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Abstract: Quality assurance (QA) plays a crucial role in manufacturing to ensure that products meet
their specifications. However, manual QA processes are costly and time-consuming, thereby making
artificial intelligence (AI) an attractive solution for automation and expert support. In particular,
convolutional neural networks (CNNs) have gained a lot of interest in visual inspection. Next to AI
methods, the explainable artificial intelligence (XAI) systems, which achieve transparency and inter-
pretability by providing insights into the decision-making process of the AI, are interesting methods
for achieveing quality inspections in manufacturing processes. In this study, we conducted a system-
atic literature review (SLR) to explore AI and XAI approaches for visual QA (VQA) in manufacturing.
Our objective was to assess the current state of the art and identify research gaps in this context. Our
findings revealed that AI-based systems predominantly focused on visual quality control (VQC) for
defect detection. Research addressing VQA practices, like process optimization, predictive mainte-
nance, or root cause analysis, are more rare. Least often cited are papers that utilize XAI methods. In
conclusion, this survey emphasizes the importance and potential of AI and XAI in VQA across various
industries. By integrating XAI, organizations can enhance model transparency, interpretability, and
trust in AI systems. Overall, leveraging AI and XAI improves VQA practices and decision-making
in industries.

Keywords: XAI; AI; machine learning; deep learning; image processing; interpretability; explainability;
transparency; process optimization; root cause analysis; predictive maintenance; quality assurance;
quality control; quality inspection; Quality 4.0; manufacturing; industry; production

1. Introduction

In the present globalized economic era, the competition in the business world requires
that management teams of various organizations and businesses must constantly drive
along the quality route to outpace each other [1]. Monitoring and assessing the manufac-
turing process is an important factor for manufacturers to detect potential failures that may
lead to the degradation of the machinery of manufacturing of downgraded products and
thus assure a constant product quality [2]. To ensure that a product is defect-free before
leaving the factory, some type of quality assurance (QA) practices is necessary. Quality
control (QC) is a subset of QA and it is mostly used to assure quality in products. Artificial
intelligence (AI) can help manufacturers perform QA more accurately and cost-effectively
by automating QC [3]. Moreover, as the manufacturing industry seeks innovative QA
approaches, the emergence of paradigms such as Zero Defect Manufacturing (ZDM) is
gaining traction. ZDM represents a transformative approach aimed at eliminating defects
throughout the production process, thereby aligning with the broader industry’s pursuit of
superior quality and efficiency [4]. AI applications have made progress in solving the auto-
matic recognition of patterns in data by using machine learning (ML) and deep learning
(DL) methods. These AI-based systems not only streamline QC processes, but also have the
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potential to seamlessly integrate with evolving QA practices aimed at achieving the core
strategies of ZDM. Such integration enables manufacturers to perform QA more effectively
by harnessing AI’s capabilities for precise defect detection, process optimization, predictive
maintenance, and root cause analysis, all while reducing costs and enhancing overall prod-
uct quality. Data-driven decision making may influence meaningful productivity gains in
the industry sectors; however, for the stable deployment of AI-based systems and their
acceptance by experts and regulators, decisions and results must be comprehensible or
interpretable and transparent; in other words, they must be “Explainable” [5].

In recent years, explainable artificial intelligence (XAI) has emerged as a promising
solution to these challenges, thus providing transparency and interpretability to AI systems.
The goal of XAI is to help researchers, developers, domain experts, and users better
understand the inner operation of ML models while preserving their high performance
and accuracy. XAI methods seek to understand what the AI-based system discovered
during training and how decisions are made for specific or new occurrences during the
prediction process [6,7]. This can help to understand why predictions went wrong or why
ML achieves a specific result and how to leverage the result further. The survey paper of
Ahmed et al. [5] made a comparative study about AI and XAI in Industry 4.0 and discussed
studies about AI and XAI to assure quality. However, that study focuses mainly on pure
QC aspect, which is a subset of QA.

In this work, we systematically reviewed the state-of-the-art literature related to AI and
XAI for visual quality assurance (VQA) in the manufacturing area to investigate various
AI and XAI approaches and methods applied to different VQA practices and to explore to
what extent XAI has already been adopted in this field. To the best of our knowledge, this
is the first comprehensive survey that delves into the application of AI and XAI methods in
the context of VQA in manufacturing, thus encompassing a wide spectrum of practices,
including visual quality control (VQC), process optimization, predictive maintenance,
and root cause analysis. Prior research has already examined the use of AI for QA [5]
and even explored local explanations [8]; however, these studies have only encompassed
QC or predictive maintenance. Our survey distinguishes itself in two crucial aspects.
Firstly, it takes a broader perspective by spanning across various industrial sectors. Unlike
many existing surveys that are confined to a specific industry, our analysis aims to better
understand the use of AI and XAI in different industrial sectors, thereby providing a more
comprehensive view of the landscape. Secondly, we focus on VQA practices, which are
pivotal in industries where visual inspection plays a crucial role. While VQC is a common
theme in existing surveys, we extended our scope to include VQA. In this survey, we
meticulously examined the existing literature regarding VQA, with a specific emphasis on
AI and XAI techniques. Moreover, we provide a detailed analysis of the ratio of XAI to AI
methods within this context, thus including information on how many studies applied XAI
to their AI systems and a breakdown of the types of XAI approaches used, which sheds
light on the evolution and trends in this rapidly evolving field. Our goal is to discover
the research gap and future research directions across diverse industrial domains, as well
as emphasis the benefits of AI and XAI. In Section 3, we outline the difference between
QA and QC, since these two terms are often used interchangeably and define the meaning
of VQA. In Section 4, we describe the AI and XAI approaches that are used to meet VQA
practices and explain how transparency, interpretability, and trust can be enhanced in AI
systems applied to VQA. In Section 5, we define the research questions that have been
considered during this literature review and disclose the search process. In Section 6, we
present the results of the literature review, explain the determined role of AI and XAI for
VQA, and answer the research questions from Section 5. In Section 7, we discuss the results
and findings, as well as determine the potential benefits, challenges, and limitations of AI
and XAI for VQA in manufacturing and the research gap. Finally, Section 8 gives a short
summary of this paper.
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2. Machine Learning
2.1. Types of Machine Learning

Machine learning (ML) is the study of learning algorithms. The learning refers to the
situation wherein the performance of a computer program measured by a performance
metric on a specific task improves itself with experience. The computer program that
has been trained is called a model. Thus, ML models are computational algorithms and
statistical techniques designed to enable computers to learn and make predictions or
decisions without being explicitly programmed. These models are based on the principles
of data-driven learning and pattern recognition. ML can be divided into four types,
as illustrated in Figure 1: supervised learning, unsupervised learning, semisupervised
learning, and reinforcement learning. In the following, these types are briefly explained [9]:

Supervised Learning:

In supervised learning, the model learns to make prediction or classifications through
training on labeled data. The input data (features) are paired with the corresponding
output labels:

• Classification: In this task, the algorithm learns to predict discrete class labels for input
data, e.g., classifying a manufactured product into defective or nondefective.

• Regression: Here, the algorithm learns to predict continuous numerical values. For in-
stance, this includes predicting the energy consumption of a production line.

Unsupervised Learning:

Unsupervised learning is a machine learning approach where a model learns patterns,
structures, or relationships in data without explicit guidance from labeled examples. It
aims to discover inherent patterns or clusters in the data, thus enabling tasks such as
clustering, dimensionality reduction, and anomaly detection. Unlike supervised learning,
unsupervised learning does not have known target labels, thereby making it suitable for
exploring and understanding unlabeled data:

• Clustering: The algorithm groups similar data points together based on patterns or
similarities in the input data. For example, this includes grouping machines with
similar performance characteristics.

• Dimensionality Reduction: In this task, the algorithm reduces the number of input
features while retaining important information. It aids in visualizing and understand-
ing high-dimensional data and can be used as a preprocessing step for other machine
learning tasks.

• Anomaly Detection (AD): Here, the algorithm learns the normal patterns in the data
and identifies any data points that deviate significantly from those patterns, which
often indicate anomalies or outliers. This method can be used, for example, to monitor
signals of the process machinery to identify wear through abnormal behavior in
the signal.

• Autoencoder (AE): An AE is a type of neural network that learns to encode and
decode data; it is typically used for unsupervised learning and dimensionality re-
duction. It consists of an encoder network that compresses the input data into a
lower-dimensional representation (latent space) and a decoder network that recon-
structs the original data from the latent space. The goal of an AE is to minimize the
reconstruction error, thereby forcing the model to learn a compressed representation
that captures the most important features of the input data [10].

Semisupervised Learning:

This learning paradigm utilizes both labeled and unlabeled data during the training
process. It leverages a small amount of labeled data along with a larger amount of unlabeled
data to improve the performance of the model. It is useful when labeling data is expensive
or time-consuming.
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Reinforcement Learning:

This type of learning involves an agent interacting with an environment. The agent
learns to take actions in the environment to maximize a reward signal. Through a trial-
and-error process, the agent learns to make optimal decisions in different states of the
environment to achieve long-term goals. Reinforcement learning is mainly used to solve
multistep decision-making problems such as video games, robotics, and visual navigation.

Figure 1. Types of machine learning.

2.2. Performance Metrics for VQA

In the context of VQA in manufacturing, the selection and application of appropriate
performance metrics are critical for assessing the effectiveness of AI and XAI systems.
After conducting a thorough review of 143 selected papers in this domain, several key
performance metrics emerged as vital components in evaluating the success and reliability
of AI and XAI solutions.

2.2.1. Evaluation of Artificial Intelligence Models

In this section, we introduce the most important performance metrics used in the
resulting literature to assess AI models that are applied to VQA in manufacturing. Table 1
gives an overview of these metrics and provides their mathematical meanings, as well as
their evaluation focuses.

Table 1. Model performance metrics in AI for VQA.

Metrics Formula Evaluation Focus Source

Accuracy (acc) tp+tn
tp+ f p+tn+ f n

In general, the accuracy metric measures
the ratio of correct predictions over the
total number of instances evaluated.

[11]

Precision (p) tp
tp+ f p

Precision is used to measure the positive
patterns that are correctly predicted from
the total predicted patterns in a positive
class.

[11]

Recall (r) tp
tp+ f p

Recall is used to measure the fraction of
positive patterns that are correctly
classified.

[11]

F Measure
(F1)

2∗p∗r
p+r

This metric represents the harmonic mean
between recall and precision values. [11]
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Table 1. Cont.

Metrics Formula Evaluation Focus Source

Intersection
over Union

(IoU)

|A∩B|
|A∪B|

IoU is one of the most commonly used
metrics in semantic segmentation or object
detection. It is defined as the area of
intersection between the predicted
segmentation map and the ground truth,
which is divided by the area of union
between the predicted segmentation map
and the ground truth.

[12]

Dice
Coefficient

2|A∩B|
|A|+|B|

The cice coefficient is another popular
metric for image segmentation, which can
be defined as twice the overlap area of the
predicted and ground truth maps divided
by the total number of pixels in both
images. The dice coefficient is very similar
to the IoU.

