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Abstract: Skeleton-based human action recognition aims to recognize human actions from given
skeleton sequences. The literature utilizes fixed-stride sampling and uniform aggregations, which
are independent of the input data and do not focus on representative motion frames. In this paper,
to overcome the challenge of the fixed uniform aggregation strategy being unable to focus on
discriminative motion information, a novel non-uniform motion aggregation embedded with a graph
convolutional network (NMA-GCN) is proposed for skeleton-based human action recognition. Based
on the skeleton quality and motion-salient regions, NMA is able to focus on the discriminative
motion information of human motion-salient regions. Finally, the aggregated skeleton sequences are
embedded with the GCN backbone for skeleton-based human action recognition. Experiments were
conducted on three large benchmarks: NTU RGB+D, NTU RGB+D 120, and FineGym. The results
show that our method achieves 93.4% (Xsub) and 98.2% (Xview) on NTU RGB+D dataset, 87.0%
(Xsub) and 90.0% (Xset) on the NTU RGB+D 120 dataset, and 90.3% on FineGym dataset. Ablation
studies and evaluations across various GCN-based backbones further support the effectiveness and
generalization of NMA-GCN.

Keywords: human action recognition; skeleton modality; frame sampling; motion salient region;
motion aggregation

1. Introduction

Human action recognition is one of the most important tasks in the field of computer
vision, and has a wide range of applications in fields such as video surveillance, industrial
control, autonomous driving, and human–computer interaction [1–7]. Human actions can
be represented through various data modalities, such as RGB, depth, skeleton, infrared, etc.
Compared with traditional RGB data, skeleton data contains the positional information of
human skeleton joints, which is unaffected by background and lighting conditions. This
characteristic is better for constructing topological structures and dynamic spatiotemporal
representations. In addition, based on RGB images or depth information, 2D or 3D skeleton
data can be easily obtained through pose estimation algorithms or Microsoft Kinetics
devices [1,2]. Thus, the skeleton-based action recognition task has attracted much attention.

Existing skeleton-based action recognition tasks are primarily addressed by deep
neural network models, which include three dominant categories based on convolutional
neural network (CNN) [8–10], graph convolutional network (GCN) [11–13], and recurrent
neural network (RNN) [14–16] methods. GCN-based methods process skeleton data by
constructing a spatiotemporal skeleton graph based on the natural connection relationship
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of human joints, whereas CNN- and RNN-based methods respectively convert the skeleton
sequence data into a pseudoimage or vector sequence for processing. As is widely acknowl-
edged with the research community, informative frame sampling strategies are crucial for
action recognition tasks [17–19]. However, existing skeleton-based action recognition meth-
ods have primarily focused on designing more advanced model architectures to improve
recognition performance, overlooking the importance of frame sampling methods in action
recognition tasks.

Current human action recognition methods generally adopt a fixed aggregation strat-
egy for testing and training. Figure 1a,b shows two fixed temporal aggregation methods
taken from [13] and [20], respectively. For frame sampling in a video, the dominant ap-
proaches [21–23] adopt the uniform sampling strategy [20], which splits the video into
N segments and then randomly selects one frame from distinctive segments. For frame
sampling in a skeleton sequence, the typical approach is to obtain input skeleton sequences
by random cropping and interpolation [12,13]. However, human actions performed by
people with private habits may have varied motion speeds or distinctive dynamics, even
when they are performing the same actions. In addition, the information of each frame
is not uniform in the temporal dimension, meaning that the fixed aggregation strategy is
likely to ignore important information in the input data. Furthermore, the discriminative
movement phases associated with action categories are different and should not be treated
equally. Therefore, the purpose of this study is to design a novel aggregation method that
can adaptively select representative frames according to the confidence information and
motion distance, thereby improving the performance of skeleton-based action recogni-
tion. Figure 1c shows the core idea of our method, which is to select key frames based on
motion-salient regions.

Original Skeleton Sequence

(b) Uniform Sampling

(a) Random Crop + Interpolate

(c) Our method 

Cumulative motion function

frame index

motion accumulation

1

Figure 1. Comparison and visualization of distinctive temporal aggregation methods: (a) random
cropping and interpolation method [13], where subsequences are cropped from the original sequence
and interpolated to the given length (64); (b) uniform Sampling method [20], where each sequence
is split into N non-overlapping segments of equal length, a frame is randomly sampled from each
segment, and the frames are aggregated into a new subsequences; (c) our method, which splits
the sequence into N non-uniform segments based on motion-salient regions, after which the repre-
sentations of selected samples are learned and aggregated for effective human action recognition.

As mentioned above, selecting key frames is a critical issue in human action recog-
nition. Recent studies have adopted reinforcement learning to train agents with policy
gradient methods for selecting video frames [17,24–27]. AdaFrame [17] is a memory-
augmented LSTM with the aim of searching for frames to use over time; the model is
trained using the policy gradient method. Ocsampler [27] addresses the frame selection
problem by processing a whole video sequence at once, leading to a significant improve-
ment in efficiency while preserving accuracy. To avoid complicated training strategies,
other studies have proposed a differentiable and lightweight policy network as a video
frame sampler [18,19,28]. Scsampler [18] is a lightweight clip-sampling model capable of
identifying the most salient temporal clips in a long video. Arnet [19] uses a lightweight



Electronics 2023, 12, 4466 3 of 20

policy network to select optimal frame resolutions or even skip frames without losing any
accuracy. These methods improve the recognition performance of video action recognition
by the appropriate frame samplers.

Although the problem of video frame sampling has been studied extensively, limited
attention has been paid to the sampling method for skeleton sequences. In order to make the
model focus on more representative information in the skeleton sequence, Tang et al. [29]
proposed a deep reinforcement learning method for selecting a fixed number of key frames;
this approach gradually adjusts the selected frames according to the discriminability of
the current frame for action recognition and its relationship in the entire action sequences.
Shi et al. [30] designed a lightweight policy network for integration into a skeleton-based
action recognition model. The policy network can adaptively select the optimal number of
joints in the corresponding frame by calculating the features of a small number of joints
or directly eliminating the corresponding frame. Compared with the fixed aggregation
strategy, the aforementioned methods have achieved better results; however, they require a
more complex model training strategy. These inflexible sampling approaches are limited
by their fixed model architectures, and cannot be widely utilized in other skeleton-based
action recognition models.

