition all the tools provided by a fully fledged program-
ming language, so the generated circuit can be debugged and formalized programatically,
whereas in the case where the netlist is created by hand, it needs to be checked and corrected
for every modification.

This framework allows us to create subcircuits or certain instances from another tool
(e.g., Cadence), parsing already created circuits from netlists, modify them in place (for
example to perform process variability simulations) or extend them by creating the circuit
depending on a user defined configuration (e.g., macro compilers for SRAM, MACs, chains,
etc). As such, it was not designed to substitute the commercially available CAD tools, rather
boost the designer productivity by easing the process of working with modular circuits.

This framework has been used successfully for memristive-based computing in-
memory [21] in order to find the best configuration of size and voltage.

Future works will include the automatic generation of layouts, in different formats
and technology nodes. Moreover, tools like AGS [22] and N2S [23] can be coupled with
this framework to create schematics from the generated netlist.

6. Conclusions

The framework proposed in this article provides tools focused on fast design space
exploration and modular and re-usable electronic designs. Electronic circuits are modelled
through the use of Python objects that allow for easy manipulation and quick iteration
cycles. The examples provided above show how the framework excels at generating
modular architectures and can adapt to multiple technologies and devices. Moreover,
the electrical components can be imported from a plethora of file formats and the designs
can be exported to various SPICE formats suitable for any available simulator.
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