[12]

Mean
Absolute

Error (MAE)

1
n ∑n

i=1 |yi − ŷi|

For regression tasks often found in quality
assurance scenarios, the use of metrics like
the mean absolute error (MAE) is
paramount. These metrics quantify the
differences between predicted and actual
continuous values, regardless of
the direction.

[13]

Mean Squared
Error (MSE)

1
n ∑n

i=1(yi − ŷi)
2 The MSE is also used for regression tasks

and has a greater penalty for large error. [13]

Root Mean
Squared Error

(RMSE)

√
MSE

The RMSE is another commonly used
metric for evaluating the performance of
regression models. It is closely related to
the MSE, but it gives more weight to larger
errors due to the square root operation.

[14]

Moreover, as VQA often involves complex decisions based on variable thresholds,
the area under the precision–recall curve (PR-AUC) is crucial to understand the trade-offs
between precision and recall at different decision boundaries. This metric is often used
when class imbalance is a concern [15].

Speed is a further important metric for VQA, because many manufacturing processes
require real-time quality assessment to identify defects or deviations from desired product
specifications as products move through the production line. Speed is essential to ensure
that quality issues are detected as soon as they occur, thereby allowing for immediate
corrective action and preventing the production of faulty goods.

2.2.2. Evaluation of Explainable Artificial Intelligence Methods

In this section, we introduce the metrics used in the found literature to assess XAI
methods. The following are the desirable characteristics that each XAI method should
accomplish [16]:

Identity: The principle of identity states that identical objects should receive identical
explanations. This estimates the level of intrinsic nondeterminism in the method.

Separability: Nonidentical objects cannot have identical explanations. If a feature is not
actually needed for the prediction, then two samples that differ only in that feature
will have the same prediction. In this scenario, the explanation method could provide
the same explanation, even though the samples are different. For the sake of simplicity,
this proxy is based on the assumption that every feature has a minimum level of
importance, positive or negative, in the predictions.
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Stability: Similar objects must have similar explanations. This is built on the idea that an
explanation method should only return similar explanations for slightly different objects.

Selectivity: The elimination of relevant variables must negatively affect the prediction. To
compute the selectivity, the features are ordered from the most to least relevant. One
by one, the features are removed by setting it to zero, for example, and the residual
errors are obtained to obtain the area under the curve (AUC).

Coherence: It computes the difference between the prediction error over the original
signal and the prediction error of a new signal where the nonimportant features
are removed.

Completeness: It evaluates the percentage of the explanation error from its respective
prediction error.

Congruence: The standard deviation of the coherence provides the congruence proxy. This
metric helps to capture the variability of the coherence.

Acumen: It is a new proxy proposed by the authors for the first time in [16], which is based
on the idea that an important feature according to the XAI method should be one
of the least important after it is perturbed. This proxy aims to detect whether the
XAI method depends on the position of the feature. It is computed by comparing the
ranking position of each important feature after perturbing it.

3. Visual Quality Assurance

According to the American Society of Quality [17], QA and QC are two terms that
are often used interchangeably. They both are associated with quality management (QM),
and some QA and QC activities are interrelated; however, there are distinct differences
between these two concepts. QA activities typically cover almost all of the QM system,
while QC is a subset of QA. In Figure 2, the relationship between QM, QA, QC, and VQA
is depicted.

Figure 2. Relationship between quaility management, quality assurance, quality control, and visual
quality assurance.

3.1. Quality Control

In the previous century, there was a strong emphasis on quality control (QC) concepts
and associated processes, which were particularly focused on finished products. The total
costs of all the inputs such as raw materials, labor, administrative costs, energy, special
tooling, finishing, processing, machinery and equipment maintenance, and transportation
of those defective products may be wholly or partially irrecoverable. Thus, the occurrence
of defects affect the targeted business profits and at the same time hinder an organiza-
tion’s ability to effectively compete in the global market place, which is getting more and
more competitive day in and day out. On the other hand, QC does not actually assure
the product buyer/end-user/consumer the quality of the product after selling. Instead,
the responsibility for the monitoring of the product quality, when in use, is transferred to
the end-users [1].
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Definition 1 (Quality Control [1]). QC refers to the systematic process of inspecting, testing,
and evaluating products or services to ensure that they meet predetermined quality standards. It
involves identifying and rectifying any defects or deviations from the desired specifications, thereby
maintaining consistency and ensuring that the final output meets customer expectations.

In general, QC is part of QM and focuses on fulfilling quality requirements. While
QA relates to how a process is performed or how a product is made, QC is more oriented
toward the inspection aspect of QM.

3.2. Quality Assurance

Product quality was somehow revolutionized toward the end of the last century by
emphasizing the QA of all the inputs (tangible and intangible) and processing activities,
including design, development, supplier, production, manufacturing, assembly, documen-
tation, inventory, maintenance, and even after sales services. Therefore, it follows from here
that the QA concept focuses attention generally on every stage of the work (i.e., process
approach) and all the processes for realizing the product [1].

Definition 2 (Quality Assurance [1]). QA is a planned and systematic approach implemented by
organizations to ensure that products, services, or processes consistently meet or exceed established
quality standards. It involves the creation of processes, guidelines, and policies to maintain and
enhance product or service excellence throughout all stages of development and delivery. The primary
goal of quality assurance is to prevent defects, identify areas for improvement, and promote a culture
of continuous quality enhancement.

The confidence provided by QA is, on the one hand, for the management of the
manufacturer and, on the other hand, for the customers, government agencies, regulators,
certifiers, and third parties.

3.3. Visual Quality Assurance

In this work, we focused on VQA. VQA is similar to QA; however, it focuses on the
visual aspects of QA and is therefore a subset of QA. This includes focusing on image or
image-like data or the combination of visual data with other sources to assure quality. In [1],
various QA practices are described. However, not all of these practices apply to VQA, since
VQA is a subset of QA that is limited to the visual aspects. During this extensive literature
review, we extrated the following practices for VQA in manufacturing using AI:

Visual Quality Control (VQC): This entails measuring and monitoring the quality of in-
process products. By entrenching VQC measures at various processing levels and
stages of production, more quality services are provided. It may therefore be said that
VQC is a key element of VQA. VQA is process-oriented and thus provides additional
control of the processes, such as assembly/processing/manufacturing processes.

Process Optimization (PO): This entails measuring, monitoring, and regulating produc-
tion process parameters that impact the performance of processes and the quality
of outcomes. It involves setting acceptable ranges for these parameters and taking
corrective action when they deviate from the defined thresholds.

Predictive Maintenance (PM): This entails regulating and regularly calibrating the mea-
surement equipment, as well as maintaining the components and machinery to
prevent or predict quality losses.

Root Cause Analysis (RCA): RCA involves analyzing data, identifying root causes of de-
fects, and implementing corrective and preventive actions. The focus is on eliminating
future defects and continuously raising the quality bar to achieve better results.

Based on the definition of QA in Definition 2, we derive a definition for VQA, thereby
considering a focus only on the visual aspects.
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Definition 3 (Visual Quality Assurance). Visual quality assurance is a planned and systematic
approach implemented by organizations to ensure that the visual aspects of products, services,
or processes consistently meet or exceed established quality standards. It involves the creation
of processes, guidelines, and policies to maintain and enhance product or service excellence by
considering the visual aspect throughout all stages of development and delivery. The primary goal of
visual quality assurance is to prevent defects, identify areas for improvement, and promote a culture
of continuous quality enhancement. This may encompass aspects such as aesthetic and overall visual
consistency across manufactured products.

In Sections 3.1 and 3.2, we established a foundational understanding of the concepts
central to this review. Firstly, we provided the definitions of QA and QC based on existing
literature. Building upon these definitions, we introduced the concept of VQA, which is
a specialized subset of QA with a keen focus on visual aspects. Importantly, it should be
noted that the papers explored in this review primarily pertain to VQA. As VQA is an
integral component of QA, any literature reviewed in the former inherently contributes to
the broader understanding of the latter. When a paper addresses VQC, it naturally fulfills
the requirements of QC.

4. AI and XAI for Visual Quality Assurance

In this section, the potentials of AI and XAI approaches for the VQA process are
discussed and outlined. Figure 3 represents the main AI and XAI approaches that have
been used in the found literature to meet the VQA practices.

Figure 3. Using AI and XAI approaches to meet VQA practices.

4.1. Artificial Intelligence Facilitates Visual Quality Assurance

AI is a new type of technological science that investigates and develops theories,
methods, technologies, and application systems to simulate, improve, and upgrade human
intelligence. It has been created to enable machines to reason like human beings and to
endow them with intelligence. AI systems aim to possess characteristics such as problem-
solving, pattern recognition, and decision-making capabilities. By leveraging techniques
such as ML and computer vision, AI seeks to create intelligent machines that can process
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and interpret vast amounts of data, recognize patterns, adapt to changing circumstances,
and perform complex tasks [9,18]. ML is already applied to solve real problems in different
domains, such as medicine [19], handwriting recognition [20], and manufacturing [21]. The
following AI approaches (see Figure 3) are typically used for VQA:

Classification (Class): In this approach, the algorithm learns to predict discrete class labels
for input data and thus can facilitate VQA by categorizing data, products, or pro-
cesses [9]. It can automate VQC and ensure that only defect-free products are deliv-
ered. Classification can help in identifying areas for improvement by categorizing
defects, reducing waste, and saving energy by identifying defects in early process
stages [22]. By inspecting images of machine spare parts, wear can be identified and
the spare parts can be replaced to prevent the quality losses of the manufactured
products [23].

Estimation (Est): Estimation refers to the process of predicting or approximating an un-
known or future value based on available data. It involves making an inference or
calculation to estimate a parameter or outcome [9]. By analyzing historical data,
the most suitable processing parameters [24], the remaining error-free time [25], or
the defect length can be predicted [14].

Object Detection (OD): Object detection is a computer vision task that involves identify-
ing and localizing objects within images or videos. It combines object classification
(assigning labels to objects) and object localization (drawing bounding boxes around
objects). Object detection algorithms can accurately detect and locate multiple objects
or flaws in products [26]. Thus, objection detection is a more comprehensive approach
than classification, because occuring or predicting flaws can be additionally localized.

Segmentation (Seg): Segmentation is a computer vision task that involves dividing images
or videos into distinct regions based on visual characteristics. Similar to object
detection, it can be used to localize defects or anomalies within products or processes,
thereby ensuring accurate inspections and prompt corrective actions [27].

Anomaly Detection (AD): In anomaly detection, the algorithm learns the normal patterns
in the data and identifies any data points that deviate significantly from those patterns,
thus often indicating anomalies or outliers [28]. This method can be used, for example,
to monitor image or image-like data in manufacturing and take corrective actions
promptly if potential issues or anomalies are identified [10]. In VQA, it can be used
to detect rare or abnormal occurences in images, thus helping organizations to make
data-driven decisions to improve processes.

