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Abstract: Accurate load forecasting is of utmost importance for modern power generation facilities
to effectively meet the ever-changing electricity demand. Predicting electricity consumption is a
complex task due to the numerous factors that influence energy usage. Consequently, electricity
utilities and government agencies are constantly in search of advanced machine learning solutions
to improve load forecasting. Recently, deep learning (DL) has gained prominence as a significant
area of interest in prediction efforts. This paper introduces an innovative approach to electric load
forecasting, leveraging advanced DL techniques and making significant contributions to the field
of energy management. The hybrid predictive model has been specifically designed to enhance
the accuracy of multivariate time series forecasting for electricity consumption within the energy
sector. In our comparative analysis, we evaluated the performance of our proposed model against
ML-based and state-of-the-art DL models, using a dataset obtained from the Distribution Network
Station located in Tetouan City, Morocco. Notably, the proposed model surpassed its counterparts,
demonstrating the lowest error in terms of the Root-Mean-Square Error (RMSE). This outcome
underscores its superior predictive capability and underscores its potential to advance the accuracy
of electricity consumption forecasting.

Keywords: load forecasting; artificial intelligence; deep learning; hyperparameter optimization

1. Introduction

Modern power generation facilities require a consistent and uninterrupted supply of
electricity to effectively meet load demands [1]. This necessitates precise predictions of both
current and future load requirements, minimizing errors. To achieve this, researchers and
scientists have focused on developing an efficient method known as load forecasting [2,3].
This technique involves forecasting future electricity consumption demands and playing
a vital role in decision-making processes like unit commitment, network management,
dispatch strategies, fuel allocation, and other operational aspects [4–6]. The increasing
integration of renewable energy resources (RES) into the energy mix and the transformation
of the traditional electric grid into a more intelligent, flexible, and interactive system
have elevated the importance of electrical load forecasting in smart grid planning and
operation [7–11]. The multi-stage real-time stochastic operation of grid-tied multi-energy
microgrids (MEMGs) via the hybrid model predictive control (MPC) and approximate
dynamic programming (ADP) approach was studied [10]. Accurate multi-node load
forecasting is the key to the safe, reliable, and economical operation of the power system [11].
Since power generated from RES fluctuates based on factors such as weather conditions
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like irradiation and wind speed, maintaining a careful balance between power demand
and supply through accurate load forecasting becomes crucial [10–13].

Electric load consumption data are a time series that comprise a sequence of observa-
tions at regular time intervals, encompassing both linear and nonlinear components [9].
Overestimating load requirements can result in excess power generation and market trad-
ing, while underestimation can lead to a mismatch between demand and supply, causing
grid instability. Predicting electric load is a challenging task due to its high volatility and un-
certainty, whether in the distribution system or within individual households [14,15]. Load
forecasting (LF) serves as a methodology for predicting future load demands by analyzing
historical data and identifying dependency patterns within its time-step observations. Its
applications in power system operation and planning are extensive, encompassing demand
response, scheduling, unit commitment, energy trading, system planning, and energy
policy [14]. Precise LF is essential for power companies and decision makers to strike a
balance between supply and demand, prevent power interruptions due to load shedding,
and avoid an excess reserve of power generation [14]. Accurate forecasting enables utilities
to plan demand response management, unit commitment, load dispatch, contingency
planning, and optimal load flow with minimal resource wastage and cost overruns. The
complexity, uncertainty, and the multitude of factors influencing predictions make LF a
challenging task, categorized as a type of time-series problem necessitating specialized
solutions [15]. Depending on the time horizon, forecasting can be short-term (hours to a
week), medium-term (a week to a year), or long-term (over a year) [8]. Forecasting outputs
can be pointing forecasts, providing a single estimated value of the future load, or density
forecasts, offering estimates of the future load probability distribution, either pointwise or
interval-wise. Various techniques are employed based on the forecast horizon. Although
there is not a universally agreed-upon classification determined by the predictive horizon,
it is crucial to acknowledge that diverse forecasting scenarios come with distinct challenges
and advantages, requiring varied modeling strategies [9,10,16].

Currently, the prevailing approach involves utilizing classical and deep machine learn-
ing algorithms, genetic algorithms, wavelet analysis, singular spectral analysis, and similar
methodologies [2]. Nevertheless, the selection of methods is contingent upon the specific
problem under consideration and the inherent structure of the initial data. Recent studies
have extensively reviewed state-of-the-art techniques in LF [17–26], categorizing them
into two main groups: statistical and machine learning (ML) methods. Statistical meth-
ods, including autoregressive integrated moving average (ARIMA), linear regression, and
exponential smoothing, map input data to output. These methods function by adhering
to pre-established rules and assumptions, crafting a prediction model that delineates the
relationship between variables [27]. It entails fitting project-specific probabilities to histori-
cal data and generating load predictions through statistical inference. These techniques
are frequently characterized by their speed, simplicity, interpretability, and computational
efficiency. However, they suffer from uncertainty and low accuracy, particularly in high
nonlinear systems. ML techniques, such as artificial neural networks (ANN), deep learn-
ing (DL), and recurrent neural networks, have more complex setups and longer training
times but offer higher accuracy and performance. As a branch of AI, the methodology of
ML empowers computers to learn and adjust automatically through experience [28,29].
The process includes training a model on a dataset and employing the trained model to
predict outcomes on new data. While these techniques can capture intricate relationships
and patterns, they demand meticulous feature selection and parameter tuning [29]. DL
represents an advanced iteration of ML, utilizing layered algorithms and neural networks
with multiple hidden layers to acquire knowledge and formulate predictions [28,29]. DL
architectures usually comprise intricately layered networks with multiple hidden layers,
enabling them to grasp intricate data representations and generate precise predictions,
especially when handling extensive and intricate datasets. However, it is important to note
that they can be computationally demanding and necessitate substantial amounts of data
for effective training [28,29].
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This paper introduces a novel approach to electric LF, employing advanced DL tech-
niques. The key contributions of this study are as follows: Firstly, the presentation of a
hybrid predictive model that integrates DL methods to enhance the accuracy of multivariate-
to-multivariate time series forecasting in the energy domain. Secondly, the use of a Keras
Regressor wrapper and Randomized Search cross-validation (CV) technique to optimize
the DL model’s hyperparameters, improving its overall performance. Additionally, an
innovative early stopping algorithm is developed to efficiently monitor and terminate the
training process, conserving computational resources. The research also delves into feature
significance and provides a comprehensive analysis of how varying the number of features
influences training performance, shedding light on feature selection’s impact. Through
extensive simulations and experiments, the proposed model consistently outperforms exist-
ing approaches, demonstrating the lowest Root-Mean-Square Error (RMSE) in comparisons.
Lastly, the study encompasses a thorough literature review of recent deep-learning models
used for power consumption prediction, offering insights into the field’s advancements
and trends.