To address the aforementioned challenges of skeleton frame sampling, in this paper
we propose a novel non-uniform motion aggregation embedded with graph convolu-
tional network (NMA-GCN) for skeleton-based human action recognition. The proposed
NMA-GCN consists of three components: a confidence-based refinement module (CRM), a
non-uniform motion sampling module (NMS), and a graph convolutional network (GCN)
backbone. Our key contribution is to design the non-uniform motion aggregation (NMA),
which consists of CRM and NMS. First, in order to address the skeleton noise problem, the
CRM is used to eliminate poor-quality frames according to the confidence information of
the skeleton joints. Then, by calculating the motion distance between adjacent frames and
constructing a cumulative motion distribution function, the NMS module is used for key
frame sampling and aggregation. Finally, the aggregated skeleton sequences are embedded
with the GCN backbone to predict the action categories. To verify the effectiveness of our
proposed NMA-GCN, we report experimental results on three large action recognition
datasets: NTU RGB+D [31], NTU RGB+D 120 [32], and FineGym [33]. Our experimental
results show that NMA-GCN achieves improved performance compared to CNN-based,
RNN-based, and GCN-based methods. Our main contributions are as follows:

(1) A novel non-uniform motion aggregation embedded with graph convolutional net-
work (NMA-GCN) is proposed for skeleton-based human action recognition, over-
coming the challenge of fixed uniform aggregation strategies being unable to focus on
the discriminative motion information of human actions.

(2) A non-uniform motion aggregation (NMA) consisting of CRM and NMS is designed
to discover the non-uniform importance of skeleton frames along the temporal dimen-
sion and aggregate key skeleton features based on motion-salient regions.

(3) The proposed NMA is embedded within a GCN backbone, providing a practical
framework for skeleton-based human action recognition. An ablation study and
extensive experiments are conducted on the NTU RGB+D, NTU RGB+D 120, and
FineGym datasets, demonstrating the effectiveness and generalization ability of the
proposed NMA-GCN method.

2. Related Works
2.1. Skeleton-Based Action Recognition

Skeleton data, which are more compact and lightweight, have recently become widely
used in human action recognition tasks. The deep learning methods used for skeleton-
based action recognition include three main streams: GCN-based methods, CNN-based
methods, and RNN-based methods.

GCN-based methods construct a human skeleton graph according to the natural
connection relationship of skeleton joints and bones, then use graph convolutional neural
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networks to learn the action dynamics and features. The pioneering work in this field
is the spatiotemporal graph convolutional neural network (ST-GCN) [11], which adopts
spatial graph convolution and temporal convolution to model spatial and temporal features,
respectively. Based on ST-GCN, other GCN-based methods such as two-stream adaptive
GCN (2S-AGCN) [12], spatiotemporal graph routing GCN (STGR-GCN) [34], multi-scale
unified spatiotemporal GCN (MS-G3D) [35], action–structure GCN (AS-GCN) [36], richly
activated GCN (RA-GCN) [37], GCN–hidden conditional random field (GCN-HCRF) [38],
feedback GCN (FGCN) [39], and channel-wise GCN (CTR-GCN) [13] have been proposed
to solve skeleton-based action recognition tasks. A number of works have adopted multi-
scale modeling to enhance spatiotemporal modeling capability. MS-G3D [35] is a decoupled
multi-scale aggregation scheme that seeks to eliminate the redundant dependencies of
node features between different neighborhoods, ensuring that the multi-scale feature
aggregator can effectively capture graph-level node information on human skeletons.
Other works have introduced attention mechanisms to enhance the spatiotemporal features.
2S-AGCN [12] is an adaptive graph convolutional network that adaptively learns the graph
topology of different GCN layers and skeleton sequence samples in order to better adapt
to the hierarchical structure of GCN. STGR-GCN [34] learns the importance of different
spatiotemporal connection graphs for graph fusion via the frame attention mechanism.

CNN-based methods first convert skeleton sequence data into 2D or 3D images us-
ing computer graphic methods or into heatmaps using image rendering generation tech-
nology, then utilize these converted representations for feature learning. Potion [40]
aggregates heatmap information from the same joint along the temporal dimension.
DynaMotion [41] converts stacked pose heatmaps into 2D pseudoimages using a learn-
able encoder. Considering that the process of generating 2D pseudoimages causes
a certain degree of information loss, PoseC3D [10] obtains 3D inputs by stacking
heatmaps along the temporal dimension, thereby retaining all the input information
during the transformation process while modeling with 3D CNN.

RNN-based methods are suitable for processing time series data due to their unique
structure. Therefore, various methods have applied and adapted RNN and Long Short-
Term Memory (LSTM) to model skeleton sequences, such as spatiotemporal LSTM
network with trust gates (Trust Gate ST-LSTM) [42], spatiotemporal attention LSTM
(STA-LSTM) [14], global context-aware attention LSTM (GCA-LSTM) [43], view adap-
tation LSTM (VA-LSTM) [44], spatial reasoning and temporal stack learning (SR-TSL) [15],
and attention-enhanced graph convolutional LSTM (AGC-LSTM) [16].

The aforementioned methods are dedicated to designing more advanced model struc-
tures. In contrast, we aim to design a plug-and-play aggregation method in order to
effectively select informative skeleton frames and aggregate the motion representation.

2.2. Frame Sampling and Representation Aggregation Methods

For human action recognition tasks, in addition to the network structure design, frame
sampling and representation aggregation are crucial, especially when dealing with large-
scale action datasets [17,24,29,45–47]. Temporal segment networks (TSN) [45] is a simple
and efficient uniform sampling method that is currently widely used in various deep action
recognition methods. However, the uniform sampling method considers each frame in the
video sequence to be equally important, and does not pay attention to more representative
input frames. Several works have adopted reinforcement learning to solve the problem of
sampling key frames [17,24,25,29,47].