4.2. Explainable Artificial Intelligence Facilitates Quality Assurance

In conventional AI systems, the learning process cannot be interpreted by the end-
users, and it looks like an opaque black box. XAI, on the other hand, specifically emphasizes
the need for transparency and interpretability in AI systems. By explaining the relationships
between input variables and quality outcomes, it helps identify the underlying causes of
quality losses. It aims to address the black box nature of many AI models, where their
decision-making processes are often difficult to understand or explain. XAI focuses on
developing techniques and methods that enable humans to understand and interpret the
results and inner workings of AI models. The ability to understand the mechanism of
decision making of a model is an important factor for three main reasons. First, it makes
it possible to further refine and improve its analysis. Second, it becomes easier to explain
to nondata scientists the way in which the model uses the data to make decisions. Third,
explainability can help data scientists to avoid the negative or unforeseen consequences of
their models. These three factors of XAI give us more confidence in our model development
and deployment [29]. Figure 4 shows a simple taxonomy that represents and categorizes
the XAI methods found in this literature review.
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Figure 4. XAI taxonomy for the methods found in the literature review.

Intrinsic Explanation: The intrinsic explanation techniques enable the extraction of deci-
sion rules directly from the model’s architecture. ML algorithms like linear regression
(LR), logistic regression (LogR), decision trees (DTs), and rule-based models are
frequently employed to create intrinsic models [30].

Post Hoc Explanation: Post hoc explanation techniques are designed to uncover the rela-
tionships between feature values and predictions. In contrast, models such as deep
neural networks are often less interpretable, as they do not readily yield explicit
decision rules from their structural components. When seeking ways to approxi-
mate a model’s behavior for decision understanding, we can categorize methods into
model-specific and model-agnostic approaches [30].

Model-Specific Explanation (Mod-Sp): Model-specific explanation techniques in XAI are
tailored to particular contexts and conditions, thus leveraging the unique charac-
teristics of the underlying algorithm or the specific architecture of an AI model.
Reverse engineering approaches are applied to probe the internals of the algorithms.
For example, class activation mapping (CAM) or gradient-weighted CAM (Grad-
CAM) methods offer visual explanations specifically designed for CNN models.
These CAM-based methods generate localization maps from convolutional layers,
thereby revealing the crucial image regions that contribute to predicting a particular
concept [30].

Model-Agnostic Explanation (Mod-Ag): Model-agnostic explanation techniques focus on
the relations between feature values and prediction results. These methods do not
depend on or make assumptions about the specific ML model or algorithm being
explained. These methods are designed to provide interpretability and explanations
for a wide range of ML models, thus making them versatile and applicable across
various domains [30].

4.3. Explainability of Visual Quality Assurance Processes

The application of XAI approaches to VQA processes can enhance transparency,
interpretability, and trust in AI systems applied to VQA.

Transparency in Visual Quality Assurance Practices: XAI provides transparency by of-
fering clear insights into the decision-making processes of AI models used for VQA.
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Transparency is essential for assessing the quality of a model’s decision [31]. For ex-
ample, ref. [32] used the GradCAM method to visualize the regions on which a CNN
model is most focusing its attention for decision making to provide a human-readable
explanation of the CNN model’s decision-making process.

Interpretability of Visual Quality Assurance Practices: Interpretability refers to the abil-
ity to understand the underlying workings of an AI model. It involves comprehend-
ing how AI models make their decisions. Interpretability can be achieved through
techniques that explain the internals of an AI model in a manner that humans can
comprehend. These techniques are known as intrinsic methods [31]. In [33], intrinsic
interpretable tree-based models were used to assure quality. Interpretability helps
users comprehend how various factors impact product quality and enables the identi-
fication of the most influential parameters in a manufacturing process, thus allowing
for better optimization and control.

Trust in Visual Quality Assurance Decisions: When the decision-making process in a
model is thoroughly understood, the model becomes transparent. Transparency
promotes trust in the model [31]. This collaboration between humans and AI models
enhances the efficiency and accuracy of VQA processes, thereby leading to more
reliable results.

5. Systematic Literature Review

In this section, we define the research questions (RQs) and describe the search process
of the systematic literature review (SLR) [34]. For the search process, we describe the elec-
tronic databases we were using for the literature and the search string used in our research.
This section also contains the inclusion and exclusion criteria of the literature selection.

5.1. Research Questions

We defined the following research questions for this SLR study to identify the sectors,
in which AI and XAI are already widely applied and in which sectors more research is
required. To assure quality, there are multiple practices that have to be considered. We
want to explore the practices that are already empowered by AI and XAI and additionally
extract and summarize the AI and XAI methods that were used. Answering these RQs
would provide a clear overview of the benefits of AI and XAI for VQA in manufacturing
and the research gap in that context. The research questions are as follows:

• RQ1: Which industry sectors are using AI and XAI approaches to provide VQA in
manufacturing?

• RQ2: Which VQA practices in manufacturing are covered using AI and XAI approaches?
• RQ3: Which AI and XAI methods are used for VQA in manufacturing?
• RQ4: To what degree has XAI been adopted for VQA in manufacturing?

5.2. Search Process

For our research, we selected five digital online databases, including IEEE Xplore,
Science Direct, ACM Digital Library, MDPI, and Scopus. In the last decade, AI technologies
have developed rapidly and were initiated in many industrial sectors. They gave promising
results; however, they are often not interpretable and thus are not accepted to integrate in
real processes, because there is lack of trust in them. For this reason, the concept of XAI
has received significant attention from the industry in recent years. Therefore, our SLR is
looking for literature published between 2015 and 2023. To capture most of the literature
that is applying AI and XAI methods for VQA in the manufacturing area, we determined
the following search string:
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(“artificial intelligence” OR “machine learning” OR “deep learning”
OR “image processing”)
AND
(“quality assurance” OR “quality control” OR “process optimization”
OR “predictive maintenance” OR “root cause analysis”)
AND
(“manufacturing” OR “industry”)
AND
(“computer vision” OR “image”)

This search string was used to search only within the abstract to extract the literature
that corresponded to our research questions. Searching within the full text provided a lot of
literature that was not related to VQA or manufacturing at all; however, since these words
were potentially mentioned in the introduction or related work section, these works were
returned as studies that fit into our SLR. We read all of the returned studies and further
filtered them. The results still contained literature that did not relate to the context of
VQA in manufacturing. Moreover, other survey papers were excluded. Table 2 represents
the inclusion and exclusion criteria of this search. The last query was carried out on
20 August 2023.

Table 2. Inclusion and exclusion criteria of the SLR.

ID Inclusion Criteria

1 Searching with the search string only within the abstract.
2 The full text of the returned studies is accessible.
3 The literature is written in English.
4 Searching with the search string only within the abstract.
5 The literature was published between 2015–2023.

ID Exclusion Criteria

1 The literature is a review.
2 The context of quality assurance, manufacturing, AI, or vision is missing.

The results of the search in the databases IEEE, Science Direct, ACM, and MDPI are
represented in Section 6.1.

6. Results of the Literature Review

In this section, we first present the outcomes of the conducted SLR process. Following
that, we provide a comprehensive explanation of the significance of AI and XAI for VQA,
thus drawing insights from the literature we have collected. Lastly, we share our research
findings in response to the specific research questions addressed in this study.

6.1. Conducted SLR

Table 3 summarizes the number of literature results found during the search process
after querying the databases with the search string defined in Section 5.2. In total, 260 papers
were found. A total of 117 came from IEEE Xplore, 74 came from Science Direct, only 4 came
from ACM Digital Library, and MDPI provided 65 studies based on our defined search
string. We also searched in Scopus, which includes other databases such as Science Direct.
In Scopus, we found 80 papers that were not already included in the databases mentioned
before. We examined each individual paper and excluded those that met the exclusion
criteria defined in Table 2. Finally, 143 papers were analyzed and summarized, and their
information was extracted regarding VQA practices, AI and XAI approaches, the methods
used, and the industry sector they were applied to. We present the results in Table 4. Table 3
summarizes the number of literature results found during the search process after querying
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the databases with the search string defined in Section 5.2. In total 260 papers were found. A
total of 117 from IEEE Xplore, 74 came from Science Direct, only 4 came from ACM Digital
Library, and MDPI provided 65 studies based on our defined search string. We also searched
in Scopus, which includes other databases such as Science Direct. In Scopus, we found
80 papers that were not already included in the databases mentioned before. We examined
each individual paper and excluded those that met the exclusion criteria defined in Table 2.
Finally, 143 papers were analyzed and summarized, and their information was extracted
regarding VQA practices, AI and XAI approaches, the methods used, and the industry
sector they were applied to. We present the results in Table 4.

Table 3. Number of found and selected studies from the SLR on 20 August 2023.

Database Results after Search String Query Results after Applying Selection Criteria

IEEE Xplore 117 64
Science Direct 74 41
ACM Digital Library 4 1
MDPI 65 30
Scopus 80 9

Total 340 143

6.2. Role of AI and XAI in VQA

In the following, the role of AI and XAI in VQA is presented. In Table 4, we show a lot
of papers found in the SLR. In this section, we selected some papers from the results and
summarized them to provide more insights drawn from the literature. We describe how AI
and XAI methods can be used to meet the VQA practices (see Section 3.3) predicated on
the reviewed literature.

6.2.1. Visual Quality Control

The comparitive study in [3] has already explained how AI-based visual inspection can
empower VQC activities. With AI, automated visual product inspections can be realized
more accurately and cost-effectively to monitor products or processes for faults, contamina-
tions, and other anomalies. AI-based visual inspection achieves the following advantages:

• It is not biased by the operator’s viewpoint;
• It can be adjusted to products changes, and no programming is necessary;
• It is not quickly weary;
• It is fast;
• It can see a wide spectrum of colors;
• It can operate in potentially dangerous settings;
• Its operators have fewer cognitive burdens.

Most of the literature found in this survey dealt with VQC in the manufacturing
process to detect defects. Most approaches used DL methods, such as pretrained CNNs,
that automatically extract features from images, and only the classifier has to be replaced to
classify the quality of the products of these images. For example, [35] used a pretrained
VGG16 model and a pretrained XCeption model to identify defects. Afterwards, an XAI
method called GradCAM was applied to this model to visualize the area that most con-
tributed to the prediction. The study [36] built a VGG-like CNN model with 17 layers that
achieved higher testing accuracy than other models, such as SVM. In order to gain insights
into the interpretability of this CNN model, the authors employed CAM. This technique
facilitated the generation of a heatmap, thus highlighting the regions that significantly
influence the model’s decision-making process. While GradCAM and CAM are model-
specific XAI approaches, the study of [37] used a model-agnostic XAI approach to provide
interpretability to a CNN model. It used the SHAP method to understand the contribution
of individual pixels for the outcome. These XAI methods have several advantages. On the
one hand, the data scientist who develops the AI model can evaluate the model’s behavior
more easily and create a more robust and reliable model. On the other hand, the model
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becomes more transparent. It provides explanations, justifications, and insights into the
factors and features that influenced the outcome. This helps QA professionals and auditors
to interpret how the AI model arrived at its decisions and identify potential errors or biases
in the AI models. Furthermore, they can trust the model, since XAI addresses the black box
characteristic of the AI model. The model-specific methods GradCAM and CAM highlight
the regions that most contribute to the prediction. The model-agnostic method SHAP
provides information about the contribution of each individual pixel for the outcome. Thus,
XAI flaws can be revealed, and the stakeholders can verify the model’s prediction when
quality issues are detected.