The aspects of novelty of this work can be summarized as follows:

• Hybrid predictive model—this paper introduces a novel hybrid predictive model
that integrates DL methods for electric LF. While DL is a well-explored area, the
unique contribution lies in the hybrid nature of our model, combining different DL
techniques to enhance the accuracy of multivariate time series forecasting in the energy
domain. The specific combination and integration of these techniques represent a
novel approach.

• Hyperparameter optimization and early stopping algorithm—we employ a Keras Re-
gressor wrapper and Randomized Search cross-validation technique for hyperparame-
ter optimization, enhancing the overall performance of the DL model. Additionally, we
introduce an innovative early-stopping algorithm designed to efficiently monitor and
terminate the training process, conserving computational resources. These elements
contribute to the novelty of our proposed methodology for training DL models in the
context of electric LF.

• Comparative analysis and superior predictive capability—the comparative analysis
evaluates the performance of our proposed model against other state-of-the-art DL
models, using a real-world dataset from the Distribution Network Station in Tetouan
City, Morocco. Our proposed model consistently outperforms existing approaches,
achieving the lowest RMSE. This outcome underscores its superior predictive capabil-
ity, representing a significant advancement in accuracy compared to the current state
of the art.

The remainder of this paper is structured as follows: Section 2 summarizes the related
work. Section 3 provides an in-depth examination of the dataset, conducts relevant data
analysis, and introduces both DL and ML models. In Section 4, we delve into the details
of our proposed hybrid model. Section 5 is dedicated to presenting the results of our
experiments, including comprehensive comparisons between our model and previous
approaches. Finally, Section 6 serves as the conclusion of this paper, summarizing key
findings and outlining potential future research directions.

2. Related Work

Anticipating electricity consumption holds a pivotal role in the effective management
and strategic planning of the energy usage. The electric load profile in metropolitan areas
exhibits complex cyclic and seasonal patterns influenced by industrial production, weather,
and human activities. Contemporary research in this field is focused on exploring aspects
such as smart grid technologies, the integration of renewable energy sources, and the estab-
lishment of local energy communities [30]. Numerous LF methods have been developed
over the years, categorized into statistical models and modern ML and artificial intelligence
(AI) models [10]. Statistical models include linear models like autoregressive (AR), moving
average (MA), autoregressive moving average (ARMA), and ARIMA, seasonal ARIMA
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(SARIMA), as well as Kalman filtering algorithms, grey models, and exponential smooth-
ing [11]. These models assume stationary and linear time series data following known
statistical distributions [8]. They effectively capture the historical trends and seasonality
inherent in consumption data [31,32]. However, they may struggle with big data and
nonlinear relationships between load values and external factors. Modern techniques based
on ML and AI offer an alternative to statistical models by autonomously extracting patterns
and trends from data [5]. Commonly used ML models for time series forecasting include
support vector regression (SVR), and ANNs [4,5,31].

DL approaches, such as recurrent neural networks (RNN), gated recurrent networks,
and (LSTM), have also gained attention for their ability to model complex non-linear
patterns [10,32,33]. DL methods have been applied to LF with promising results. DL, a
specialized domain within the broader field of ML, harnesses the power of ANNs with
multiple layers to comprehend and represent intricate mappings between input and output
data [34,35]. The momentum behind DL surged notably with the introduction of Multi-
Layer Perceptrons (MLP) and the refinement of back-propagation algorithms during the
1980s and 1990s [35]. One of the distinguishing features of DL techniques is their effective
handling of the vanishing gradient problem, setting them apart from shallower models.
Consequently, models based on DL exhibit superior capabilities in dealing with complex
functions, achieving higher accuracy in their predictions [36]. The perspective on DL
has gained substantial traction, especially in recent times, driven by the unprecedented
availability of extensive datasets and the advancement of sophisticated algorithms [34,36].
DL methods employ multi-layer network models to construct linear or non-linear func-
tions that aim to minimize the correlation between input data and output response. This
evolution is such that the ML techniques discussed in preceding sections have undergone a
transformative process, evolving into DL models through the incorporation of additional
mapping layers. In the specific context of LF, DL approaches necessitate the construction of
intricate networks, offering distinct advantages over classical techniques, particularly in
multi-point scenarios within the load profile. However, it is crucial to acknowledge certain
drawbacks, notably in terms of computational complexity and limitations in deterministic
point forecasting [37]. Despite these challenges, the appeal of DL approaches for LF remains
strong due to their remarkable ability to capture short- and long-term dependencies within
input data. Moreover, DL models provide viable solutions to computational challenges,
making them more preferable than shallower learning models. A review of DL methods ap-
plied to LF revealed that DL-based approaches are more accurate and stable than traditional
statistical techniques and time series analysis [16]. DL models such as Long Short-Term
Memory (LSTM) are effective in electric LF [38,39]. Therefore, DL would be an important
candidate among other methods for electric-LF.

The recent surge in ML and DL models has brought forth sophisticated tools capable of
unraveling complex patterns and dependencies in electricity consumption. The advanced
ML and DL models showcased excellence in handling non-linear relationships and long-
term dependencies, making them particularly suitable for precise energy forecasting within
building contexts [40]. The hybrid models, amalgamating multiple forecasting techniques,
present a promising avenue by leveraging the unique strengths of different algorithms
to enhance the accuracy of predictions [41,42]. The effectiveness of ML and DL models
crucially relies on feature engineering techniques. These techniques involve extracting
relevant information from data to ensure that the models can discern and capture the key
factors influencing electricity consumption. The application of such techniques not only
facilitates improved energy management decisions but also contributes to grid stability and
supports the integration of distributed generation [43,44]. The continuous evolution and
progress in this field contribute to the generation of precise and timely forecasts, thereby
aiding in effective energy planning and optimization. In a specific study [45], a novel
approach is proposed, utilizing generative adversarial networks (GAN) to generate parallel
energy consumption data. These generated data are then combined with the original dataset
to enhance the performance of energy consumption prediction. The evaluation of the
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proposed method involves metrics such as the mean absolute error (MAE), mean absolute
percentage error (MAPE), and Pearson correlation coefficient. Another study [22] puts
forth a method that integrates convolutional neural network (CNN) and long short-term
memory (LSTM) for the prediction of electric charges. The performance of this approach
is compared with other models, including LSTM, XGBoost, and radial basis functional
network (RBFN), using metrics such as RMSE, MAPE, MAE, and goodness of fit (R2).
Taking a different approach [46], a non-parametric regression model is introduced, utilizing
Gaussian process (GP) for the selection of input data to predict electricity consumption in
buildings. The study evaluates the effectiveness of support vector regression (SVR), LSTM,
and random forest (RF) through metrics such as symmetric mean absolute percentage error
(sMAPE), MAE, and RMSE. Various models and metrics have conducted extensive analyses
to predict energy consumption [47–50]. These studies involve evaluating the performance
of models like random forest (RF), support vector regression (SVR), multilayer perceptron
(MLP), and others. The metrics employed in these evaluations include the mean absolute
percentage error (MAPE), R2, RMSE, and more. A comprehensive summary of the most
recent related work is presented in Table 1.