In the paper [17] and its journal version [47], a conditional computation framework
(AdaFrame) was introduced for fast video recognition by selecting relevant frames with
the aim of searching for which frames to use over time. Tang et al. [29] proposed a deep
progressive reinforcement learning (DPRL) method for selecting key frames in skeleton
sequences. DPRL gradually adjusts the selected frames based on two factors, namely,
the quality of the selected frames and the relationship between the selected frames and
the whole video. In [24], an end-to-end deep reinforcement approach was proposed for
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classifying videos based on the fact that the information in video frames is not equally
distributed over time. The reinforcement learning-based approach for efficient spatially
adaptive video recognition (AdaFocus) [46] seeks to explore the spatial redundancy in
video recognition; results have shown that AdaFocus can improve computational effi-
ciency when used with lightweight CNNs. Instead of exploring network architectures,
Wu et al. [25] focused on a developing a multi-agent reinforcement learning-based sampler
that relies on a frame sampling strategy for effective untrimmed video recognition.

To avoid complex reinforcement learning training strategies, other works have consid-
ered a fully differentiable framework for frame sampling [18,19,30,48]. Scsampler [18] uses
an extremely lightweight network as the sampler to sample clips based on salience scores.
Meng et al. [19] proposed a novel and differentiable approach in which the optimal reso-
lution is selected for each frame, with the goal of improving both accuracy and efficiency.
Shi et al. [30] proposed a lightweight policy network to select the optimal number of skele-
ton joints, and solved non-differentiable problems by using the straight-through Gumbel
estimator [49] algorithm. Although the above methods have lead to improvements in the
action recognition task, they rely on complex training strategies and are difficult to gener-
alize to other domains. Zhi et al. [48] proposed a simple and explainable motion-guided
sampler (MGSampler) that does not depend on training data and is adaptable enough to
process various video contents; however, it is only applicable to RGB data.

Considering the drawbacks of the aforementioned methods, in this paper we design
a dynamic non-uniform motion aggregation method for skeleton data. By calculating
the motion distance between adjacent frames and constructing the motion cumulative
distribution function, our proposed non-uniform motion module is able to perform key
frame sampling and aggregation.

3. Methods

In this section, we describe the proposed novel non-uniform motion aggregation
embedded with graph convolutional network (NMA-GCN) for skeleton-based human
action recognition. As shown in Figure 2, NMA-GCN consists of three components: a
confidence-based refinement module (CRM), a non-uniform motion sampling module
(NMS), and a GCN backbone. The combination of the CRM and NMS modules makes up
the non-uniform motion aggregation (NMA), which can aggregate more representative
skeleton frames from the original skeleton sequence. First, CRM refines the skeleton
sequence by eliminating the poor quality skeleton frames. Then, NMS constructs the
cumulative motion distribution function by calculating the motion distance of each frame
to sample and aggregate the key skeleton frames. Finally, the aggregated skeleton sequences
are fed into the GCN backbone to predict the class scores. In the following subsections, we
explain these three components in detail.

T N

1

motion accumulation

frame index

motion distance

T

Non-uniform 

Motion Sampling 

Module (NMS)

Non-uniform 

Motion Sampling 

Module (NMS)

Confidence-based

Refinement Module 

(CRM)

Confidence-based

Refinement Module 

(CRM)

GCN BackboneGCN Backbone

Skeleton Sequence
Class Score

frame index

...

... ...

Q=0.85 Q=0.81 Q=0.86 Q=0.16 Q=0.15

... ...

Quality Evaluation Function

Non-uniform Motion Aggregation (NMA)

Figure 2. Overview of the proposed NMA-GCN. The key contribution is the design of a non-uniform
motion aggregation (NMA), which consists of a confidence-based refinement module (CRM) and
a non-uniform motion sampling module (NMS). The CRM refines the original skeleton sequence
based on the quality of the skeleton frames, while the NMS module constructs cumulative motion
distribution functions to select key frames.
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3.1. Confidence-Based Refinement Module (CRM)

The skeleton-based human action recognition task takes human skeleton sequences
as input data. Due to issues such as occlusion and estimation algorithm errors, skeleton
data quality varies greatly between frames, whether 3D skeleton pose data captured by a
Kinetics camera or 2D skeleton pose data from a pose estimation algorithm. Poor quality
skeleton data not only affects the recognition performance of the model, it creates difficulty
for skeleton frame sampling methods that are based on motion-salient regions. To address
this problem, we propose the use of a confidence-based refinement module (CRM). The
purpose of the CRM is to discover and remove a whole skeleton frame with poor quality
in order to refine the original skeleton sequences for non-uniform motion representation
aggregation. Specifically, the CRM calculates the quality score of each skeleton frame based
on the confidence value of the skeleton joints, then eliminates the skeleton frames with
lower quality scores.

For a given input skeleton sequence X0 ∈ RT0×V×C, where T0, V, and C respectively
denote the number of frames of the raw skeleton sequence, the number of joints, and the
dimension of the joints, for the i-th joint in t-th frame, the 2D skeleton data obtained from
the pose estimator can be represented as coordinate triplets (xi

t, yi
t, ci

t), where (xi
t, yi

t) is the
coordinate information of the joint and ci

t is the confidence information of the joint. In
this paper, 2D skeleton data are used as input and the confidence information of the 2D
skeleton data is used to calculate the quality score of each frame to evaluate the quality
of the skeleton frame. Then, the input skeleton data are refined by removing low quality
frames. The quality score of each skeleton frame Qt is obtained from the quality evaluation
function fq, which can be formulated as follows:

Qt = fq(ct) = 1/V
V

∑
i=1

ci
t (1)

where Qt ∈ [0, 1] represents the quality score of the t-th frame and ct = {c1
t , c2

t , . . . , ci
t, . . . , cV

t }
∈ RV×1 represents the confidence vector of the t-th frame. Here, we use the mean function
as the quality evaluation function. Specifically, the mean of the confidence value of each
joint in a single skeleton frame is taken as the quality score of the corresponding frame.