El-Geiheini et al. [38] addressed the textile industry sector using DL to estimate yarn’s
parameters (tenacity and elongation%). In the preprocessing step, data vectors of the yarn
images were manually extracted and used as input for a multilayer perceptron (MLP)
network that estimated the tenacity and elongation.

The machine vision system proposed in [22] was implemented on the learning factory
to monitor the quality of workpieces for defects. This study also offers a solution for
enhancing energy and resource losses caused by the scrapping and rework of defective
workpieces. When a defect is detected, the system redirects the workpiece, thereby prevent-
ing the production of additional defective items. This not only saves energy that would
have been used for rework, but also eliminates the need for transporting the workpiece
from the distribution station to the sorting station, thereby reducing energy consumption.
The implementation of this system resulted in significant improvements in energy efficiency
and a remarkable reduction in the overall carbon footprint. Depending on the placement
of the machine vision system within the production flow, energy efficiency increased by
18.37%, while the total carbon footprint was reduced by 78.83%.

In summary, the literature surveyed in this study predominantly focuses on the utilization
of DL methods, specifically pretrained CNNs, for VQC in manufacturing processes. VQC can
help reduce energy consumption and waste by identifying visual defects in the early stages of
the manufacturing process. CNNs offer the advantage of automatic feature extraction from
images, thus eliminating the need for manual computer vision tasks. However, it is worth
noting that CNNs can be resource-intensive. Nonetheless, this issue can be mitigated by
utilizing pretrained CNN models. To enhance transparency, interpretability, and trust in black
box CNN models, XAI methods like GradCAM, CAM, SHAP, and others can be employed.

6.2.2. Process Optimization

AI can help optimize the process parameters to improve the quality of manufactured
products [24]. When there are multiple process parameters involved, the complexity of the
outcome prediction increases, because more relationships and interactions among the variables
have to be considered. Here, ML methods can be used to solve the complex task. A possible
solution is to use process parameters as input parameters and predict the corresponding
output or the desired quality. Using XAI helps to identify features that are most important for
the quality. Varying these features or parameters has the greatest impact on quality.

The study in [39] focused on monitoring multilayer optical tomography images to
predict local porosity in additive manufacturing. Random forest (RF) was utilized for
porosity prediction, providing interpretability, and identifying the most important features
(layers) contributing to the prediction. The proposed model not only predicted porosity,
but also indicated the optimal processing window for achieving near-zero porosity.

Another study [40] employed a fusion of two neural networks to optimize process
parameters in a milling process. Surface images and mean average roughness data were
collected and aligned with specific cutting conditions. By selecting the appropriate cutting
tools and parameters, the model aimed to improve surface quality, reduce production
time, and minimize energy consumption. The use of multimodality allowed the system to
function even with limited data quality, and the multimodal fusion model outperformed
the unimodal model in predicting the cutting parameters.
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In the context of additive manufacturing, another study [41] focused on regulating
process parameters during the printing process. A camera monitored filament width using
a CNN-based DL algorithm. When the filament width exceeded a defined threshold,
the nozzle travel speed was adjusted to correct the filament width.

Overall, these studies highlight the application of ML and DL techniques for monitor-
ing, optimizing, and regulating manufacturing processes parameters. The incorporation of
interpretability, multimodality, and adaptive control mechanisms demonstrates the poten-
tial for improving quality. Indeed, optimizing process parameters solely based on visual
data may not be sufficient in certain scenarios. While visual data can provide valuable
insights into the visual aspects of a process, there are other factors and variables that may
need to be considered for effective regulation. For the optimization of process parameters,
it is essential to take into account multiple sources of data, including but not limited to
visual data. Depending on the specific manufacturing process, additional data sources such
as sensor data (e.g., temperature, pressure), historical process data, or real-time feedback
from the production line may be necessary. By integrating multiple data sources, a more
holistic understanding of the process can be achieved, thereby allowing for a more accurate
and robust regulation of process parameters. This comprehensive approach enables the
consideration of factors beyond visual defects, such as material properties, environmental
conditions, and overall process stability.

6.2.3. Predictive Maintenance

In PM, information is gathered in real time to control the status of devices or machines.
The aim is to discover patterns that can assist in predicting and eventually anticipating
malfunctions [5]. Machineries have to be maintained in time to ensure consistent quality of
the manufactured products. However, maintenance is required with additional cost. Thus,
the machine should be optimally maintained just before the entrance of the malfunction or
before the wear of the machine causes insufficient quality of the product. There are several
AI approaches that help in achieving PM. XAI can provide interpretable insights into the
prediction process of anomalies that lead to quality deviations. This helps manufacturers
detect potential problems at an early stage, thereby enabling timely intervention and
corrective actions. Ref. [16] used regression CNN models on time series data for PM. Then,
they applied different XAI methods to explore their performance. In terms of the methods
LIME, SHAP, LRP, GradCAM, and Image-Specific Class Saliency (ISCSal), GradCAM
achieved best performance.

The study in [25] used a CNN autoencoder to denoise and label images of printed
build parts from the laser powder bed fusion process. Additionally, they also provided a
CNN model that learned these labeled images and was able to classify new images into
succeeded, warning, or failed. Moreover, a statistical Cox proportional hazards (CPHs)
model was trained to forecast the hazard imposed at a certain stage. For training the model,
the embeddings calculated by the autoencoder were used and labeled with the time until
the first five consecutive errors were detected.

Another study [23] explored the use of DL neural networks, including CNNs, to clas-
sify images of semiconductors as good or bad. Additionally, they proposed predicting the
condition of test contactor pins for spare parts, thus aiming to detect wear and determine if
replacements were necessary.

These studies demonstrate the potential of DL approaches, particularly CNNs, in image
analysis for quality assessment. By leveraging these techniques, organizations can improve
defect detection, classification, and forecasting in manufacturing processes, thereby enabling
proactive measures to maintain quality standards and optimize resource allocation.

6.2.4. Root Cause Analysis

Applying VQA into the organization enables the continual improvement of the quality
by meeting the VQA practices. A further approach to improve quality is the identification
of root causes when a malfunction or anomaly has been detected. The identification of root
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causes aims to understand the underlying reasons behind these malfunctions or anomalies.
By uncovering the root cause, organizations can address and eliminate the problem, thereby
leading to improved product quality and a reduction in future malfunctions identified
during VQC. To identify the root causes of anomalies, XAI methods can be employed.
By understanding which features or factors contribute most to the detection of anomalies,
organizations can gain a deeper understanding of the root causes and take appropriate
corrective actions. By incorporating XAI methods into the VQC, organizations can not only
identify and resolve specific issues, but also enhance overall product quality and consistency.
This proactive approach helps to minimize the occurrence of future malfunctions, thus
resulting in improved customer satisfaction, increased operational efficiency, and reduced
costs associated with quality issues.

The study in [39] used RF with multilayer optical tomography images to predict local
porosity in additive manufacturing. Since RF is a transparent model, it is used to analyze
the impacts of different process parameters on the local porosity and to identify the causes
for defects that occur from improper process parameters. Defects in one layer can also be
eliminated by proper parameters in the following layers.

The study in [33] used the tree-based models classification and regression tree (CART),
RF, and XGBoost to predict the quality of the static mechanical properties of printed parts.
Since these models are intrinsically explainable, their feature importance is used to identify
the influencing parameters.

In summary, identifying the root causes of defects through intrinsic explainable models
allows organizations to address underlying issues, improve product quality, and reduce
the number of malfunctions detected during VQC. By focusing on RCA, organizations can
achieve greater consistency and reliability in their products, thereby leading to enhanced
customer experiences and business success.

Table 4. Extracted information from the selected results of the SLR.

Study Industry Sector VQA Practices AI/XAI-Approaches AI Method XAI Method

[22,42–50] Component
Inspection VQC Class. CNN

[27,51] Component
Inspection VQC Seg. CNN

[52–61] Component
Inspection VQC OD CNN

[62,63] Component
Inspection VQC Est. CNN

[64] Component
Inspection VQC Class. RF, DT, NB, SVM,

KNN, AdaBoost

[37] Component
Inspection VQC Class., Model-Ag. CNN SHAP

[36] Component
Inspection VQC Class., Model-Sp. CNN CAM

[65] Component
Inspection VQC, PM Est. CNN

[66] Component
Inspection VQC AD CNN

[67] Component
Inspection VQC OD, Est. CNN

[26] Component
Inspection VQC, PO OD, Est. CNN

[68] Component
Inspection VQC Class. KNN, DT, RF, SVM,

NB

[69] Component
Inspection VQC Seg. MLP
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Table 4. Cont.

Study Industry Sector VQA Practices AI/XAI-Approaches AI Method XAI Method

[41] AM PO Seg., Est. CNN

[70,71] AM VQC Class. RF, CART

[72] AM VQC Class., Model-Sp. CNN, SVM Smooth IG

[32,35] AM VQC Class., Model-Sp. CNN GradCAM

[25] AM VQC, PM Class., Est. CNN, CPH

[73] AM VQC Est. CNN

[74] AM VQC Class. BPNN

[33] AM VQC, RCA Class., Intrinsic CART, RF, XGBoost Interpretable model

[75–80] AM VQC Class. CNN

[39] AM VQC, PO, RCA Est., Intrinsic Multi-Otsu, RF, DT Interpretable model

[81] AM VQC Seg. CNN

[14] AM VQC Est. LR, GR, SVM

[82–86] Electronics VQC Class. CNN

[10,87] Electronics VQC AD CNN

[23] Electronics PM Class., DLNN

[88] Electronics VQC Class. CNN, LSTM

[28] Electronics VQC AD osPCA, OnlinePCA,
ABOD and LOF

[89] Electronics PM Est. GAF, CNN

[90] Electronics VQC Est. LogR, RF, SVM

[91–93] Electronics VQC Class. SVM, k-means,
GMM, KNN, RF

[94] Electronics VQC Seg., CNN

[95–99] Electronics VQC OD CNN

[13,100] Electronics VQC Est. CNN

[101] Electronics VQC OD CNN

[102–104] Machinery VQC, PM Class. CNN

[105] Machinery VQC OD CNN

[106,107] Machinery VQC Class. CNN

[108] Machinery VQC Seg., OD Otsu, CNN

[109] Machinery PM Est. CNN, LSTM

[16] Machinery PM Est., Model-Ag. CNN LIME, SHAP

[16] Machinery PM Est., Model-Sp. CNN LRP, Grad-CAM,
ISCSal

[110] Machinery VQC, PM AD CNN

[40] Machinery PO Est. CNN, LSTM

[111] Forming VQC Est. CNN, RNN

[112] Forming VQC Class. SVD, RF

[113,114] Forming VQC Class. CNN

[59] Forming VQC, PO AD, Est. CNN

[115] Forming PO Est. CNN

[116–118] Textile VQC Class. CNN

[119] Textile VQC OD, Class. CNN

[38] Textile VQC Est. MLP

[120] Textile VQC Seg. CNN
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Table 4. Cont.