Table 1. Summary of the most recent related work.

Proposed Technique(s) Main Objective Ref. Year

Trilinear deep residual network with
self-adaptive dropout method based on

hierarchical clustering and Gaussian noise.

To put forth a resilient model that addresses challenges
related to vanishing and exploding gradients, tackles

overfitting concerns, and concurrently enhances
forecasting accuracy.

[51] 2021

Hybrid interval forecasting model combining
k-NN optimized by genetic algorithm (GA),

DBN and self-adaptive kernel density estimation
techniques

To showcase the effectiveness of the proposed interval
forecasting model in terms of precision and adaptability,
all while maintaining the simplicity of the forecasting

procedures.

[52] 2021

Online adaptive RNN To achieve higher accuracy than the stand-alone offline
LSTM network [53] 2021

The algorithms of concrete dropouts, deep
ensembles, Bayesian NNs, deep Gaussian
processes, and functional neural processes

To delve into the probabilistic extensions and
performance capabilities of DL algorithms. [54] 2021

Non-linear fully connected feed-forward ANN
by autoencoder with localized stochastic

sensitivity

To suggest a DL model with the primary goal of
improving prediction accuracy and reliability by

minimizing errors, which are characterized by the
training error and stochastic sensitivity.

[55] 2021

k-means CNN-LSTM forecast model with
clustering approach

To acquire dependable energy consumption data for an
academic building, specifically for Demand Response

(DR) application purposes.
[56] 2021

Asynchronous deep reinforcement learning (RL)
based model with deterministic policy gradient

To tackle the challenges of high temporal correlation
and convergence instability in STLF by employing a

deep RL model.
[57] 2021

Bidirectional LSTM based sequence to sequence
regression approach

To assess the effectiveness of the proposed model by
comparing it with other competitive techniques on both
public holidays and regular days, considering factors

such as accuracy and its performance under conditions
of limited data availability.

[58] 2021

Ensemble learning model using multi-modal
multi-objective evolutionary algorithm and

random vector functional link network-based
ensemble learning

To uncover additional trade-off multimodal solutions by
leveraging the mapping capabilities of the proposed

ensemble learning approach within the context of STLF
problems.

[59] 2021

CNN
To improve the model’s capability to capture non-linear

relationships, a proposed feature selection process is
introduced.

[60] 2021
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Table 1. Cont.

Proposed Technique(s) Main Objective Ref. Year

Deep RNN To enhance forecasting accuracy and performance,
especially in the presence of uncertain model dynamics. [61] 2021

Deep RL
To contemplate the utilization of a pre-trained dataset,

as opposed to a random one, when presenting LF results
with the aim of optimizing DR applications.

[62] 2021

RNN, vanilla LSTM, stacked LSTM, bidirectional
LSTM and GRU

To assess the performance of LF, a comparative analysis
is conducted involving RNN, three different variants of

the LSTM model, and GRU.
[63] 2021

A prioritized experience replay automated RL To provide a coupled approach with multi period
forecasting and DR program. [64] 2021

Hybrid network consisted the layers of
autoencoder LSTM, bidirectional LSTM, and

stack of LSTM

To showcase the superior performance of the proposed
hybrid model when tested with a dataset collected from
a residential home, in comparison to previous studies

with similar objectives.

[65] 2021

Comparative analysis with linear regression,
tree-based regression, linear support vector
machine (SVM), quadratic SVM, cubic SVM

and RNN

To evaluate the performance of various ML and
DL-based residential LF models. [66] 2021

CNN with squeeze-and-excitation modules
To depict the robust relationship between climate

variables and the volatile load demand in residential
settings through the proposed model.

[67] 2021

Past vector similarity
To predict the load at a finer granularity by extracting
precise load patterns associated with the occupants’

routines and socio-economic values.
[68] 2021

RNN with LSTM
To evaluate the predictive performance of the proposed

model in comparison to other models utilizing the
same dataset.

[69] 2021

Separate use of LSTM and GRU To show that the accuracy performance of STLF better
than the longer focused forecasting models. [70] 2021

Residential LF framework combined by k-means
clustering algorithm and federated learning

To institute a collaborative training procedure by
leveraging fine-grained monitored consumption data. [71] 2021

CNN sequence to sequence model with an
attention mechanism based on a multi-task

learning method

To demonstrate the superior accuracy performance of
the proposed model. [72] 2021

Deep forward NN by automated selecting the
best Box–Jenkins models To obtain higher accuracy than the shallow networks. [73] 2021

LSTM by mix-up and transfer
learning techniques

To suggest a dependable model by considering the
shortage of sufficient historical data on consumption, a

factor that diminishes accuracy.
[74] 2022

Backward-eliminated exhaustive ensemble
model for future selection method, and the LF

techniques of k-NN, CNN, RNN and SVR.

To achieve higher accuracy, the proposal includes a
backward-eliminated exhaustive approach for the

feature selection technique.
[75] 2022

Ensemble model with LSTM, GRU, and TCN
To illustrate that the ensemble models proposed exhibit

superior performance compared to traditional
individual models.

[76] 2022

LSTM, federated stochastic gradient descent and
federated averaging.

To train a single federated learning-based model when
dealing with multiple smart meters, thereby eliminating

the necessity of sharing local data.
[77] 2022

Federated learning model with
ANN architecture

To meet the privacy and security requirements for
residential LF by considering the dynamic power

demand data from smart meters.
[78] 2022
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Table 1. Cont.

Proposed Technique(s) Main Objective Ref. Year

CNN based on wavelet and varying
mode decomposition

To extract more detailed spectral and temporal
information to improve forecasting performance,
particularly in situations where exogenous data

are unavailable.