The visualization of skeleton frames and their quality scores is shown in Figure 3. The
skeleton frames with lower quality scores are highlighted in red and bolded. For the action
category “Falling”, the skeleton frames that have high quality scores are informative and
representative for the intrinsic dynamic of action categories, which is useful for feature
learning. It can be seen that skeleton frames with low quality scores, such as Qt < 0.2, have
large estimation errors. In addition, poor quality frames make it difficult to recognize the
specific human shape, which may cause interference during model training.

Temporal Dimension

Falling

Q1 = 0.85 Q19 = 0.84 Q25 = 0.85 Q26 = 0.86 Q29 = 0.80 Q50 = 0.16 Q51 = 0.15 Q60 = 0.54

Figure 3. Visualization of skeleton frames and their quality scores. Lower quality scores (Qt < 0.2) are
indicated in red, and it can be observed that corresponding skeleton frames are difficult to recognize
the specific human poses.
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Based on the obtained quality scores, skeleton frames with quality scores greater than
the threshold θ are retained:

M(Qt) =

{
1, if Qt > θ

0, otherwise
(2)

where M(Qt) is a binary mask. Binary masks are commonly used to select the informative
parts from the input features, as in [50,51]. Unlike these previous studies, however, here
we adopt a threshold hyperparameter to generate a binary mask to ensure the selection of
meaningful skeleton frames. Specifically, the t-th frames are pruned when M(Qt) = 0 and
retained when M(Qt) = 1.

After processing by the CRM, the refined skeleton sequence X ∈ RT×V×C is obtained,
where T < T0 denotes the number of frames in the refined skeleton sequence. Then, the
generated skeleton data are sent as new input to the subsequent sampling module for key
frame sampling and aggregation.

3.2. Non-Uniform Motion Sampling (NMS) Module

Existing skeleton-based action recognition methods typically use random cropping
and interpolation to obtain a fixed-length skeleton sequence as input to the model. However,
because the importance of each frame of the skeleton sequence is not uniform along the
temporal dimension, using input-independent sampling methods may lead to important
motion information being ignored. Therefore, we propose the use of a non-uniform motion
sampling (NMS) module to select informative frames by focusing on the more salient
part of the motion information in the skeleton sequences. In this module, the cumulative
motion distribution function of the skeleton sequences is designed for dynamic frame
sampling and aggregation.

The NMS module aims to generate a final skeleton sequence of length N from the
refined skeleton sequence X ∈ RT×V×C obtained by the CRM. To enable this module to
pay more attention to the more salient part of the skeleton sequence, it is first necessary to
calculate the motion distance St of each frame. The motion distance St is used to measure
the magnitude of motion at the corresponding moment; more salient motion corresponds
to larger St and vice versa.

In this paper, considering that the Euclidean distance between human joints has been
widely used to analyze human poses and as the motion feature [52–54], we calculate the
motion distance St based on the Euclidean distance. By first calculating the Euclidean
distance between the same joint in adjacent frames, the motion distance of a single joint
can be obtained. This process can be formulated as follows:

Si
t =

√(
xi

t − xi
t−1
)2

+
(
yi

t − yi
t−1
)2 (3)

where Si
t represents the motion distance of the i-th joint in the t-th frame and xi

t and yi
t

represent the horizontal and vertical coordinate values of the i-th joint in the t-th frame,
respectively. After obtaining the motion distance of a single joint, the motion distances of all
joints in a frame are summed to generate the overall motion distance at the corresponding
frame. In addition, considering that the estimation error of the skeleton data may have a
negative effect on the motion distance calculation, we introduce the average confidence
value of the adjacent frame joints based on Equation (3), formulated as follows:

St =
V

∑
i=1

(
Si

t ×
ci

t + ci
t−1

2

)
(4)

where St represents the overall motion distance of the t-th frame.
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Figure 4 shows the motion distance distribution of three actions. It can be seen that
the distribution of the different actions has a large difference, resulting in discriminative
information for action recognition. This shows that the calculation of motion distance based
on the Euclidean distance is feasible. For the first action (“reading”), the whole movement
is not obvious. Therefore, there is little difference in the motion distance at different frames.
For the other two actions (“punching/slapping other person” and “hugging other person”),
the motion distance varies greatly at different stages of the whole action. The regions with
greater variability of motion distance are critical stages of the action and contain more
discriminative information, which is beneficial for action recognition. As a result, more
attention should be paid to those regions in the skeleton sequence where the motion is
more salient.

Action 1: Reading Action 2: Punching/slapping other person Action 3: Hugging other person

Figure 4. The motion distance distribution of three actions: “reading” (left), “punching/slapping
other person” (middle), and “hugging other person” (right).

The cumulative motion distribution function can be constructed by normalizing the
motion distance calculated from Equation (4) and then accumulating it along the temporal
dimension, which can be formulated as follows:

T

∑
t

S̃t = 1 (5)

where S̃t represents the normalized motion distance. In order to further control the smooth-
ness of the cumulative motion distribution function, we introduce the smoothness hyper-
parameter µ to adjust the original cumulative motion distribution, as in [48]. The smaller
the value of µ, the smoother the cumulative motion distribution curve. The calculation of
the normalized motion distance S̃t can be described as follows:

S̃t =
(St)µ

∑T
i=1(Si)

µ
(6)

The cumulative motion distribution function of two different actions are shown in
Figure 5. Compared to Figure 4, it can be seen that a larger slope of the curve indicates
more salient motion in the corresponding frame. It can be observed that the cumulative
motion distribution curve of the two actions are quite different, which provides good
discriminative information for action recognition. In addition, it can be seen that a lower
value of µ results in a more uniform motion distribution. This allows the smoothness of the
cumulative motion distribution curve to be controlled.