Study Industry Sector VQA Practices AI/XAI-Approaches AI Method XAI Method

[121] Textile VQC Class. KNN

[122] Packaging VQC OD, Seg., Est. CNN

[123,124] Packaging VQC Class. CNN

[125] Packaging VQC AD CNN

[126–128] Packaging VQC OD CNN

[27,129] Packaging VQC Seg. CNN

[67] Packaging VQC OD, Est. CNN

[130–132] Food VQC Class. CNN

[130,132–138] Food VQC Class.

KNN, SVM, DT,
CART, RF, Fuzzy,
PLS-DA, LDA, QDA,
NB, AdaBoost

[139] Food VQC Seg. Otsu, MBSAS

[140,141] Food VQC Class. ANN

[142] Food VQC Est. SVM, RF, GBM, M5,
Cubist, LR

[143–146] Wood VQC OD CNN

[147] Wood VQC Seg., Est. CNN

[148,149] Other VQC Class. XGBoost, SVM, KNN,
LR, RF

[62,148] Other VQC Class. ANN

[150,151] Other VQC Class. CNN

[152] Other VQC Class. CNN, SVM, RF, DT,
NB

[153] Other VQC Class., Model-Sp. CNN GradCAM,
ScoreCAM

[154] Other VQC OD, Class. CNN

[155] Other VQC Seg., Class. Clustering, LogR, NB,
CART, LDA

[156] Other VQC OD, AD CNN

[157] Other VQC AD CNN

6.3. Answer to the Previously Designed Research Question
6.3.1. RQ1: Which Industry Sectors Are Using AI and XAI Approaches to Provide VQA in
Manufacturing?

Figure 5 clusters the selected studies regarding industry sectors and AI/XAI ap-
proaches. It shows that for the industry sector “Component Inspection”, most of the studies
are available. The top two is the sector “Electronics”, and the top three is “Additive Manu-
facturing”. For these sectors, most studies are available, because the product yield is very
high and automating the processes or detecting defects in early stages has the capability to
optimize the costs and resources.
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Figure 5. Clustering the selected studies regarding industry sectors and AI/XAI approaches.

6.3.2. RQ2: Which VQA Practices in Manufacturing Are Covered Using AI and
XAI Approaches?

Most studies are performing VQC to assure quality (see Figure 6). Detecting defects
using visual data is the easiest task from the VQA practices covered in this review. To per-
form PM or process optimization practices, often additional data modalities are used,
because using visual data alone makes it more difficult to perform these practices. The RCA
is mostly performed using XAI approaches, specifically intrinsic models. XAI provides
transparency to AI models. Thus, the feature importance can be analyzed, and the root
causes of the defects can be revealed.

Furthermore, Figure 6 reveals that most works are using classification methods for
VQA. The reason is that you can easily feed a CNN with product images, and the model
automatically extracts relevant features and classifies them accordingly. Furthermore, many
studies additionally performed object detection or segmentation to highlight the defective
regions of the products. On the one hand, other works used estimation methods to estimate
product characteristics or process parameters, and, based on the outcomes, they classified
the product as defect or nondefect, or they adapted process parameters. On the other hand,
estimation methods were used to predict the remaining defect-free time. This approach
helps, just like anomaly detection, to prevent defect occurrence by performing PM.

Figure 6. Clustering the selected studies regarding AI/XAI approaches and VQA practices.
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6.3.3. RQ3: Which AI and XAI Methods Are Used for VQA in Manufacturing?

Figure 7a shows the AI and XAI methods that were used to perform VQA. Since this
review focused on visual data, CNN was, at a 63% frequency, the most commonly used
method. At a 6% frequency, the methods SVM, tree-based models—such as decision tree,
random forest, XGBoost, and CART—and different types of neural networks were the next
leading ones. When these methods are applied, features are extracted from the images
and used as input. Next, probabilistic methods, such as naive Bayes, as well as logistic or
Gaussian regression, achieved a proportion of 4%. Linear regression as well as time-series
DL methods, such as LSTM and RNN, covered 2% of the methods.

Figure 7b shows the XAI methods that were used. The model-specific GradCAM was
used most frequently and was applied to image data in four studies. The other model-
agnostic methods (ScoreCAM, CAM, Image Specific Class Saliency, Smooth IG, and LRP)
were only applied in one study. The model-agnostic method SHAP was used in two studies,
and the LIME was used in one study. Intrinsic models were applied in two studies.

Figure 7. (a) Ratio of AI and XAI application used in the studies found in the SLR. (b) Number of
XAI methods found in the SLR.

6.3.4. To What Degree Has XAI Been Adopted for VQA in Manufacturing?

XAI approaches are far less used than AI approaches. The SLR revealed 10 studies
that used XAI. Six studies applied XAI for VQC, and two studies applied XAI for PM to
evaluate the prediction or assess the model. Two studies performed RCA using intrinsic
models. They used interpretable models to detect defects in the product and, due to the
intrinsic explainability of these models, the root cause could be identified.

Only 8% of the studies applied XAI to their AI system. A total of 5% applied model-
specific models, 2% applied model-agnostic models, and only 1% applied intrinsic models
(see Figure 7).

Most papers have used deep neural networks for VQA. These models have a high
accuracy, however, they lack transparency due to their complexity. In total, 138 papers used
black box models and 28 papers used white box models, such as LR, tree-based models,
or probabilistic-based models.

6.4. Benchmark Datasets

In our literature review, we looked for benchmark datasets that have been utilized in
the context of VQA practices in manufacturing, particularly in conjunction with AI and
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XAI methodologies. The datasets found are represented in Figure 8. Moreover, the figure
shows which VQA practices were conducted with these datasets. Most datasets were used
to conduct VQC, and only one dataset was used for PM.

Figure 8. Benchmark datasets applied to VQA practices.

In the following, we describe the individual datasets and mention the studies that
used these datasets.

NEU Surface Defect Dataset: This dataset is commonly used as a benchmark dataset in
the field of computer vision and ML, particularly in the context of image-based QA
and defect detection. This dataset is primarily focused on quality assessment and
defect detection for steel surfaces. The NEU dataset includes 1800 grayscale images
that represent six different types of defects: rolled-in scale, patches, crazing, pitted
surface, inclusion, and scratches. The dataset consists of a significant number of
samples for each defect class, which allows for robust training and evaluation of
ML models. The studies [32,36,42,66,77] applied AI and XAI methods, such as CNN,
CAM, and GradCAM, to this dataset.

Severstal Steel Defect Dataset: The Severstal dataset is another publicly available dataset
used for training and evaluating ML models, particularly for the task of detecting
defects in steel sheets. This dataset is valuable in the field of computer vision, es-
pecially for semantic segmentation tasks, and it was used by [54,57] for VQA using
CNN. It covers various types of defects commonly found on steel surfaces, such as,
pitted surfaces, crazing, scratches, and patches. Each type of defect is associated with
a specific class or label.

COCO14 Dataset and VOC2012 Dataset: These two datasets are widely used computer
vision datasets that focus on object detection, image segmentation, and captioning
tasks used by various ML models, particularly DL models, for image analysis [59,60].
The dataset consists of a large collection of images, where each image contains a
variety of objects.

SLS Powder Bed Defects Dataset: The authors in [35] worked on GradCAM and used the
SLS Powder Bed Defects dataset contributed by Erik Westphal and Hermann Seitz.
This is a real manufacturing dataset that contains images of the powder bed surface
of a selective laser sintering system. The images in this dataset were used to monitor
and document the quality of the printing process. The data contains 8514 images of
normal and defective powder bed images.

KolektorSDD Dataset: The KolektorSDD dataset is a collection of images featuring sur-
face cracks on plastic electronic commutators, which are used in various electronic
devices. This dataset comprises 50 commutator samples, and each commutator has
approximately eight different surfaces, thus resulting in a total of 399 images [105].
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Casting Product Image Data for Quality Inspection: This dataset focuses on casting man-
ufacturing products, specifically submersible pump impellers. Casting defects are
common in this industry and manual inspection is time-consuming and error-prone.
To address this, the dataset contains 7348 grayscale images of casting products, which
are divided into “Defective” or “Ok”. Consequently, DL methods, such as CNN, can
be applied for automatic VQC [113].

Turbofan Engine Degradation Simulation-2: The study [16] worked on time-series data
using the gearbox, fast-charging batteries, and turbofan datasets from the full dataset,
named Turbofan Engine Degradation Simulation-2. They applied CNN as a black
box model to predict the remaining useful life and reviewed five XAI methods (LIME,
SHAP, LRP, GradCAM, and ISCSal). This huge dataset is relevant to the VQA context,
because it focuses on predicting component degradation and maintenance scheduling
that are relevant to manufacturing. Moreover, they provided the source code to
reproduce the experiments.

6.5. Comparison to Other Survey Papers

We compared our survey paper to other similar survey papers that were found during
the SLR regarding the scope, results, and direction to identify the research gap that our
paper is filling. We excluded survey papers that did not include content about AI explain-
ability or interpretability (31 survey papers were excluded). Only three survey papers were
about XAI. The comparison of these papers with our paper is presented in Table 5.

Table 5. Comparison of other survey papers with our survey paper regarding scope, results, and direction.

Survey Scope, Results, Direction

[5]

Scope:

• AI- and XAI-based methods adopted in the Industry 4.0 scenario

Results:

• Detailed examination of the AI and XAI methods employed in Industry
4.0, thus offering insights into their applications and usage.

• Overview of the state of the field, summarizing what methods are prevalent
and how they are being used in the Industry 4.0 landscape.

Direction:

• Discusses opportunities and challenges.
• Highlights the need for responsible and human-centric AI and XAI systems

in industry applications, thus suggesting a focus for future research.

[8]

Scope:

• This study explores local explanation techniques and their practical
applications in various industrial sectors.

• It analyzes the literature considering factors like industry sectors, AI
models, data types, and the purposes of XAI.

Results:

• The research findings indicate that local explanation techniques enhance the
transparency and interpretability of AI models in industrial applications.

Direction:

• Focuses on improving the efficiency of these techniques.
• Ethical concerns need to be addressed and resolved.
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Table 5. Cont.

Survey Scope, Results, Direction

[158]

Scope:

• The application of XAI in Clinical Decision Support Systems (CDSSs).

Results:

• XAI-enabled CDSSs are commonly used for tabular data and less so for
text analysis.

• Local explanations are more frequent than global ones.
• A balance exists between post hoc and ante hoc explanations and between

model-specific and model-agnostic techniques.

Direction:

• Applying XAI in the context of CDSSs.
• Emphasizing the importance of conducting user studies to understand and

address the needs of clinicians in the context of CDSSs and XAI.

Our Study

Scope:

• Our study explores AI- and XAI-based methods used in manufacturing for
visual quality assurance (VQA).

• It analyzes the literature considering factors like industry sector, VQA
practices, AI/XAI approaches and methods.

Results:

• Emphasizes AI’s and XAI’s potential in VQA across various industries.
• Indicates that AI-based systems in manufacturing predominantly focus on

visual quality control (VQC) for defect detection. Research addressing
VQA practices beyond VQC, such as process optimization, predictive
maintenance, or root cause analysis, is relatively rare.

• XAI is not far applied to AI in this context.