[79] 2022

Hybrid model including the CNN and an
attention-based sequence to sequence network.

To enhance the forecasting performance by capturing
the long-term spatial and temporal features inherent in

the data.
[80] 2022

Consecutive applications of STLF network with
a layer of GRUs and STLF network constructed

by stacking several TCNs

To improve the DL-based elastic model, ensuring robust
performance under diverse conditions, such as

variations in accommodation, temperature, humidity,
and wind speed.

[81] 2022

Ensemble structure based on LSTM and XGBoost
To suggest a more accurate and scalable model, aimed at

alleviating some of the limitations present in
current approaches.

[82] 2022

Two stage encoder-decoder architecture based
on receptive field-based dilated causal

convolutional and bidirectional LSTM networks.

To increase the STLF performance by
encoder–decoder configuration. [83] 2022

A dynamic ANN model motivated by
meta-learning

To introduce a fine-tuning approach for predicting
highly non-stationary points, aiming to implement a

robust forecasting procedure.
[84] 2022

LSTM with back propagation NN and XGBoost To seek a balanced solution to the trade-off between
forecasting accuracy and computational speed. [85] 2022

Ensemble model with XGBoost and
light-gradient boosting machine (GBM), RF

regression and stacking regressor

To analyze the correlation between various variables in
the dataset and assess the model performance with a

focus on the most influential variables.
[86] 2022

Bidirectional LSTM

To suggest seasonal segmentation as a strategy to
achieve relatively higher accuracy in the forecasting

procedure. This approach considers the seasonal factors
specific to the dataset of the geographical territory,

enhancing the precision of predictions.

[87] 2022

A multi-channel bidirectional nested LSTM
framework

To improve the prediction accuracy by following
multiple sub-signal processing approach. [88] 2022

XGBoost To determine the occurrence range of peak load
considering the load, weather and time factors. [89] 2022

Hybrid model called as variational autoencoder
bidirectional LSTM

To demonstrate the effectiveness of the proposed
method compared to classical models. [90] 2022

Autoencoder based LSTM

To introduce a dual-channel structure in the encoder
section to extract various levels of time series data.

Furthermore, a three-channel output structure in the
decoder part is recommended to augment the model’s

representation ability.

[91] 2022

ML models of SVR, RF, XGBoost, light-GBM,
adaptive boosting, bidirectional LSTM, GRU,

and a DL regression model.

To specify best features and searching for nest ML
model for predicting the hourly demand. [92] 2022

Hybrid model with integrated GA
bidirectional GRU

To introduce a more stable and reliable model compared
to models developed using classical methods. [93] 2022

ML approach with deep ANN and decision
tree-based prediction

To show that the ML algorithms and regression analysis
have adequate accuracy for LF. [94] 2022

Hybrid structure with empirical mode
decomposition, one-dimensional CNN, TCN, a

self-attention mechanism, and a LSTM

To propose hybrid model having more stable and
accurate prediction for STLF problem. [95] 2022
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Table 1. Cont.

Proposed Technique(s) Main Objective Ref. Year

Joint structure with multi-feature fusion,
self-attention mechanism, convolutional

graph network

To obtain better prediction performance than some of
the benchmark models. [96] 2022

Hybrid structure with CNN, LSTM and MLP To propose a solution that offers both adequate accuracy
and robustness for LF problems. [97] 2022

A self-adaptive DL model with particle swarm
optimization (PSO)

To enhance the accuracy, robustness, repeatability, and
self-adaptive capability in load prediction. [98] 2022

On the one hand, predicting short-term load is challenging due to its high correlation
with residents’ stochastic behavior, which makes it difficult to predict [20]. On the other
hand, short- and very short-term loading predictions favor ML methods that are capable of
modeling building and occupancy characteristics, as well as environmental data. In this
study, we aim to study the performance of ML modeling using a hybrid technique that
integrates DL methods to enhance electricity LF.

3. Materials and Methods
3.1. Dataset Description

The Tetouan power consumption dataset, publicly available and used in this study,
spans a one-year time series from 1 January 2017, to 31 December 2017. The dataset cap-
tured power consumption measurements at regular 10 min intervals, ensuring a complete
and continuous set of data without any missing values. The dataset was collected from
three different distribution substations located in the Quads, Boussafou, and Smir zones of
Tetouan City, situated in northern Morocco. In addition to power consumption readings,
the dataset includes various weather-related information such as temperature and humid-
ity. These weather data provide additional context for analyzing and understanding the
relationship between power consumption and environmental conditions. Each data entry
in the dataset provides power consumption information at 10 min intervals. Additionally,
complementary data about the calendar and weather conditions are included, enhancing
the dataset’s richness and potential for deeper analysis. By leveraging the comprehensive
Tetouan power consumption dataset, researchers can gain insights into the dynamics of
power consumption in different districts of the city. This dataset, with its detailed power
consumption measurements, calendar information, and weather conditions, offers valuable
opportunities to study load patterns, forecast power demands, and develop advanced
prediction models for short-term LF.

This paper conducts a statistical analysis of the dataset to explore the relationships
among the different variables, as shown in Table 2. The statistical analysis conducted on the
dataset involves computing various descriptive statistics for each variable. The rationale
behind this analysis is to gain insights into the distribution, central tendency, variability,
skewness, and kurtosis of the data. By calculating these statistics for each variable in the
dataset, we can gain a better understanding of the data’s characteristics. These statistics
can help identify patterns, outliers, and the overall shape of the distributions. They provide
a summary of the dataset’s properties and serve as a foundation for further analysis and
decision making.
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Table 2. Statistical analysis of the descriptors and target.

Mean STD Maximum Minimum Skewness Kurtosis

Temperature (◦C) 18.81 5.82 40.01 3.247 0.197 −0.303

Humidity (g·m−3) 68.26 15.56 94.8 11.34 −0.625 −0.122

Wind Speed (m/s) 1.96 2.35 6.48 0.05 0.462 −1.783

General Diffuse Flows (◦C) 182.7 264.4 1163.0 0.004 1.307 0.403

Diffuse Flows (◦C) 75.03 124.21 936.0 0.01 2.457 7.003

PowerConsumption_Zone1 (KW) 32,344.97 7130.56 52,204.4 13,895.7 0.229 −0.754

PowerConsumption_Zone2 (KW) 21,042.51 5201.47 37,408.87 8560.08 0.329 −0.437

PowerConsumption_Zone3 (KW) 17,835.41 6622.17 47,598.33 5935.17 1.024 1.086

Figure 1 depicts the distribution of each data factor namely the temperature, humidity,
wind speed, general diffusion flows, and diffusion flows. As observed from Table 2 both
the general diffusion flows and diffusion flows are suffering a positive tail, Figure 1 shows
how severely the diffusion flows are skewed. The wind factor has two clear modes, while
the temperature factor has two close modes.
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Figure 1 depicts the distribution of each data factor namely the temperature, humid-
ity, wind speed, general diffusion flows, and diffusion flows. As observed from Table 2 
both the general diffusion flows and diffusion flows are suffering a positive tail, Figure 1 
shows how severely the diffusion flows are skewed. The wind factor has two clear modes, 
while the temperature factor has two close modes.  

