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Abstract: Bird’s eye view (BEV) semantic maps have evolved into a crucial element of urban intelli-
gent traffic management and monitoring, offering invaluable visual and significant data representa-
tions for informed intelligent city decision making. Nevertheless, current methodologies continue
underutilizing the temporal information embedded within dynamic frames throughout the BEV
feature transformation process. This limitation results in decreased accuracy when mapping high-
speed moving objects, particularly in capturing their shape and dynamic trajectory. A framework is
proposed for cross-view semantic segmentation to address this challenge, leveraging simulated envi-
ronments as a starting point before applying it to real-life urban imaginative transportation scenarios.
The view converter module is thoughtfully designed to collate information from multiple initial view
observations captured from various angles and modes. This module outputs a top-down view seman-
tic graph characterized by its object space layout to preserve beneficial temporal information in BEV
transformation. The NuScenes dataset is used to evaluate model effectiveness. A novel application is
also devised that harnesses transformer networks to map images and video sequences into top-down
or comprehensive bird’s-eye views. By combining physics-based and constraint-based formulations
and conducting ablation studies, the approach has been substantiated, highlighting the significance
of context above and below a given point in generating these maps. This innovative method has been
thoroughly validated on the NuScenes dataset. Notably, it has yielded state-of-the-art instantaneous
mapping results, with particular benefits observed for smaller dynamic category displays. The
experimental findings include comparing axial attention with the state-of-the-art (SOTA) model,
demonstrating the performance enhancement associated with temporal awareness.

Keywords: BEV; urban intelligent traffic management; view semantic graph

1. Introduction

Map prediction is crucial in intelligent transportation, especially in bird’s eye view
(BEV) map generation, which leverages in-vehicle cameras with real-time capabilities [1].
BEV map generation [2] is a pivotal task within intelligent transportation, offering vital
data for environmental perception and path planning in autonomous driving systems.
As shown in Figure 1, six more comprehensive perspectives are used to capture moving
vehicles and passing pedestrians.

Two primary methods for BEV map generation exist, one based on target detection [3]
and the other on semantic segmentation [4]. In the target detection approach, a deep
neural network identifies obstacles in images and then maps their locations onto the BEV
map using external camera and radar parameters [5]. On the other hand, the semantic
segmentation method involves a deep neural network classifying images at the pixel
level [6], then projecting the classification outcomes onto the BEV map using the same
external parameters [7]. Each method has its merits and demerits. Target detection is more
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precise in locating obstacles but may overlook small or occluded objects [8]. In contrast,
semantic segmentation is comprehensive but may need more clarity or misclassifications.
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BEV is a technique that transforms images from the camera perspective to the bird’s-
eye view, which can be used for semantic segmentation, vehicle detection and tracking,
and other tasks in intelligent transportation. BEV can provide a more intuitive and global
scene representation, which helps to understand the traffic flow and behavior. The key
challenge of BEV is how to deal with the semantic and positional uncertainty in the images,
and how to perform effective transformation between different planes. The above content
describes a method that uses a neural network model to solve these problems, which
can predict the binary variables for each class, the transformation matrix between planes,
and the semantic segmentation on the BEV surface from the input image. This method is
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end-to-end and does not require additional annotation or prior knowledge. This method
has a wide research scope in intelligent transportation, and it can be extended to multiple
cameras, dynamic scenes, and different road types. This method also has an impact on the
early work on BEV, such as using geometric transformation, projection matrix, or depth
estimation to achieve BEV. These works have some limitations, such as the dependence
on the camera parameters, the assumption of the scene, or the demand for computational
resources. This method tries to overcome these limitations, and improve the accuracy and
robustness of BEV, to further promote the technology in urban multimodal transportation.

Recent research focusing on converting images into BEV maps is on the cutting
edge [9–12], with relatively few reports available. This approach utilizes monocular or
binocular cameras to capture road scenes and transforms them into a bird’s-eye view
through projection. This significantly enhances the perception capabilities of autonomous
driving systems by providing more spatial information, including vehicle location, direc-
tion, speed, road geometry, and topology [13]. Image-to-BEV map research is broadly
categorized into geometry-based and deep learning-based methods. Geometry-based
methods necessitate prior knowledge of camera parameters and road plane equations
for transformation based on perspective projection principles [14]. Deep learning-based
methods, however, employ neural networks to learn transformation functions directly from
images, eliminating the need for explicit camera parameters or road plane assumptions.
Each method has its strengths and weaknesses, with simpler geometry-based approaches
requiring accurate calibration and road plane assumptions. In contrast, deep learning-
based methods [15] offer flexibility and robustness but demand substantial training data
and computational resources. Nonetheless, these methods primarily cater to real-time
in-vehicle navigation and have limitations in predicting small and medium-sized targets
at long distances, dealing with unclear outlines, and addressing position drift. This limits
their applicability in data-driven smart transportation systems [16]. To address this issue,
we posit that converting image features into BEV features, particularly in the top-down
process, does not sufficiently mine small-scale spatial information.