Direction:

• Points out the need for further exploration of XAI in VQA.
• Integrating XAI into AI systems can improve VQA practices and decision

making in industries, as well as enhance transparency and trust.

7. Discussion

In this study, we conducted a literature review to explore the role of AI and XAI in VQA
for various industry sectors. The results of our search process yielded a total of 340 papers,
out of which 143 papers were selected for analysis based on the defined selection criteria.
The selected papers covered a wide range of industries, including component inspection,
additive manufacturing, electronics, packaging, machinery, forming, textile, wood, food,
and others.

Primary component inspection, additive manufacturing, and electronic product man-
ufacturing are among the leading industry sectors that have witnessed significant applica-
tions of AI and XAI methods. These sectors share common characteristics, such as high
levels of automation, large production volumes, and complexity of the products. As a
result, AI methods have found extensive use in addressing the challenges and maximizing
the potential of these industries. XAI for industry sector The majority of the literature
reviewed focused on VQC practices in manufacturing processes. AI methods, particularly
using pretrained CNNs, were commonly employed for object detection and classification
approaches. These methods offer the advantage of automatic feature extraction from im-
ages, thereby eliminating the need for manual computer vision tasks. Implementing visual
inspection into the manufacturing process is less complex, fast, and the data acquisition
procedure can be carried out by integrating a camera instead of several other sensors.
Several studies utilized pretrained CNN models, such as VGG-16, Xception, and ResNet,
to identify defects and classify the quality of products. Other studies utilized CNN models
for segmentation tasks, e.g., to segment the parts that contain the defect or to detect anoma-
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lies. The integration of XAI methods, such as CAM, GradCAM, ScoreCAM, SmoothIG,
and ISCal, provided model transparency and interpretability by highlighting the regions
of an image that contributed most to the prediction. This enabled the explanation of the
model behavior and enhanced trustworthiness. Additionally, XAI methods were used to
analyze feature importance using tree-based intrinsic models. Based on their transparency,
the feature importance could be analyzed and the root causes of defects could be identified.
potential of AI/XAI.

Understanding how these complex pretrained CNN models arrive at specific predic-
tions can be challenging, and techniques like CAM, GradCAM, ScoreCAM, SmoothIG,
and ISCSal are employed to shed light on their decision-making processes. The need for
these techniques underscores the complexity and black box nature of DL models, which
is a key challenge in XAI. These methods are model-specific and tailored for CNNs. This
highlights a challenge in XAI, the need for different techniques or approaches for different
types of models. Interpretability methods that work for one model might not be applicable
to others. The lack of a one-size-fits-all solution complicates the field of XAI. Moreover,
these XAI methods are used to highlight important areas related to predictions, but they do
not provide a comprehensive explanation of the model’s decision process. The challenge
lies in developing methods that can provide deeper insights into these complex models.
Applying intrinsic models to VQA can provide transparency and an understanding of the
feature importance that can help idetifying the root cause of defects. The visual data used
in VQA are inherently high-dimensional due to their pixel-based representation. This high
dimensionality can make it challenging to develop intrinsic XAI methods. These methods
may struggle to provide meaningful insights into the data, as they need to navigate a vast
feature space. Furthermore, visual features often interact in nonlinear ways, which can
be essential for assessing quality. Intrinsic XAI methods primarily designed for linear
relationships may struggle to effectively explain the nonlinear patterns in the data.

AI-driven techniques have also found application in the field of VQA, thus extending
not only to VQC, but also encompassing other practices such as process optimization, PM,
and RCA. The number of studies found for these practices is less covered than for VQC
because the literature search based on the visual aspect and because these tasks requires
more effort. Meeting these practices is easier to realize using other data modalities than
images alone.

To regulate process parameters, ML algorithms were utilized to predict process out-
comes and optimize manufacturing processes. RF models were also used to predict defects
and using their interpretability, it was used to optimize process parameters to improve
the quality. These approaches demonstrated the potential of AI and XAI in monitoring,
optimizing, and regulating manufacturing processes parameters. Interpretability, multi-
modality, and adaptive control mechanisms were integrated to enhance the understanding
and control of complex processes.

It is worth noting that the literature surveyed predominantly utilized black box deep
learning methods, particularly pretrained CNN models, for VQA in manufacturing. While
these methods offered automatic feature extraction and have achieved high accuracy, they
can be resource-intensive. However, the use of pretrained models mitigates this issue
to some extent. Some works applied more transparent white box models, such as LR,
tree-based, or probabilistic-based models, that require less resources and are additionally
understandable; however, they have a lower performance accuracy and the features have
to be extracted manually from the images, in contrast to CNN. Implementing interpretable
ML models may reduce the model effectiveness.

Moreover, the surveyed studies showcased the importance of considering multiple
sources of data for effective VQA. Vision data alone may not be sufficient in certain scenar-
ios, and additional data sources, such as sensor data may need to be incorporated. A holistic
approach that integrates multiple data sources can provide a more comprehensive under-
standing of the manufacturing process and enable the accurate and robust regulation of
process parameters and resources.



Electronics 2023, 12, 4572 25 of 33

This survey shows that the adoption of XAI methods in that domain is limited. The rea-
son for this could be that many practitioners may not be aware of the benefits and potential
applications of XAI methods. XAI is a relatively new field, and its concepts and method-
ologies may not be widely understood or promoted in certain domains. Implementing
XAI methods can be complex and resource-intensive. It may require additional effort
and expertise to integrate XAI methods into existing systems and workflows. In some
cases, XAI methods may provide interpretability at the cost of predictive performance.
Organizations that prioritize accuracy and performance metrics may be hesitant to adopt
XAI techniques if they perceive a tradeoff between interpretability and model effectiveness.

8. Conclusions

In conclusion, the literature review highlighted the significant role of AI and XAI
in VQA across various industry sectors. The findings revealed that primary component
inspection, additive manufacturing, and electronic product manufacturing are among
the leading industry sectors that have witnessed significant applications of AI and XAI
methods; however, the application of XAI is still limited in these fields. These industries,
which are characterized by high automation levels and complex products, have benefited
from AI methods to address challenges and optimize their processes. AI methods, par-
ticularly pretrained CNN models, were employed for VQC, process optimization, and
PM. The integration of XAI methods enhanced model transparency, interpretability, and
enabled RCA by investigating the feature contribution to the prediction. Moreover, XAI
enhanced trustworthiness regarding the prediction models.

The reviewed studies predominantly utilized DL methods, particularly pretrained
CNN models. These models are resource-intensive, and integrating other AI models,
such as decision-tree-based ML models, could enhance resource efficiency and model
understandability. However, the trade-off between interpretability and model effectiveness
should be carefully considered in such cases. Moreover, the importance of considering mul-
tiple data sources for effective VQA was emphasized. While visual data played a significant
role, incorporating sensor data and historical process data can provide a more comprehen-
sive understanding of the manufacturing process and enable accurate process optimization.

Despite the potential benefits, the adoption of XAI methods in the reviewed domain
appears limited. This could be attributed to a lack of awareness, complexity and resource
requirements, concerns regarding interpretability-performance trade-offs, and cultural
and organizational factors. To promote the wider adoption of XAI, efforts should focus
on education and awareness, research and development, guidelines and standards, user-
friendly tools and frameworks, and collaboration and knowledge sharing.

Overall, this survey highlights the significant role of AI and the untapped potential
of XAI in VQA across various industry sectors. By addressing the existing challenges,
organizations can enhance their VQA practices, improve transparency and interpretability,
and foster trust in AI systems.
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Abbreviations
The following abbreviations are used in this manuscript:

SLR Systematic Literature Review
RQ Research Question
AI Artificial Intelligence
XAI Explainable Artificial Intelligence
ML Machine Learning
DL Deep Learning
QM Quality Management
QA Quality Assurance
QC Quality Control
VQA Visual Quality Assurance
VQC Visual Quality Control
PO Process Optimization
PM Predictive Maintenance
RCA Root Cause Analysis
Class Classification
Est Estimation
OD Object Detection
Seg Segmentation
AD Anomaly Detection
Mod-Ag Model-Agnostic
Mod-Sp Model-Specific
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
RNN Recurrent Neural Network
MLP Multilayer Perceptron
BPNN Back Propagation Neural Network
DLNN Deep Learning Neural Network
ANN Artifical Neural Network
RF Random Forest
DT Decision Tree
CART Classification And Regression Tree
AdaBoost Adaptive Boosting
XGBoost eXtreme Gradient Boosting
SVM Support Vector Machine
LR Linear Regression
LogR Logistic Regression
GR Gaussian Regression
GMM Gaussian Mixture Model
KNN K-Nearest Neighbor
LDA Linear Discriminant Analysis
QDA Quadratic Discriminant Analysis
PLS-DA Partial Least Squares Discriminant Analysis
CPH Cox Proportional Hazards
MBSAS Modified Basic Sequential Algorithmic Scheme
PCA Principal Component Analysis
ABOD Angle-Based Outlier Detection
LOF Local Outlier Factor
GAF Gramian Angular Field
SVD Singular Value Decomposition
GBM Generalized Boosting regression Model
SHAP SHapley Additive exPlanations
CAM Class Activation Mapping
GradCAM Gradient-Weighted Class Activation Mapping
ScoreCAM Score Class Activation Mapping
Smooth IG Smooth Integrated Gradients
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ISCSal Image-Specific Class Saliency
LIME Local Interpretable Model-Agnostic Explanations
tp True Positive
tn True Negative
fp False Positive
fn False Negative
acc Accuracy
p Precision
r Recall
PR-AUC Area under the Precision–Recall Curve
F1 F Measure
IoU Intersection of Union
MAE Mean Absolute Error
MSE Mean Squared Error
RMSE Root Mean Squared Error

References
1. Ibidapo, T.A. From Industry 4.0 to Quality 4.0—An Innovative TQM Guide for Sustainable Digital Age Businesses; Springer: Cham,

Switzerland, 2022.
2. Jakubowski, J.; Stanisz, P.; Bobek, S.; Nalepa, G.J. Explainable anomaly detection for Hot-rolling industrial process. In Proceedings

of the 2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA), Porto, Portugal, 6–9 October 2021;
pp. 1–10. [CrossRef]

3. Arora, A.; Gupta, R. A Comparative Study on Application of Artificial Intelligence for Quality Assurance in Manufacturing. In
Proceedings of the 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore,
India, 21–23 September 2022; pp. 1200–1206. [CrossRef]

4. Psarommatis, F.; Sousa, J.; Mendonça, J.P.; Kiritsis, D. Zero-defect manufacturing the approach for higher manufacturing
sustainability in the era of industry 4.0: A position paper. Int. J. Prod. Res. 2022, 60, 73–91. [CrossRef]

5. Ahmed, I.; Jeon, G.; Piccialli, F. From Artificial Intelligence to Explainable Artificial Intelligence in Industry 4.0: A Survey on
What, How, and Where. IEEE Trans. Ind. Inform. 2022, 18, 5031–5042. [CrossRef]

6. Tabassum, S.; Parvin, N.; Hossain, N.; Tasnim, A.; Rahman, R.; Hossain, M.I. IoT Network Attack Detection Using XAI and
Reliability Analysis. In Proceedings of the 2022 25th International Conference on Computer and Information Technology (ICCIT),
Cox’s Bazar, Bangladesh, 17–19 December 2022; pp. 176–181. [CrossRef]

7. Machlev, R.; Heistrene, L.; Perl, M.; Levy, K.; Belikov, J.; Mannor, S.; Levron, Y. Explainable Artificial Intelligence (XAI) techniques
for energy and power systems: Review, challenges and opportunities. Energy AI 2022, 9, 100169. [CrossRef]

8. Le, T.T.H.; Prihatno, A.T.; Oktian, Y.E.; Kang, H.; Kim, H. Exploring Local Explanation of Practical Industrial AI Applications: A
Systematic Literature Review. Appl. Sci. 2023, 13, 5809. [CrossRef]

9. Huawei Technologies Co., Ltd. Artificial Intelligence Technology; Springer: Singapore, 2023.
10. Maggipinto, M.; Beghi, A.; Susto, G.A. A Deep Convolutional Autoencoder-Based Approach for Anomaly Detection with

Industrial, Non-Images, 2-Dimensional Data: A Semiconductor Manufacturing Case Study. IEEE Trans. Autom. Sci. Eng. 2022,
19, 1477–1490. [CrossRef]

11. Hossin, M.; Sulaiman, M.N. A Review on Evaluation Metrics for Data Classification Evaluations. Int. J. Data Min. Knowl. Manag.
Process 2015, 5, 1–11. [CrossRef]

12. Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A
Survey. arXiv 2020, arXiv:2001.05566.