 
Figure 1. Data feature distribution analysis using violin plot. Figure 1. Data feature distribution analysis using violin plot.

Figure 2 illustrates the power consumption of the three zones by looking at the month
and day of a week. For Zone 1 and 2, the power consumption is at its peak in August, while
Zone 3 July is the month of power’s highest demand. Also, the month boxplot of Zone
3 showed many outliers with high power consumption in February, March, April, May,
July, August, September, October, and November. Such abnormal power consumption is
also reflected in the Day boxplot subfigure. In general, the power consumption during the
weekdays is almost similar. However, in Zone 1 and 2, the power consumption is a little
less during Sundays.
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Pearson’s correlation coefficient, denoted as RHO, measures the strength and direc-
tion of linear relationships between two variables. It ranges from −1 (perfect negative
correlation) to +1 (perfect positive correlation), with 0 indicating no linear relationship.
When applied to evaluate relationships between independent and dependent variables,
RHO helps identify which independent variables are more strongly associated with the
dependent variables in a linear manner. The analysis conducted in our study is illustrated
in Figure 3. The Temperature variable exhibited the highest correlation when compared
to other independent variables, with correlation coefficient values of 0.44, 0.39, and 0.49



Electronics 2023, 12, 4909 11 of 27

in relation to the three target variables (Power Consumption_Zone1, Power Consump-
tion_Zone2, and Power Consumption_Zone3). On the other hand, the Humidity variable
showed comparable correlation coefficient values to the three targets, ranging from −0.23
to −0.29, suggesting a moderate negative linear relationship. In contrast, the Wind Speed
and General Diffuse Flows variables demonstrated low correlation coefficient values, with
the Diffuse Flows variable exhibiting nearly no correlation with the three target vari-
ables. These findings provide valuable insights into which independent variables have
the most substantial linear impact on the dependent variables, aiding in model selection
and interpretation.
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3.2. Machine Learning Methods
3.2.1. Linear Regression

Linear regression models the relationship between an output variable and one or
more input variables. It is one of the most widely used techniques for data analysis and
prediction. For the case of one input variable, we assume that the output variable is a linear
function of that input variable. The equation of the simple linear regression model is

y = β0 + β1x + ε (1)

where y is the dependent variable, x is the independent variable, β0 is the intercept, β1 is
the slope, and ε is the error term.

The simple linear regression is scaled up to model the relationship between a set of
multiple input variables to one output variable. In this case, we assume that the output
variable is a linear combination of the input variables. The equation of the multiple linear
regression model is

y = β0 + β1x1 + β2x2 + . . . + βkxk + ε (2)

The goal of linear regression is to estimate the values of the parameters (β0, β1, . . . , βk)
that best fit the data. There are different methods to perform this, such as ordinary least
squares, maximum likelihood, or Bayesian inference.
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3.2.2. Ridge Regression

Ridge regression enhances the linear regression by slightly changing its cost function,
which results in less overfit models. It does so by adding a penalty term to the ordinary
least squares (OLS) estimator, which shrinks the coefficients of the model to zero. This
penalty term is proportional to the square of the L2-norm of the coefficients, also known
as the ridge parameter. By choosing an appropriate value for the ridge parameter, we can
trade off some bias for lower variance and improve the prediction accuracy of the model.
The Ridge regression minimizes the following cost function:

J(φ) = ∑n
i=0

(
(∑p

k=0 βkxk)− yi

)2
+ λ∑p

j β2
j (3)

where y is the actual output, λ is coefficient that controls the Ridge penalty applied to
the regression model. Often Ridge regression is employed in scenarios where the input
variables are highly correlated. Figure 3 shows Temp and Hum input variables with 0.5 or
more correlation with other input variables.

3.2.3. Support Vector Regression

Support vector regression (SVR) is an ML technique that can be used to model the
relationship between a dependent variable and one or more independent variables. SVR is
based on the idea of finding a function that has at most epsilon deviation from the actual
data points for all the data points and at the same time is as flat as possible 1. In other
words, SVR tries to fit a smooth curve that minimizes the error between the predicted and
observed values, while also avoiding overfitting the data.

SVR has some advantages over other regression methods, such as being able to handle
nonlinear and high-dimensional data, being robust to outliers and noise, and having a
unique solution that does not depend on the initial conditions. However, SVR also has
some drawbacks, such as being computationally expensive, requiring careful tuning of the
parameters, and being sensitive to the scale of the input features.

3.3. Deep Learning Methods
Deep Forwarded Neural Network (DFNN)

DFNN represents a classical model in DL research, revered for its ability to sift through
extensive input variables and deliver highly accurate predictions in regression tasks [99].
Its architectural design is structured into three pivotal components: the input layer, the
hidden layer, and the output layer. To ward off overfitting during training, a dropout layer
is strategically inserted between the input and hidden layers, selectively pruning neurons
at random intervals to enhance generalization performance [100]. DFNN’s training process
encompasses fine-tuning the hidden layers, neuron configurations, and the number of
iterations. Rigorous cross-validation procedures are employed to scrutinize the model’s
performance, rigorously assessing its efficacy across test and training datasets.

4. Proposed Approach

Predicting electricity power consumption is crucial for enhancing the efficiency and
productivity of utility systems. ML models are renowned for their accuracy in this context.
The goal of our study is to predict the electricity power consumption every 10 min, and/or
every hour with the determining objective of which approach is the most successful.
The proposed methodology combines data preprocessing, DL model building, learning
rate schedule, early stopping, and model evaluation techniques to train a DL model for
regression tasks on the provided dataset, as shown in Figure 4.
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While our hybrid predictive model has been meticulously designed to enhance multi-
variate time series forecasting accuracy within the energy sector, its adaptability extends
to other domains such as industry, residential, and commercial applications. The model’s
flexibility allows for customization to address the unique characteristics of each sector,
leveraging techniques like forward DL, hyperparameter optimization, and feature sig-
nificance analysis. Beyond the energy sector, the model’s potential lies in optimizing
operational efficiency, from production schedules in industries to demand-side manage-
ment in residential areas and strategic energy planning for commercial establishments.
Real-world applications and case studies in diverse settings can underscore the model’s
broader impact, showcasing its versatility in contributing to accurate forecasting across
various sectors. While acknowledging the need to consider sector-specific factors in the
adaptation process, our work suggests that the methodologies employed hold promise for
advancing forecasting capabilities beyond the energy sector, offering a valuable tool for
enhancing operational planning and resource allocation across different industries.