In addition, the final cumulative motion distribution function is obtained based on both
joint and bone modalities. The method of obtaining the cumulative motion distribution
function is approximately the same for both modalities; the only difference lies in the
process of calculating the motion distance in Equation (4). For the joint modality, the
motion distance is used to directly calculate the Euclidean distance of the joints in adjacent
frames based on Equation (4). For the bone modality, the bone vector is first calculated
based on the natural connectivity of the human body, then the Euclidean distance of
the bone vector is calculated for the adjacent frames. Taking the motion of the human
upper arm as an example, the upper arm is located between the elbow and the wrist; the
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wrist joint point and the elbow joint point are defined as wt and et, respectively, and the
corresponding two-dimensional coordinates are (xw

t , yw
t ) and (xe

t , ye
t). The arm vector ut is

first calculated according to the human connection relationship, then the motion distance
of the bone modality is calculated based on the arm vector of adjacent frames. This can be
formulated as follows:

ut = wt − et = (xw
t − xe

t , yw
t − ye

t) (7)

St = |ut − ut−1| (8)

where ut and ut−1 represent the arm vectors at frame t and frame t − 1, respectively,
while || represents the modulo operation. It can be seen that the motion distance calculated
based on the joint is the absolute motion distance, while the motion distance calculated
based on the bone vector is the relative motion distance. Combining the cumulative motion
distribution function of the two modalities can better reflect the corresponding motion
characteristics compared to using either modality alone.

Action 1: Punching/slapping other person Action 2: Hugging other person

Figure 5. The cumulative motion distribution with different values of µ of two actions: “punch-
ing/slapping other person” (left) and “hugging other person” (right).

Finally, according to the cumulative motion distribution function, two strategies are
proposed, namely, slope sampling and cumulative sampling. As shown in Figure 6, the
slope sampling strategy directly samples the most salient region of the motion. More
specifically, the slope sampling strategy generates N temporal segments based on the slope
of the cumulative motion distribution function, then randomly samples frames from each
segment. The cumulative sampling strategy generates N temporal segments by evenly di-
viding the cumulative motion distribution function and then randomly sampling one frame
in each segment. The cumulative sampling strategy generates N temporal segments by
evenly dividing the cumulative motion distribution function and then randomly sampling
one frame in each segment. Afterwards, the selected frames are aggregated to produce the
final skeleton subsequence.

The skeleton sequences obtained according to the NMS module are fed into the GCN
backbone to predict the action categories.
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Frames

(a)cumulative sampling

Frames

(a)cumulative sampling (b)slope sampling

Frames

Cumulative Motion Cumulative Motion

Figure 6. Two different sampling strategies based on the cumulative motion distribution function:
(a) the cumulative sampling strategy divides the skeleton sequence into N segments based on the
same cumulative motion of each segment, then randomly samples frames from each segment; (b) the
slope sampling strategy divides the skeleton sequence into N segments based on the slope of the
cumulative motion distribution function, then randomly samples frames from each segment. Blue
and green arrows indicate the temporal segments divided by the two sampling strategies, respectively.

3.3. GCN Backbone

GCN-based models have been widely used in skeleton-based human action recogni-
tion, where they have seen significant progress. It is important to note that the architectural
design of the backbone is not the main contribution of our method. The GCN backbone
used in our method can be replaced by any other GCN-based network, such as [13,55]. In
this section, we use the representative GCN backbone (ST-GCN [11]) to process the skeleton
sequences aggregated by the proposed NMA.

ST-GCN utilizes stacked N blocks to process the skeleton data, while each ST-GCN
block consists of a spatial graph convolution (GCN) module and a temporal convolution
(TCN) module. The GCN module adopts a learnable topological graph defined on the
spatial dimension for spatial feature fusion. The TCN module extracts the temporal
features using 1D convolution (kernel size 9) on the temporal dimension. For a given input
Xin ∈ RV×D, where D denotes the feature dimension, the GCN modulecan be formulated
as follows:

GCN(Xin) =
K

∑
k=1

(AkXin)Wk (9)

where Ak ∈ RV×V denotes the coefficient matrix derived from a predefined joint topology,
K denotes the number of matrices, and Wk is a learnable weight matrix. In addition, the
residual connection is applied to each ST-GCN block. The computations of the ST-GCN
block can be summarized as follows:

Xout = TCN(GCN(Xin)) + Xin (10)

where Xout denotes the output feature of the ST-GCN block. Afterwards, a global pooling
layer is applied to the resulting tensor to obtain the high-level feature vectors. Finally,
the SoftMax classifier maps the feature vectors to the probability scores of K candidate
action categories.

4. Experiments

In this section, we describe the extensive experiments conducted to evaluate the
effectiveness of the proposed NMA-GCN. First, the datasets and implementation details
are introduced. Then, we describe the exhaustive ablation studies performed on the NTU
RGB+D dataset [31]. We further demonstrate the generalization of the proposed NMA with
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distinctive backbones. Finally, we compare our NMA-GCN with state-of-the-art methods
on three widely used datasets.

4.1. Datasets

We conducted experiments on three public action recognition datasets: NTU RGB+D [31],
NTU RGB+D 120 [32], and FineGym [33]. Following convention, we report the Top-1 accuracy
for NTU RGB+D and NTU RGB+D 120 and the mean Top-1 accuracy for FineGym.

The NTU RGB+D dataset was captured by Microsoft’s second-generation Kinect
camera. The content includes three types of actions: daily, health-related, and two-person
interactions. Each sample contains four modalities: RGB, depth map, 3D skeleton, and
infrared sequence. The NTU RGB+D dataset was collected in 2016; it contains 60 action
categories and 57,000 video samples. The NTU RGB+D dataset has two recommended
settings. (1) The cross-subject (Xsub) benchmark includes 40,320 samples for training and
16,560 for evaluation; in this setting, as introduced in reference [13,31], the dataset is split
into training and testing sets according to 40 subjects, with half of the subjects used for
training and the rest for testing. (2) The cross-view (Xview) benchmark contains 37,920
samples for training and 18,960 videos for evaluation; as introduced in reference [55,56],
the training samples in this set come from camera views 2 and 3, while the evaluation
samples are all from camera view 1. We report the top-1 accuracy on both benchmarks.