13. Fan, X.; Wang, B.; Khokhar, M.Q.; Zahid, M.A.; Pham, D.P.; Yi, J. Real-Time ITO Layer Thickness for Solar Cells Using Deep
Learning and Optical Interference Phenomena. Energies 2023, 16, 6049. [CrossRef]

14. Rodríguez-Martín, M.; Fueyo, J.; Pisonero, J.; López-Rebollo, J.; Gonzalez-Aguilera, D.; García-Martín, R.; Madruga, F. Step heating
thermography supported by machine learning and simulation for internal defect size measurement in additive manufacturing.
Measurement 2022, 205, 112140. [CrossRef]

15. Brabec, J.; Komárek, T.; Franc, V.; Machlica, L. On Model Evaluation under Non-constant Class Imbalance. arXiv 2020,
arXiv:2001.05571.

16. Solís-Martín, D.; Galán-Páez, J.; Borrego-Díaz, J. On the Soundness of XAI in Prognostics and Health Management (PHM).
Information 2023, 14, 256. [CrossRef]

17. for Quality, A.S. Quality Assurance vs Control, 2023. 07.05.2023.
18. Szeliski, R. Computer Vision—Algorithms and Applications; Springer: Berlin/Heidelberg, Germany, 2022.
19. Stojanov, D.; Lazarova, E.; Veljkova, E.; Rubartelli, P.; Giacomini, M. Predicting the outcome of heart failure against chronic-

ischemic heart disease in elderly population – Machine learning approach based on logistic regression, case to Villa Scassi hospital
Genoa, Italy. J. King Saud Univ.-Sci. 2023, 35, 102573. [CrossRef]

http://doi.org/10.1109/DSAA53316.2021.9564228
http://dx.doi.org/10.1109/ICIRCA54612.2022.9985522
http://dx.doi.org/10.1080/00207543.2021.1987551
http://dx.doi.org/10.1109/TII.2022.3146552
http://dx.doi.org/10.1109/ICCIT57492.2022.10055236
http://dx.doi.org/10.1016/j.egyai.2022.100169
http://dx.doi.org/10.3390/app13095809
http://dx.doi.org/10.1109/TASE.2022.3141186
http://dx.doi.org/10.5121/ijdkp.2015.5201
http://dx.doi.org/10.3390/en16166049
http://dx.doi.org/10.1016/j.measurement.2022.112140
http://dx.doi.org/10.3390/info14050256
http://dx.doi.org/10.1016/j.jksus.2023.102573


Electronics 2023, 12, 4572 28 of 33

20. Pesch, H.; Hamdani, M.; Forster, J.; Ney, H. Analysis of Preprocessing Techniques for Latin Handwriting Recognition. In
Proceedings of the 2012 International Conference on Frontiers in Handwriting Recognition, Bari, Italy, 18–20 September 2012;
pp. 280–284. [CrossRef]

21. Chen, T.; Sampath, V.; May, M.C.; Shan, S.; Jorg, O.J.; Aguilar Martín, J.J.; Stamer, F.; Fantoni, G.; Tosello, G.; Calaon, M. Machine
Learning in Manufacturing towards Industry 4.0: From ‘For Now’ to ‘Four-Know’. Appl. Sci. 2023, 13, 1903. [CrossRef]

22. Kumar, R.; Patil, O.; Nath S, K.; Sangwan, K.S.; Kumar, R. A Machine Vision-based Cyber-Physical Production System for Energy
Efficiency and Enhanced Teaching-Learning Using a Learning Factory. Procedia CIRP 2021, 98, 424–429. [CrossRef]

23. Pheng, M.S.K.; David, L.G. Artificial Intelligence in Back-End Semiconductor Manufacturing: A Case Study. In Proceedings of
the 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE), Ballari,
India, 23–24 April 2022; pp. 1–4. [CrossRef]

24. Rehman, R.U.; Zaman, U.K.U.; Aziz, S.; Jabbar, H.; Shujah, A.; Khaleequzzaman, S.; Hamza, A.; Qamar, U.; Jung, D.W. Process
Parameter Optimization of Additively Manufactured Parts Using Intelligent Manufacturing. Sustainability 2022, 14, 15475.
[CrossRef]

25. Bauer, M.; Augenstein, C.; Schäfer, M.; Theile, O. Artificial Intelligence in Laser Powder Bed Fusion Procedures—Neural
Networks for Live-Detection and Forecasting of Printing Failures. Procedia CIRP 2022, 107, 1367–1372. [CrossRef]

26. Prezas, L.; Michalos, G.; Arkouli, Z.; Katsikarelis, A.; Makris, S. AI-enhanced vision system for dispensing process monitoring
and quality control in manufacturing of large parts. Procedia CIRP 2022, 107, 1275–1280. [CrossRef]

27. Yao, K.; Ortiz, A.; Bonnin-Pascual, F. A Weakly-Supervised Semantic Segmentation Approach Based on the Centroid Loss:
Application to Quality Control and Inspection. IEEE Access 2021, 9, 69010–69026. [CrossRef]

28. Susto, G.A.; Terzi, M.; Beghi, A. Anomaly Detection Approaches for Semiconductor Manufacturing. Procedia Manuf. 2017,
11, 2018–2024. [CrossRef]

29. Jagatheesaperumal, S.K.; Pham, Q.V.; Ruby, R.; Yang, Z.; Xu, C.; Zhang, Z. Explainable AI Over the Internet of Things (IoT):
Overview, State-of-the-Art and Future Directions. IEEE Open J. Commun. Soc. 2022, 3, 2106–2136. [CrossRef]

30. Huang, J.; Wang, Z.; Li, D.; Liu, Y. The Analysis and Development of an XAI Process on Feature Contribution Explanation. In
Proceedings of the 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, 17–20 December 2022; pp. 5039–5048.
[CrossRef]

31. Ali, S.; Abuhmed, T.; El-Sappagh, S.; Muhammad, K.; Alonso-Moral, J.M.; Confalonieri, R.; Guidotti, R.; Del Ser, J.; Díaz-
Rodríguez, N.; Herrera, F. Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial
Intelligence. Inf. Fusion 2023, 99, 101805. [CrossRef]

32. Klamert, V.; Schmid-Kietreiber, M.; Bublin, M. A deep learning approach for real time process monitoring and curling defect
detection in Selective Laser Sintering by infrared thermography and convolutional neural networks. Procedia CIRP 2022,
111, 317–320. [CrossRef]

33. Huang, D.J.; Li, H. A machine learning guided investigation of quality repeatability in metal laser powder bed fusion additive
manufacturing. Mater. Des. 2021, 203, 109606. [CrossRef]

34. Xiao, Y.; Watson, M. Guidance on Conducting a Systematic Literature Review. J. Plan. Educ. Res. 2019, 39, 93–112. [CrossRef]
35. Westphal, E.; Seitz, H. A machine learning method for defect detection and visualization in selective laser sintering based on

convolutional neural networks. Addit. Manuf. 2021, 41, 101965. [CrossRef]
36. Lee, S.Y.; Tama, B.A.; Moon, S.J.; Lee, S. Steel Surface Defect Diagnostics Using Deep Convolutional Neural Network and Class

Activation Map. Appl. Sci. 2019, 9, 5449. [CrossRef]
37. Sheu, R.K.; Chen, L.C.; Pardeshi, M.S.; Pai, K.C.; Chen, C.Y. AI Landing for Sheet Metal-Based Drawer Box Defect Detection

Using Deep Learning (ALDB-DL). Processes 2021, 9, 768. [CrossRef]
38. El-Geiheini, A.; ElKateb, S.; Abd-Elhamied, M.R. Yarn Tensile Properties Modeling Using Artificial Intelligence. Alex. Eng. J.

2020, 59, 4435–4440. [CrossRef]
39. Feng, S.; Chen, Z.; Bircher, B.; Ji, Z.; Nyborg, L.; Bigot, S. Predicting laser powder bed fusion defects through in-process monitoring

data and machine learning. Mater. Des. 2022, 222, 111115. [CrossRef]
40. Kounta, C.A.K.A.; Kamsu-Foguem, B.; Noureddine, F.; Tangara, F. Multimodal deep learning for predicting the choice of cut

parameters in the milling process. Intell. Syst. Appl. 2022, 16, 200112. [CrossRef]
41. Yang, X.; Lakhal, O.; Belarouci, A.; Merzouki, R. Adaptive Deposit Compensation of Construction Materials in a 3D Printing

Process. In Proceedings of the 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Sapporo,
Japan, 11–15 July 2022; pp. 658–663. [CrossRef]

42. Tunali, M.M.; Yildiz, A.; Çakar, T. Steel Surface Defect Classification Via Deep Learning. In Proceedings of the 2022 7th
International Conference on Computer Science and Engineering (UBMK), Diyarbakir, Turkey, 14–16 September 2022; pp. 485–489.
[CrossRef]