4.1. Data Preprocessing

In the data preprocessing stage, several techniques are employed to transform the
input variable “DateTime” into more appropriate forms, including Year, Month, Day, Hour,
and Minute. Moreover, the time scale is adjusted from 10 min intervals to 60 min intervals
to enable short-term load forecasting for the subsequent hour. Additionally, standardization
is applied to the input variables as part of the data preprocessing pipeline.

4.2. Model Development

Model development comprises different components, as summarized in the follow-
ing subsections.
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4.2.1. Deep Learning

In this study, a DL model was constructed using the Keras library [101,102], particu-
larly the Sequential model, which facilitates the creation of a linear stack of layers. The
model architecture comprises densely connected layers, known as Dense layers, which
incorporate activation functions to introduce non-linearity and dropout regularization to
prevent overfitting. The model was compiled using the mean squared error (MSE) loss
function, which measures the discrepancy between predicted and actual values, and the
RMSprop optimizer, which adjusts the model’s parameters to minimize the loss function
during training [103].

4.2.2. Learning Rate Scheduling

The ReduceLROnPlateau callback from the Keras library was employed in this study
to implement the learning rate scheduling [104,105]. This technique dynamically adjusts
the learning rate during the training process based on the validation loss. By monitoring
the validation loss, the callback reduces the learning rate when the loss plateaus, aiming to
enhance the model’s convergence and overall performance. This adaptive adjustment of
the learning rate facilitates efficient training by allowing the model to make smaller steps
toward the optimal solution when progress becomes slower.

4.2.3. Early Stopping

The EarlyStopping callback from the Keras library was employed in this study to
implement the early stopping technique [106]. During the training process, this callback
continuously monitors the validation loss and halts the training if the loss does not improve
for a predefined number of epochs. This technique helps prevent overfitting by stopping
the model from further optimizing its performance on the training data at the expense of
generalization. By selecting the model with the best performance on the validation set,
early stopping allows for the retention of the model that exhibits optimal performance
without compromising its ability to generalize to unseen data.

4.3. Model Training and Evaluation

To evaluate the efficacy of our proposed model, we partitioned the dataset into training
and testing subsets, adhering to an 80–20 ratio. Subsequently, we conducted a comparative
analysis by juxtaposing the predicted power consumption values against the corresponding
ground truth data within identical time intervals. This rigorous assessment facilitated the
evaluation of the model’s accuracy and overall performance. The DL model is trained using
the fit function, which iterates over the specified number of epochs. During training, mini-
batches of size 64 are utilized, allowing for efficient processing of the training data [107].
The learning rate scheduling and early stopping callbacks are incorporated into the training
process, ensuring dynamic adjustment of the learning rate, and stopping the training if
the validation loss does not improve. This approach optimizes the model’s convergence
and prevents overfitting, leading to improved performance and generalization capabilities.
Following the training phase, the trained model is employed to make predictions on the
preprocessed testing set. The predictions obtained are then evaluated using commonly
used regression evaluation metrics described in the next subsection. By examining these
evaluation metrics, the performance and effectiveness of the trained model can be assessed.

4.4. Hyperparameter Optimization

To optimize the hyperparameters of the Keras model, we employed a combination
of techniques. First, we utilized Randomized Search CV, which is a randomized search
algorithm from scikit-learn, to perform a hyperparameter search. The search space included
various hyperparameters such as the learning rate, dropout rate, number of epochs, batch
size, and activation function. This allowed us to explore a range of hyperparameter combi-
nations and identify the best configuration based on the specified evaluation metric, which
was the negative mean squared error. To integrate the Keras model with the hyperparam-
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eter search, we used the Keras Regressor wrapper. This wrapper provided a scikit-learn
compatible interface for the Keras model, enabling us to incorporate it into the Randomized
Search CV process. The Keras Regressor wrapper allowed us to create and compile the
Keras model within the create_model function, which defined the model architecture and
optimization parameters based on the given hyperparameters. After performing the hyper-
parameter search and obtaining the best hyperparameters, we trained the Keras model with
these optimal settings. The model was trained on preprocessed training data, using the
best number of epochs and batch size determined by Randomized Search CV. The training
process involved fitting the model to the training data and updating the model’s weights
and biases iteratively to minimize the mean squared error loss. Finally, we evaluated the
performance of the trained model by making predictions on the preprocessed test set. The
predicted values were compared with the actual target values using different evaluation
metrics. These metrics provided insights into the accuracy and predictive capability of
the best Keras model identified through the hyperparameter optimization process. By
combining Randomized Search CV, the Keras Regressor wrapper, model training with the
best hyperparameters, and model evaluation, we were able to efficiently search for and
assess the performance of the optimal Keras model for the given dataset.

5. Results and Discussion

In this section, we present the comprehensive results of our study on household LF,
showcasing the efficacy of our proposed hybrid DL model with hyperparameter optimiza-
tion. We begin by examining the model’s performance in predicting electricity consumption
at both 10 min intervals and hourly intervals, shedding light on its capabilities in capturing
intricate temporal patterns. Furthermore, we delve into a rigorous evaluation of the model’s
accuracy, utilizing a range of statistical metrics to quantify its forecasting precision. These
results not only highlight the advancements achieved in household LF but also underline
the potential for enhancing energy management systems with state-of-the-art predictive
models. To assess the efficacy of our ML models, we employ five distinct statistical metrics
that have been previously identified as valuable for power consumption forecasting. These
metrics are defined as follows:

R2 assesses the proportion of variance in the target variable that is explained by the
model. It ranges from 0 to 1, with higher values indicating a better fit.

R2 = 1 − SSres

SStot
(4)

where SSres is the sum of squared residuals (sum of squared differences between the actual
and predicted values), and SStot is the total sum of squares (the sum of squared differences
between the actual values and the mean of the actual values).

RMSE represents the standard deviation of the residuals and is expressed in the same
units as the target variable.

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2 (5)

where n is the number of samples; yi and ŷi are the actual and predicted values of the target
variable for the ith sample, respectively.