Our alignment model is fundamentally geared towards understanding the alignment
relationship between the vertical scan lines present within the image and the polar coordi-
nates in the BEV. We adopted a Transformer-based alignment model with a bidirectional
transformer model which includes modifying the attention mechanism so that the model
can better account for contextual information on both sides of the input sequence. This
can be achieved by modifying the way the attention score is calculated so that the model
considers both the first and second half of the input sequence when calculating contextual
weights. This meticulously captures the pairwise interaction between a scanline and its
corresponding polar coordinates within the BEV projection to achieve this objective. The
Transformer architecture is particularly well suited for addressing image-to-BEV translation
challenges. Its ability to reason about the complex interdependencies among objects, depth,
and scene lighting results in globally consistent representations. Within our approach, this
Transformer-based alignment model is seamlessly integrated into an end-to-end learning
framework. This framework takes as input a monocular image and its internal matrix,
enabling it to predict semantic BEV maps for both static and dynamic categories, as shown
in Figure 1. Predicting semantic BEV maps for both static and dynamic categories is a
challenging task because it involves dealing with various sources of uncertainty and com-
plexity. Some of the possible challenges are (1) Static categories, such as buildings, roads,
and sidewalks, may have different shapes, sizes, and orientations in the image plane, which
require accurate estimation of their depth and boundaries to map them to the BEV surface.
(2) Dynamic categories, such as cars, pedestrians, and cyclists, may have occlusions, motion
blur, and varying poses in the image plane, which require robust detection and tracking
to map them to the BEV surface. (3) The transformation between the image plane and the
BEV surface may depend on the camera parameters, the scene geometry, and the road
layout, which may not be known or consistent in different scenarios. (4) The semantic BEV
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map may have different resolutions, scales, and perspectives, which require adaptive and
flexible representation and visualization.

2. Related Work
2.1. Map Generation in Intelligent Transportation

Map generation is a critical issue within intelligent transportation, with far-reaching
navigation, planning, and safety implications [17]. Currently, various methods are em-
ployed for map generation [18–20], with the most prevalent ones involving remote-sensing
satellites and vehicle-mounted cameras.

Remote sensing satellites utilize sensors on board the satellite, including optical
cameras, radars, or laser scanners, to capture images and data from the ground [21].
Subsequently, these data are processed and analyzed to generate maps [22]. This ap-
proach offers distinct advantages, as it can cover expansive areas, deliver high-resolution
and multi-spectral information, and remain unaffected by weather and lighting condi-
tions. Nonetheless, it has drawbacks, such as extended data transmission and processing
times [23], infrequent map updates, and the inability to depict specific details accurately
and rapidly changing information, such as real-time road conditions and traffic flow [24].

In contrast, vehicle-mounted cameras strategically positioned on vehicles [25], in-
cluding front and rear-view mirrors or dashboard cameras, capture real-time images and
data from the road. These data are then processed and analyzed to create maps. The
primary strength of the method lies in its capacity to deliver real-time road information [26],
effectively reflecting dynamic changes in the map and offering detailed features like road
signs, traffic signals, and lane demarcations. However, it is not without drawbacks, as
image quality may fluctuate due to weather and lighting conditions, and it necessitates the
participation of many vehicles to ensure data consistency and accuracy.

In this context, LiDAR data, as an emerging technology, introduces new possibilities
for map generation. LiDAR can provide high-precision three-dimensional maps that are
not limited by lighting and weather conditions, so it is widely used in BEV-based intelligent
transportation scenarios. Machine learning algorithms can be trained on LiDAR data to
identify and segment roads, vehicles, pedestrians, etc., allowing for more accurate and
real-time map generation. This method overcomes some limitations of traditional methods
while providing richer information and bringing new opportunities for the development of
intelligent transportation systems.

2.2. BEV Maps Prediction

BEV map prediction is a methodology that employs bird’s-eye view maps to estimate
the position and orientation of three-dimensional objects [27]. This approach significantly
enhances the perception capabilities of autonomous driving systems, contributing to im-
proved safety and efficiency.

The fundamental principle behind BEV map prediction involves projecting three-
dimensional objects onto a two-dimensional plane, simplifying the challenges associated
with object detection and tracking [28]. The process of BEV map prediction encompasses
several key steps: First, acquiring raw data from sensors like lidar, cameras, radar, and more,
and performing preprocessing tasks such as filtering, calibration, and registration. Next, the
system extracts features like edges, corner points, colors, textures, and others [29,30] from
the raw data. These features are then used for object detection, identifying the category,
location, and size of the object. The results of object detection are subsequently employed
for object tracking, facilitating the estimation of the motion state and posture of the object.
Finally, the tracked object data are projected onto the BEV map, and further processing
steps like fusion, filtering, and optimization are carried out.