43. Enriquez, M.L.; Concepcion, R.; Relano, R.J.; Francisco, K.; Mayol, A.P.; Española, J.; Vicerra, R.R.; Bandala, A.; Co, H.; Dadios, E.
Prediction of Weld Current Using Deep Transfer Image Networks Based on Weld Signatures for Quality Control. In Proceedings
of the 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and
Control, Environment, and Management (HNICEM), Manila, Philippines, 28–30 November 2021; pp. 1–6. [CrossRef]

http://dx.doi.org/10.1109/ICFHR.2012.179
http://dx.doi.org/10.3390/app13031903
http://dx.doi.org/10.1016/j.procir.2021.01.128
http://dx.doi.org/10.1109/ICDCECE53908.2022.9792976
http://dx.doi.org/10.3390/su142215475
http://dx.doi.org/10.1016/j.procir.2022.05.159
http://dx.doi.org/10.1016/j.procir.2022.05.144
http://dx.doi.org/10.1109/ACCESS.2021.3077847
http://dx.doi.org/10.1016/j.promfg.2017.07.353
http://dx.doi.org/10.1109/OJCOMS.2022.3215676
http://dx.doi.org/10.1109/BigData55660.2022.10020313
http://dx.doi.org/10.1016/j.inffus.2023.101805
http://dx.doi.org/10.1016/j.procir.2022.08.030
http://dx.doi.org/10.1016/j.matdes.2021.109606
http://dx.doi.org/10.1177/0739456X17723971
http://dx.doi.org/10.1016/j.addma.2021.101965
http://dx.doi.org/10.3390/app9245449
http://dx.doi.org/10.3390/pr9050768
http://dx.doi.org/10.1016/j.aej.2020.07.049
http://dx.doi.org/10.1016/j.matdes.2022.111115
http://dx.doi.org/10.1016/j.iswa.2022.200112
http://dx.doi.org/10.1109/AIM52237.2022.9863300
http://dx.doi.org/10.1109/UBMK55850.2022.9919470
http://dx.doi.org/10.1109/HNICEM54116.2021.9731979


Electronics 2023, 12, 4572 29 of 33

44. Saiz, F.A.; Serrano, I.; Barandiarán, I.; Sánchez, J.R. A Robust and Fast Deep Learning-Based Method for Defect Classifica-
tion in Steel Surfaces. In Proceedings of the 2018 International Conference on Intelligent Systems (IS), Funchal, Portugal,
25–27 September 2018; pp. 455–460. [CrossRef]

45. Syam, W.P.; Rybalcenko, K.; Gaio, A.; Crabtree, J.; Leach, R.K. Methodology for the development of in-line optical surface
measuring instruments with a case study for additive surface finishing. Opt. Lasers Eng. 2019, 121, 271–288. [CrossRef]

46. Weiss, T.; Kick, M.; Grabmann, S.; Geiger, C.; Mayr, L.; Wudy, K.; Zaeh, M.F. A holistic approach for an intelligent laser beam
welding architecture using machine learning for the welding of metallic bipolar plates for polymer electrolyte membrane fuel
cells. Procedia CIRP 2022, 111, 810–815. [CrossRef]

47. Ozdemir, R.; Koc, M. A Quality Control Application on a Smart Factory Prototype Using Deep Learning Methods. In Proceedings
of the 2019 IEEE 14th International Conference on Computer Sciences and Information Technologies (CSIT), Lviv, Ukraine,
17–20 September 2019; Volume 1, pp. 46–49. [CrossRef]

48. Mende, H.; Peters, A.; Ibrahim, F.; Schmitt, R.H. Integrating deep learning and rule-based systems into a smart devices decision
support system for visual inspection in production. Procedia CIRP 2022, 109, 305–310. [CrossRef]

49. Mih, A.N.; Cao, H.; Pickard, J.; Wachowicz, M.; Dubay, R. TransferD2: Automated Defect Detection Approach in Smart
Manufacturing using Transfer Learning Techniques. In Proceedings of the 2023 IEEE International Conference on Omni-layer
Intelligent Systems (COINS), Berlin, Germany, 23–25 July 2023; pp. 1–8. [CrossRef]

50. Sun, X.; Gu, J.; Wang, M.; Meng, Y.; Shi, H. Wheel Hub Defects Image Recognition Base on Zero-Shot Learning. Appl. Sci. 2021,
11, 1529. [CrossRef]

51. Tural, S.; Samet, R.; Aydin, S.; Traore, M. Deep Learning Based Classification of Military Cartridge Cases and Defect Segmentation.
IEEE Access 2022, 10, 74961–74976. [CrossRef]

52. Ünal, P.; Albayrak, Ö.; Kubatova, M.; Deveci, B.U.; Çırakman, E.; Koçal, Ç.; Murat Özbayoğlu, A. A Big Data Application
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143. Urbonas, A.; Raudonis, V.; Maskeliūnas, R.; Damaševičius, R. Automated Identification of Wood Veneer Surface Defects Using
Faster Region-Based Convolutional Neural Network with Data Augmentation and Transfer Learning. Appl. Sci. 2019, 9, 4898.
[CrossRef]

144. Guo, Y.; Zeng, Y.; Gao, F.; Qiu, Y.; Zhou, X.; Zhong, L.; Zhan, C. Improved YOLOV4-CSP Algorithm for Detection of Bamboo
Surface Sliver Defects With Extreme Aspect Ratio. IEEE Access 2022, 10, 29810–29820. [CrossRef]

145. Vargas, V.M.; Gutiérrez, P.A.; Rosati, R.; Romeo, L.; Frontoni, E.; Hervás-Martínez, C. Exponential loss regularisation for
encouraging ordinal constraint to shotgun stocks quality assessment. Appl. Soft Comput. 2023, 138, 110191. [CrossRef]

146. Vargas, V.M.; Gutiérrez, P.A.; Rosati, R.; Romeo, L.; Frontoni, E.; Hervás-Martínez, C. Deep learning based hierarchical classifier
for weapon stock aesthetic quality control assessment. Comput. Ind. 2023, 144, 103786. [CrossRef]

147. Zabulis, L.; Lipnickas, A.; Augustauskas, R. Application of computer vision methods for automated wooden planks length
measurement. In Proceedings of the 2022 18th Biennial Baltic Electronics Conference (BEC), Tallinn, Estonia, 4–6 October 2022;
pp. 1–6. [CrossRef]

148. Konstantopoulos, G.; Koumoulos, E.P.; Charitidis, C.A. Classification of mechanism of reinforcement in the fiber-matrix interface:
Application of Machine Learning on nanoindentation data. Mater. Des. 2020, 192, 108705. [CrossRef]

149. Li, H.C.; Tsai, M.C.; Lee, T.X. A Stray Light Detection Model for VR Head-Mounted Display Based on Visual Perception. Appl.
Sci. 2022, 12, 6311. [CrossRef]

150. Taseva, A.R.; Persoons, T.; D’Arcy, D.M. Application of an AI image analysis and classification approach to characterise dissolution
and precipitation events in the flow through apparatus. Eur. J. Pharm. Biopharm. 2023, 189, 36–47. [CrossRef] [PubMed]

151. Byvshev, P.; Truong, P.A.; Xiao, Y. Image-Based Renovation Progress Inspection with Deep Siamese Networks. In ICMLC ’20:
Proceedings of the 2020 12th International Conference on Machine Learning and Computing; Association for Computing Machinery:
New York, NY, USA, 2020; pp. 96–104. [CrossRef]

152. Jiang, T.; Hu, X.J.; Yao, X.H.; Tu, L.P.; Huang, J.B.; Ma, X.X.; Cui, J.; Wu, Q.F.; Xu, J.T. Tongue image quality assessment based on a
deep convolutional neural network. BMC Med. Inform. Decis. Mak. 2021, 21, 147. [CrossRef]

153. Riedel, H.; Mokdad, S.; Schulz, I.; Kocer, C.; Rosendahl, P.L.; Schneider, J.; Kraus, M.A.; Drass, M. Automated quality control of
vacuum insulated glazing by convolutional neural network image classification. Autom. Constr. 2022, 135, 104144. [CrossRef]

154. Lin, Y.H.; Ting, Y.H.; Huang, Y.C.; Cheng, K.L.; Jong, W.R. Integration of Deep Learning for Automatic Recognition of 2D
Engineering Drawings. Machines 2023, 11, 802. [CrossRef]

155. Qin, F.; Liu, D.; Sun, B.; Ruan, L.; Ma, Z.; Wang, H. Identification of Alfalfa Leaf Diseases Using Image Recognition Technology.
PLoS ONE 2016, 11, e0168274. [CrossRef]

156. Ban, G.; Yoo, J. RT-SPeeDet: Real-Time IP–CNN-Based Small Pit Defect Detection for Automatic Film Manufacturing Inspection.
Appl. Sci. 2021, 11, 9632. [CrossRef]

157. Tayeh, T.; Aburakhia, S.; Myers, R.; Shami, A. Distance-Based Anomaly Detection for Industrial Surfaces Using Triplet Networks.
In Proceedings of the 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference
(IEMCON), Vancouver, BC, Canada, 4–7 November 2020; pp. 0372–0377. [CrossRef]

158. Antoniadi, A.M.; Du, Y.; Guendouz, Y.; Wei, L.; Mazo, C.; Becker, B.A.; Mooney, C. Current Challenges and Future Opportunities
for XAI in Machine Learning-Based Clinical Decision Support Systems: A Systematic Review. Appl. Sci. 2021, 11, 5088. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.focha.2022.100129
http://dx.doi.org/10.1016/j.procir.2020.05.091
http://dx.doi.org/10.1016/j.eswa.2022.117765
http://dx.doi.org/10.3390/app9224898
http://dx.doi.org/10.1109/ACCESS.2022.3152552
http://dx.doi.org/10.1016/j.asoc.2023.110191
http://dx.doi.org/10.1016/j.compind.2022.103786
http://dx.doi.org/10.1109/BEC56180.2022.9935598
http://dx.doi.org/10.1016/j.matdes.2020.108705
http://dx.doi.org/10.3390/app12136311
http://dx.doi.org/10.1016/j.ejpb.2023.04.020
http://www.ncbi.nlm.nih.gov/pubmed/37120067
http://dx.doi.org/10.1145/3383972.3384036
http://dx.doi.org/10.1186/s12911-021-01508-8
http://dx.doi.org/10.1016/j.autcon.2022.104144
http://dx.doi.org/10.3390/machines11080802
http://dx.doi.org/10.1371/journal.pone.0168274
http://dx.doi.org/10.3390/app11209632
http://dx.doi.org/10.1109/IEMCON51383.2020.9284921
http://dx.doi.org/10.3390/app11115088

	Introduction
	Machine Learning
	Types of Machine Learning
	Performance Metrics for VQA
	Evaluation of Artificial Intelligence Models
	Evaluation of Explainable Artificial Intelligence Methods


	Visual Quality Assurance
	Quality Control
	Quality Assurance
	Visual Quality Assurance

	AI and XAI for Visual Quality Assurance
	Artificial Intelligence Facilitates Visual Quality Assurance
	Explainable Artificial Intelligence Facilitates Quality Assurance
	Explainability of Visual Quality Assurance Processes

	Systematic Literature Review
	Research Questions
	Search Process

	Results of the Literature Review
	Conducted SLR
	Role of AI and XAI in VQA
	Visual Quality Control
	Process Optimization
	Predictive Maintenance
	Root Cause Analysis

	Answer to the Previously Designed Research Question
	 RQ1: Which Industry Sectors Are Using AI and XAI Approaches to Provide VQA in Manufacturing?
	RQ2: Which VQA Practices in Manufacturing Are Covered Using AI and XAI Approaches?
	RQ3: Which AI and XAI Methods Are Used for VQA in Manufacturing?
	To What Degree Has XAI Been Adopted for VQA in Manufacturing?

	Benchmark Datasets
	Comparison to Other Survey Papers

	Discussion
	Conclusions
	References