5.1. Machine Learning Methods

We assessed some baseline ML methods to analyze the input variables’ relation-
ship with the target variable and establish the baseline performance of traditional ML
methods using the Tetouan City dataset. Table 3 presents the configuration of machine
learning methods.
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Table 3. Configuration of machine learning methods.

Machine Learning Method Parameters

Linear Regression Ordinary Least Square (OLS) method

Ridge Regression Regularization alpha = 2

Support Vector Regression Kernel = rbf, C = 2, degree = 3, gamma = scale

We built ML models and assessed them to establish a baseline performance using the
Tetouan City dataset. Table 4 tabulates the performance of three known machine learning
techniques. We noticed that coefficients of determination R2 were low in all experiments.
This affects the RMSE per model and indicates the need for better models.

Table 4. Performance baseline machine learning methods.

Method Target R2-Score RMSE

Linear Regression

PowerConsumption_Zone1 0.64 4236.84

PowerConsumption_Zone2 0.58 3365.45

PowerConsumption_Zone3 0.6 4150.29

Ridge Regression

PowerConsumption_Zone1 0.64 4236.83

PowerConsumption_Zone2 0.58 3365.44

PowerConsumption_Zone3 0.6 4150.28

Support Vector
Regression

PowerConsumption_Zone1 0.44 5336.56

PowerConsumption_Zone2 0.47 3799.05

PowerConsumption_Zone3 0.29 5573.99

5.2. Deep Neural Network Design

In this experiment, we employ DL methods by constructing a neural network model,
defining its architecture, training it with data, and evaluating its performance using ap-
propriate metrics. The algorithm to build the DNN was stated by creating a sequential
model using ‘Sequential ()’ from ‘tensorflow.keras.models’, which allows for building a
neural network model by stacking multiple layers sequentially. The dense layers were
added to the model to ensure full connection among the neurons in the consecutive layers.
The model uses a rectified linear unit (relu) as an activation function. We applied regular-
ization to the model’s weights in the dense layers. In this experiment, L1 regularization
with a regularization strength of 0.001 was used. Additionally, dropout regularization
was utilized to avoid overfitting by randomly setting a fraction of input units to 0 during
training to reduce the co-adaptation of neurons. The model was compiled with the loss
function set to MSE metric to calculate the mean squared difference between the predicted
and actual values. The RMSprop optimizer was incorporated as an adaptive learning rate
optimization algorithm that helps in faster convergence. Lastly, Callbacks are used for
dynamic adjustment of the learning rate and early stopping.

The main structure and number of parameters to learn per layer are summarized
in Table 5. To avoid overfitting, the DNN was designed with dropout layers where the
algorithm drops 20% of the computed information randomly to regularize the model.
Moreover, the design uses the relu activation function due to it being able to be computed
faster than other complex activation functions.

In this model, ‘ReduceLROnPlateau’ reduces the learning rate when a metric (in this
case, validation loss) stops improving [31]. ‘EarlyStopping’ stops training when the metric
(validation loss) does not improve for a certain number of epochs. Table 6 demonstrates
the obtained performance measurements in the context of the three targets. In addition, it
displays the RMSE associated with predicting the power load at its peak point.
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Table 5. Deep neural network structure (learning rate = 0.1).

Layers Layer Shape Parameters per Layer Activation Function

Dense 128 Neuron 1408 RELU

Dropout NA Drop rate: 0.2 NA

Dense 128 Neuron 16512 RELU

Dropout NA Drop rate: 0.2 NA

Dense 1 Neuron 129 Sigmoid

Table 6. Performance metrics using the DL model.

Target R2-Score
RMSE

(Average)
RMSE

(Peak Point)

PowerConsumption_Zone1 0.96 1466.49 1709.92

PowerConsumption_Zone2 0.96 1039.71 1362.11

PowerConsumption_Zone3 0.97 1215.52 1306.34

Figures 5–7 present distinct figures, each encapsulating the outcomes derived from our
proposed DL model in the context of Power Consumption prediction for three distinct zones,
as specified within our dataset. These figures collectively provide an intricate analysis
of our DL model’s predictive capabilities, offering valuable insights into its performance
across different zones and sample sizes. Each figure consists of three subfigures: (top)
comprehensively illustrates the results encompassing all testing samples, offering a holistic
view of the model’s performance over time, (middle) selectively focuses on a subset,
specifically 10% of the testing samples, enabling a more detailed examination of predicted
and actual data points, and (bottom) narrows the scope further, emphasizing only 1% of
the testing samples. This deliberate reduction in sample size enhances the visual clarity
of the plots, facilitating a meticulous assessment of the alignment between predicted and
actual data points.

5.3. Prediction with Hyperparameters Optimization

In this experiment, we aim to perform hyperparameter optimization using Randomize
Search CV to find the best configuration of hyperparameters for a DL model and to utilize
a Keras Regressor wrapper for this purpose. The ‘RandomizedSearchCV’ randomly passes
the set of hyperparameters calculates the score and gives the best set of hyperparameters
which gives the best score as an output. Cross-validation is a resampling method used to
test the model’s generalization ability using out-of-the-sample data chunks. The hybrid
framework trains the best model and evaluates its performance on the test data. The
components of the optimization process are explained in the following:

(1) The Keras model architecture consists of two dense layers with specified activation
functions, dropout regularization layers, and a final dense layer with one output unit.
The model is compiled with the mean squared error loss function and an optimizer,
as described above.

(2) Feature scaling on the input variables using a Standard Scaler which standardizes
features by removing the mean and scaling to unit variance.

(3) Keras Regressor wrapper for compatibility with the hyperparameter tuning algorithm.
(4) A hyperparameter search space with different settings for the learning rate, dropout

rate, number of epochs, batch size, and activation function.
(5) A Randomized Search CV object from sklearn.model_selection with the Keras Regres-

sor wrapper, the hyperparameter search space, and other parameters like the number
of cross-validation folds and scoring metric.
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(6) Hyperparameter optimization using the scaled training data to search for the best
combination of hyperparameters based on the specified scoring metric (negative mean
squared error).

(7) Optimal hyperparameters and the corresponding best model from the Randomized
Search CV object.

(8) Train the best model using the scaled training data and the best hyperparameters and
lastly make predictions on the scaled test data using the trained best model.

The proposed hybrid model was applied to the power consumption dataset to predict
the three targets independently. The hyperparameter search space given to the models
includes the following settings: ‘learning rate’: [0.1, 0.01, 0.001], ‘dropout rate’: [0.2, 0.3,
0.4], ‘epochs’: [50, 100, 150], ‘batch size’: [32, 64, 128], and ‘activation’: [‘relu’, ‘sigmoid’].
The optimal parameters that were determined for each experiment are presented in Table 7.