The NTU RGB+D 120 dataset is an extended version of NTU RGB+D dataset which
was proposed in 2019. The NTU RGB+D 120 dataset contains 120 action classes and 114,000
video samples. The NTU RGB+D 120 dataset has two recommended settings. (1) In the
cross-subject (Xsub) benchmark setting, as introduced in reference [32,35], 106 subjects are
split into training and testing groups, with each group consisting of 53 subjects. (2) In
the cross-setup (Xset) benchmark setting, as introduced in [6,56], the dataset is split into
training and testing sets based on the camera setup ID, with the even-numbered IDs used
for training and the odd-numbered IDs for testing. We report the Top-1 accuracy for both
benchmarks.

The FineGym dataset is a fine-grained action recognition dataset containing 29,000
video samples of 99 gymnastics action classes, 23,000 videos for training, and 6000 videos
for testing. The gymnastics video samples collected in FineGym dataset have strong
similarity in terms of background information, which can help to prevent the model solving
classification tasks by learning information that is unrelated to actions.

4.2. Implementation Details

We implemented the proposed NMA-GCN using the PYSKL [57] toolbox. All experi-
ments were performed on a server with an Intel Xeon Platinum 8160Ts CPU and NVIDIA
GeForce RTX 3090Ti GPUs. In our experiments, multiple GCN-based backbones were
adopted to verify the effectiveness of our method. For all datasets, N = 100 frames were
sampled from each skeleton sequence and then used as input. The networks were trained
for 80 epochs using a stochastic gradient descent (SGD) optimizer with a Nesterov mo-
mentum of 0.9 and weight decay of 0.0005. The batch size and initial learning rate were
set to 32 and 0.1, respectively.

In terms of data preprocessing, we obtained the skeleton data following [10]. HRNet [58], a
2D pose estimator pretrained on the COCO [59] dataset, was adopted to extract 2D skeleton data.
Using HRNet, 2D pose information (x, y, c) was generated from a skeleton frame, where (x, y)
represents the two-dimensional coordinate information of the joints and c is the confidence
information of the corresponding joints.

4.3. Ablation Study

To verify the effectiveness of each module of the proposed NMA-GCN and evaluate the
hyperparameters, ablation experiments were conducted using the ST-GCN [11] backbone
on NTU RGB+D [31] dataset with the Xsub setting.
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4.3.1. Effectiveness of the Threshold Hyperparameter θ

The proposed confidence-based refinement module (CRM) addresses the skeleton
noise problem by eliminating poor quality frames; the threshold hyperparameter θ de-
scribed in Equation (2) is used to control the quality of the retained skeleton frames. The
skeleton frames are removed when their quality score is smaller than θ, with θ = 0 meaning
that no frames are deleted.

We performed ablation experiments on the CRM module with different values of θ; the
results are shown in Figure 7. It can be seen that θ = 0.2 achieves the best result, and is able
to improve performance from 88.7% to 89.9%, an improvement of 1.2%, which confirms
the effectiveness of CRM for skeleton-based action recognition. Furthermore, the CRM
module yields much worse performance when θ is greater than 0.4. The main reason for
this is that a larger value of θ causes a large amount of frames to be removed, resulting in
the destruction of the complete motion process. Unless otherwise specified, we use θ = 0.2
in all of the following experiments.

Figure 7. Performance comparison of different values of θ on the NTU RGB+D (Xsub) benchmark.

4.3.2. Effectiveness of the Smoothness Hyperparameter µ

The non-uniform motion sampling (NMS) module is the core component of the pro-
posed NMA. It selects the frames which contain more discriminative motion information.
As shown in Figure 5, the smoothness hyperparameter µ described in Equation (6) is used
to control the smoothness degree of the cumulative motion distribution function.

To investigate the influence of the hyperparameter µ, we performed ablation exper-
iments on different µ values; the results are reported in Table 1. When µ = 1.0, the
cumulative motion distribution function remains the same as in the original distribution.
It can be seen that the original NMS module (µ = 1.0) improves performance from 88.7%
to 89.7%. In addition, µ = 0.5 achieves the best result by a margin of 2.8%, indicat-
ing the effectiveness of NMS. Unless otherwise mentioned, we set µ = 0.5 in all of the
following experiments.

Table 1. Performance comparison of different values of µ on the NTU RGB+D (Xsub) benchmark.

Method µ Top1 (%)

ST-GCN [11] − 88.7
0.2 89.1

ST-GCN+NMS (Ours) 0.5 91.5
1.0 89.7
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4.3.3. Ablation Experiment on the CRM and NMS Modules

In this section, we describe the ablation experiments conducted to separately investi-
gate the effectiveness of each component of the proposed NMA. As shown in Table 2, the
recognition accuracy of the ST-GCN model without CRM or NMS is 88.7%. We separately
added CRM and NMS to the baseline, obtaining recognition accuracies of 89.9% (1.2%
improvement) and 89.3% (0.6% improvement), respectively. The low improvement with the
NMS module may be due to the fact that poor quality frames generate incorrect cumulative
distribution functions for key frame sampling. Finally, the combination of CRM and NMS
boosts recognition accuracy to 91.5%, demonstrating the effectiveness and complementarity
of the two modules.

Table 2. The respective impacts of the two modules on the NTU RGB+D (Xsub) benchmark.

Method CRM NMS Top1 (%)

ST-GCN [11]

88.7
X 89.9 (+1.2)

X 89.3 (+0.6)
X X 91.5 (+2.8)

4.3.4. Evaluation of NMA and Comparison

The proposed non-uniform motion aggregation (NMA) is the main contribution of
our work, consisting of the CRM and NMS modules together. Here, we use “NMA-GCN”
to denote NMA embedded within the ST-GCN backbone. To verify the effectiveness of
the proposed NMA, we conducted a comparison and evaluation of different sampling
strategies. We compared our NMA with two sampling strategies: (1) fixed stride sampling:
a subsequence of N frames with a fixed stride is randomly selected from the original
skeleton sequence; (2) uniform sampling: a subsequence of N frames is sampled uniformly
along the temporal dimension.

As shown in Table 3, the results show that NMA with the cumulative sampling
strategy outperforms fixed stride sampling and uniform sampling by 3.3% and 2.8%,
respectively, indicating the effectiveness of selecting frames with more discriminative
motion information. It can be observed that the proposed slope sampling strategy results
in worse performance compared to the cumulative sampling strategy. This experimental
result demonstrates that the proposed cumulative sampling strategy is more capable of
handling the motion variations and capturing the complete motion process. Thus, the
proposed NMA with the cumulative sampling strategy was adopted in all subsequent
experiments.