Table 7. Optimal hyperparameters.

Target Learning
Rate Epochs Dropout

Rate Batch Size Activation

Zone1-model 0.1 100 0.2 32 Sigmoid

Zone2-model 0.1 50 0.2 128 Sigmoid

Zone3-model 0.1 150 0.3 64 Sigmoid
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The results obtained are presented in Table 8, demonstrating the advantage of opti-
mizing the model. The table displays the RMSE associated with predicting the power load
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at its peak point. The prediction accuracy was improved significantly when comparing the
results presented in Tables 7 and 8.

Table 8. Performance metrics using the optimized model.

Target R2-Score
RMSE

(Average)
RMSE

(Peak Point)

PowerConsumption_Zone1 0.97 1169.81 1255.72

PowerConsumption_Zone2 0.98 790.02 1014.36

PowerConsumption_Zone3 0.98 864.39 983.58
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Figures 8–10 individually depict the results obtained from the optimized Keres model
for Power Consumption prediction across three distinct zones, as defined within our
dataset. These figures collectively provide a comprehensive analysis of the model’s pre-
dictive capabilities, delivering valuable insights into its performance variations across
different zones and sample sizes. Each figure comprises three subfigures: (top) offers a
comprehensive overview by displaying results for all testing samples, providing a holistic
perspective of the model’s performance over time; (middle) zooms in on a specific subset,
precisely 10% of the testing samples, facilitating a more detailed examination of predicted
and actual data points; and (bottom) further narrows the focus to a mere 1% of the testing
samples, enhancing visual clarity within the plots and enabling meticulous evaluation of
the alignment between predicted and actual data points.
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5.4. Comparison with Other Models

We performed a comparative analysis by comparing our findings against those of
other models designed for the used dataset, as detailed in the scholarly work by Salam and
Hibaoui [32]. To evaluate these models comprehensively, we employed the Root-Mean-
Squared Error (RMSE) as the established performance criterion. It is worth noting that our
model consistently demonstrates superior performance by consistently yielding the lowest
RMSE in comparison to the models reported in the existing literature. This compelling
evidence underscores the efficacy of our approach and its potential to set a new standard
in the field. Table 9 presents the results of different methods applied on the dataset of
Tetouan city.

Table 9. Experimental results using the dataset from the distribution network of Tetouan city [32].

Model Median RMSE

DFFNN 7208

DFFNN-ResNet 7397

CNN 7191.9

CNN-ResNet 6874

CNN LSTM 6744.1

CNN-ResNet LSTM 6429.1

DFFNN LSTM 6547.5

DFFNN-ResNet LSTM 6941.4

DENSENET 10220

DENSENET LSTM 7443.9

EECP-CBL 8146.2

DFFNN LSTM 5876

Proposed Model-1 1215.5

Proposed Model-2 864.4

5.5. Potential Limitations

While our proposed hybrid predictive model demonstrated notable advancements in
electric LF, it is essential to acknowledge its limitations. Understanding these shortcomings
is crucial for refining the model and guiding future research endeavors in this domain.

One of the notable limitations of our model is its sensitivity to specific characteristics of
the input data. The model’s performance may vary when applied to datasets with different
temporal patterns or levels of noise. Further research is needed to develop techniques that
enhance the model’s robustness across diverse datasets. The model’s training and evalu-
ation are based on a dataset obtained from the Distribution Network Station in Tetouan
City, Morocco. While our results demonstrate superior performance within this context,
generalizing the model to different geographic locations with distinct energy consumption
patterns may pose challenges. Future work should explore methods for adapting the model
to diverse regional characteristics. Furthermore, the proposed model heavily relies on DL
techniques, which may present challenges in terms of interpretability. Interpretability is
crucial, especially in applications where decisions impact critical infrastructure. Future
research could explore hybrid models that incorporate both DL and interpretable ML tech-
niques to strike a balance between accuracy and interpretability. Furthermore, additional
metrics can be used to measuring the peak load prediction error.

6. Conclusions and Future Work

Efficient and accurate LF is crucial for modern power generation facilities to meet
dynamic electricity demand. This work highlights the complexity of predicting electricity
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consumption due to the multifaceted factors influencing energy usage. Consequently, elec-
tricity utilities and governmental bodies are actively seeking advanced machine learning
solutions to enhance LF.

A hybrid predictive model was designed to enhance the accuracy of multivariate time
series forecasting for electricity consumption within the energy domain. The proposed
model was compared with other state-of-the-art DL models using a dataset sourced from
the Distribution Network Station of Tetouan City in Morocco. In the experiments, we
found that a simple and shallow DNN achieved great prediction performance compared to
other more complex models introduced in previous studies. In the future, we will focus on
validating the accuracy of load-forecasting shallow models by incorporating additional data
sources and refining existing algorithms. Exploring new ML techniques and considering
factors such as economic indicators, and household lifestyle changes could lead to more
precise predictions.

The implications of our research for policymakers are significant in the context of
electric LF and the utilization of advanced DL techniques. Our study offers policymakers
valuable insights into optimizing energy planning, resource allocation, and grid stability.
The enhanced accuracy of our electric LF model can inform decisions related to infras-
tructure planning and resource optimization, allowing for more efficient deployment of
both energy and computational resources. Policymakers can leverage this knowledge to
implement measures that ensure a stable and reliable electricity grid, ultimately minimizing
the risk of disruptions. Additionally, as the energy landscape evolves towards increased
reliance on renewable sources, our findings provide policymakers with guidance on inte-
grating renewable energy into the grid. The introduction of novel DL techniques prompts
considerations for supportive policy frameworks that encourage the adoption of advanced
technologies in the energy sector. Policymakers can also use the insights from our study to
develop strategies that enhance resilience to demand variability, with proactive measures
for predicted high-demand periods and the development of adaptive systems. Moreover,
the environmental impact of energy generation can be addressed through more efficient
energy use facilitated by accurate LF, aligning with sustainability and environmental goals.
In summary, our research provides actionable insights for policymakers to shape policies
that improve energy management, grid reliability, and environmental sustainability.

The limitations discussed in Section 4.4 open avenues for future research in the field of
electric LF. Future investigations should focus on developing models that are more robust
across diverse datasets, expanding the geographic applicability of the proposed model,
and exploring hybrid approaches that prioritize interpretability without compromising
predictive accuracy.
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