Table 3. Performance comparison of different sampling strategies on the NTU RGB+D (Xsub) benchmark.

Method Sampling Strategy Top 1 (%)

ST-GCN [11] fixed stride sampling 88.2
uniform sampling 88.7

NMA-GCN (Ours) slope sampling (Ours) 88.9
cumulative sampling (Ours) 91.5

4.4. Recognition Accuracy of Different Action Classes

To further study the performance improvement of different action categories con-
tributed by the proposed NMA-GCN as compared to ST-GCN [11], Table 4 shows the
recognition accuracy of the top ten action categories with the most significant performance
improvement compared to the ST-GCN baseline on the NTU RGB+D (Xsub) benchmark.
As shown in Table 4, as compared with the ST-GCN baseline, our NMA-GCN achieves
better recognition performance in all ten action categories. The accuracy improvements of
actions such as “clapping”, “saluting”, and “pointing to something with finger” all exceed
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10%. However, the recognition accuracy of actions such as “writing” and “reading” is
not as high as expected. The reason for this may be that the amplitude of these actions is
relatively small, preventing the proposed NMA based on the salient motion region from
performing optimally.

Table 4. Performance improvements on the top ten action categories with the most significant
performance improvement when using the proposed NMA-GCN on the NTU RGB+D dataset.

Top Ten Improved Action Classes ST-GCN (Baseline) NMA-GCN (Ours)

1. clapping 65.9% 87.9% (+22.0%)
2. salute 84.1% 97.5% (+13.4%)
3. pointing to something with finger 68.8% 79.7% (+10.9%)
4. taking a selfie 77.5% 87.3% (+9.8%)
5. rub two hands together 80.4% 89.5% (+9.1%)
6. put the palms together 87.0% 95.7% (+8.7%)
7. use a fan/feeling warm 81.8% 90.2% (+8.4%)
8. reading 48.0% 54.9% (+6.9%)
9. check time 85.5% 92.0% (+6.5%)
10. writing 51.8% 57.4% (+5.6%)

Furthermore, we present the normalized confusion matrix for the proposed method
on the NTU RGB+D (Xsub) benchmark in Figure 8. It can be seen that most of the actions
are accurately recognized, with confusion occurring mainly among two ambiguous actions,
namely, ”reading” and ”writing”. Due to the similarity between ambiguous actions and
spatiotemporal representations, recognition is challenging and results in confused misclas-
sification. The reason for this is that these inconspicuous actions lack body movement and
motion information, meaning that the advantages of our method are not applicable.

Normalized Confusion Matrix on NTU RGB+D (Xsub)

Figure 8. Normalized confusion matrix for the proposed method on the NTU RGB+D (Xsub) benchmark.

4.5. Ablation Study and Performance Comparison of Different Backbones

To further examine and demonstrate the generalization ability of our proposed NMA-
GCN, we applied NMA to different GCN-based backbones and performed comparative
experiments on the NTU RGB+D [31], NTU RGB+D 120 [32], and FineGym [33] datasets;
for the FineGym dataset, we report the mean Top-1 accuracy, while for the others we report
the Top-1 accuracy.

In this experiment, we chose ST-GCN [11], MS-AAGCN [55], and CTR-GCN [13] as the
backbones for comparison. As shown in Table 5, when employing our NMA, MS-AAGCN
achieves a 2.5% performance improvement on the FineGym dataset. On the Xsub setting of
the NTU RGB+D 120 dataset, the proposed NMA yields a 2.6% performance improvement
for ST-GCN. On the Xsub setting of the NTU RGB+D dataset, the proposed NMA yields a
2.8% performance improvement for ST-GCN. In addition, NMA is able to achieve higher
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performance improvements (at least 1.5%) on the FineGym and NTU RGB+D 120 datasets.
The main reason for this is that the action categories in these two datasets are more rich
and diverse. They have a large motion magnitude, making the strengths of our proposed
NMA method more advantageous.

Our ablation studies show that the proposed NMA can consistently improve action
recognition performance across different GCN-based backbones, demonstrating the gener-
alization ability of the proposed method.

Table 5. Performance improvements for different GCN-based backbones on the NTU RGB+D (Xsub),
NTU RGB+D 120 (Xsub), and FineGym datasets. In keeping with common practice, the Top-1
accuracy (%) is reported for the NTU RGB+D and NTU RGB+D 120 datasets, while the mean Top-1
accuracy (%) is reported for the FineGym dataset.

Methods Backbone FineGym
(%)

NTU RGB+D
120 (%)

NTU RGB+D
(%)

Baseline ST-GCN [11] 85.1 81.8 88.7
NMA-GCN (Ours) ST-GCN [11] 86.7 84.4 91.5

Baseline MS-AAGCN [55] 86.7 81.9 89.4
NMA-GCN (Ours) MS-AAGCN [55] 89.2 83.4 90.0

Baseline CTR-GCN [13] 88.5 82.2 90.4
NMA-GCN (Ours) CTR-GCN [13] 90.3 84.4 90.7

4.6. Comparison with State-of-the-Art Methods

The multi-stream modality fusion strategy has commonly been employed in previous
state-of-the-art methods [11–13,20,55,60]. In order to conduct a fair comparison, we fol-
lowed the same multi-stream fusion strategy as in [13,55]. Our model was trained on four
streams (joint, bone, joint motion, and bone motion) on the NTU RGB+D and NTU RGB+D
120 datasets. The joint stream used the original skeleton coordinates as input. The bone
stream used the differential of spatial coordinates as input. The joint motion stream and
bone motion stream used the differential of the temporal dimension of the corresponding
data as input. The score-level fusion strategy was adopted to obtain the fused score, which
was then used for prediction.

To verify the effectiveness of the proposed NMA-GCN, we conducted a comparison with
state-of-the-art alternatives on three large datasets. We choose GCN [13] as the neural network
backbone. Table 6 presents the experimental results on the NTU RGB+D and NTU RGB+D 120
datasets. Because the literature contains many different neural architectures, we compared
CNN-based, RNN-based, and GCN-based methods on the NTU RGB+D and NTU RGB+D
120 datasets. We followed the acknowledged experimental settings to demonstrate the
effectiveness of the proposed NMA-GCN. CNN-based methods transform the skeleton
sequence into pseudoimages. For instance, Caetano et al. [61] proposed tree structure
reference joints image (TSRJI), a skeleton image representation that combines the use of
reference joints and a tree structure skeleton. Ke et al. [62] proposed a method they termed
“Clips+CNN+MTLN”. This method transforms a skeleton sequence into clips, then uses
a CNN to extract the frame-level feature and a multi-task learning network to process all
frames jointly. RNN-based methods have the capacity to capture the dynamic dependencies
in sequential data [2]. Because the human skeleton is a natural graph structure, GCN-based
methods are widely used to process skeleton data; thus, we choose representative GCN-
based methods for comparison. In addition, more GCN-based methods were chosen for
comparison, as our proposed method falls under this category. The great ability of GCN
backbones and the effectiveness of our method are demonstrated by this comparison with
different neural network architectures.
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Table 6. Performance comparison, showing the Top-1 accuracy (%) of our proposed method and
existing state-of-the-art methods on the NTU RGB+D and NTU RGB+D 120 datasets.

Type Methods
NTU RGB+D NTU RGB+D 120

Xsub (%) Xview (%) Xsub (%) Xset (%)

CNN

TSRJI [61] 73.3 80.0 65.5 59.7
SkeleMotion [63] 76.5 84.7 67.7 66.9
Clips + CNN + MTLN [62] 79.6 84.8 58.4 57.9
RotClips + MTCNN [64] 81.1 87.4 62.2 61.8
Banerjee et al. [65] 84.2 89.7 74.8 76.9
3SCNN [66] 88.6 93.7 - -

RNN

Trust Gate ST-LSTM [42] 69.2 77.7 58.2 60.9
STA-LSTM [14] 73.4 81.4 - -
GCA-LSTM [43] 74.4 82.8 58.3 59.2
VA-LSTM [44] 79.4 87.6 - -
SR-TSL [15] 84.8 92.4 - -
AGC-LSTM [16] 89.2 95.0 - -

GCN

ST-GCN [11] 81.5 88.3 70.7 73.2
AS-GCN [36] 86.8 94.2 78.3 79.8
RA-GCN [37] 87.3 93.6 81.1 82.7
2s-AGCN [12] 88.5 95.1 79.2 81.5
GCN-HCRF [38] 90.0 95.5 - -
MS-AAGCN [55] 90.0 86.2 - -
FGCN [39] 90.2 96.3 85.4 87.4
AdaSCN [30] 90.5 95.3 85.9 86.8
Shift-GCN [56] 90.7 96.5 85.9 87.6

NMA-GCN (Ours) 93.4 98.2 87.0 90.0

As shown in Table 6, our proposed NMA-GCN achieves competitive results and is
able to generalize well across datasets. For instance, on both settings of the NTU RGB+D
dataset, the best recognition accuracy of our NMA-GCN is 93.4% and 98.2%, which is
significantly higher than CNN-based methods [64,66], RNN-based methods [16,43], and
other GCN-based methods [12,30,56]. On the NTU-RGB+D 120 dataset, our proposed
NMA-GCN outperforms the approach from [56] by 1.1% and 2.4% for the Xsub and
Xset settings, respectively. Furthermore, Table 7 illustrates the experimental results on
the FineGym dataset. Because the official FineGym dataset is only available in RGB
video, the methods using FineGym for experimental validation are mainly RGB-based
methods. Therefore, we chose skeleton-based, RGB-based, and multi-modality methods
for comparison. It can be seen that our method achieves competitive performance on the
FineGym dataset.

Based on the results of this comparison with existing state-of-the-art methods, our
proposed NMA-GCN can effectively improve skeleton-based human action recognition
performance and has good generalization ability.

Table 7. Performance comparison, showing the mean Top-1 accuracy (%) of our proposed method
and existing state-of-the-art methods on the FineGym dataset.

Methods Modality Mean Top-1 Accuracy (%)

ActionVLAD [67] RGB 50.1
I3D [68] RGB 63.2
TSN [20] RGB, Flow 76.4
TRN [69] RGB, Flow 79.8
TRNms [69] RGB, Flow 80.2
TSM [21] RGB, Flow 81.2
ST-GCN [11] Skeleton 85.1
RSANet [70] RGB 86.4
RGBSformer [71] RGB, Skeleton 86.7
MS-AAGCN [55] Skeleton 86.7
CTR-GCN [13] Skeleton 88.5

NMA-GCN (Ours) Skeleton 90.3
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5. Conclusions

In this work, we propose a non-uniform motion aggregation embedded within a
graph convolutional network (NMA-GCN) for skeleton-based human action recognition.
Compared with existing state-of-the-art methods, our proposed NMA-GCN improves
accuracy by 2.7% (Xsub) and 1.8% (Xview) on the NTU RGB+D dataset, 1.1% (Xsub) and
2.4% (Xset) on the NTU RGB+D 120 dataset, and 1.8% on the FineGym dataset. Based
on the results of this study, the proposed non-uniform motion aggregation can effectively
learn discriminative human motion representations from the salient information of skeleton
sequences, achieving improved recognition performance compared to fixed uniform aggre-
gation methods from the literature. Our ablation study demonstrates that the proposed
NMA-GCN is able to generalize well across various GCN-based backbones.

Furthermore, we believe that our NMA-GCN can be further improved through a
variety of means. Potential future work could involve extending the proposed method
from selecting informative skeleton frames to selecting informative skeleton joints. Another
potential future improvement could be to explore the information of the RGB modality
in order to compensate for the skeleton’s lack of fine-grained human–object interaction
recognition. In addition, we hope to improve our proposed NMA-GCN to reduce its
computational consumption for use in practical scenarios.
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