BEV map prediction boasts several advantages, notably its ability to effectively reduce
data volume and computational complexity. It enhances the precision and robustness of
detection and tracking processes, while also improving the understanding and visualization
of the scene. However, the primary challenge in BEV map prediction lies in the necessity to
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coordinate and fuse information from various sensors. Additionally, addressing issues like
occlusion, overlap, and noise is critical for ensuring the accuracy of the predictions.

2.3. Attention-Powered Image Translating

Attention-powered image translation is a methodology that leverages the attention
mechanism to facilitate the transformation of images across various domains. The attention
mechanism initially found its roots in natural language processing (NLP) to address the
alignment problem within sequence-to-sequence (seq2seq) models. The core concept
behind the attention mechanism is enabling the model to concentrate on the most pertinent
sections of the input data when generating output, thereby improving the performance
and interpretability of the model.

As deep learning has advanced, the attention mechanism has entered computer vi-
sion (CV) to handle various image-to-image conversion tasks, including style transfer,
image restoration, and image super-resolution. Attention-powered image translation, a
framework for image-to-image translation, capitalizes on the attention mechanism. It can
produce an output image that aligns with the input image while adopting the desired style
based on its content and the style of the target domain. One of the critical advantages
of attention-powered image translation is its ability to perform image conversion across
multiple domains without requiring paired data, while retaining the structure and intricate
details of the input image throughout the process.

In image translation, the attention mechanism helps the model emphasize essential
areas within the input image, facilitating the generation of an output image that aligns with
the target domain. When applied to tasks like target detection and semantic segmentation,
the attention mechanism aids the model in extracting local and global image features and
enhancing feature interaction.

Several articles have effectively harnessed the attention mechanism for image trans-
lation, target detection, and semantic segmentation. “Attention-Guided Image-to-Image
Translation with Adversarial Learning” [29]: This article introduces an image-to-image
translation approach guided by attention, employing attention maps to direct the generator
in generating an output image consistent with the target domain. Additionally, it uses a
discriminator to supervise the attention map to enhance attention map quality and inter-
pretability. “Attention-Aware Feature Pyramid Network for Object Detection” [30]: This
article proposes a feature pyramid network based on attention perception. Incorporat-
ing attention modules across various feature pyramid levels strengthens the information
flow and fusion between features, consequently boosting target detection performance.
“Attention-Guided Semantic Segmentation with Cross-Attention and Self-Attention” [31]:
This article outlines a semantic segmentation method guided by attention. It introduces a
cross-attention module between the encoder and decoder to achieve alignment between the
input image and the output segmentation map. Furthermore, it incorporates a self-attention
module within the decoder to ensure internal consistency of the output segmented maps.

2.4. Small-Size Object Prediction in Computer Vision Tasks

Object detection of small targets is an important research direction in computer vision,
which aims to identify small-sized objects from images or videos and give their locations
and categories [32]. This task is significant in many practical applications, such as medical
image analysis, driverless driving, and security monitoring. However, target detection of
small targets also faces many challenges, such as low resolution [33], occlusion, background
interference, and category imbalance. These factors lead to the performance of target
detection of small targets being much lower than that of large targets [34], especially in
complex scenes. In order to solve these problems, researchers have proposed many methods
in recent years, including improving feature extraction, enhancing feature fusion [35],
designing specialized loss functions, introducing attention mechanisms, and utilizing multi-
scale information. However, these methods still cannot completely solve the difficulty of
target detection of small targets because small targets themselves lack sufficient information
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and distinguishability. Therefore, target detection of small targets is still a direction worthy
of further research.

Semantic segmentation is an essential task in computer vision, which aims to assign
each pixel in an image to a category, thereby achieving a detailed understanding of the
image content. Semantic segmentation of small objects is a challenging sub-problem
of semantic segmentation [36], which involves detecting and segmenting objects with
small sizes, large numbers, and different shapes in images, such as crowds, cells, and
particles. The research on semantic segmentation of small targets has important theoretical
significance and practical value. It can be applied to medical image analysis, remote
sensing image interpretation, intelligent monitoring, and other fields. However, semantic
segmentation of small targets also faces many difficulties, mainly including the size of small
targets being much smaller than the receptive field [24], resulting in insufficient feature
extraction and inaccurate classification; the distance between small targets is very close,
and occlusion and confusion are prone to occur. It is challenging to distinguish boundaries;
small targets have various shapes and need a unified expression, making it difficult to
establish a practical model [37]; and the number of small targets is enormous, which
increases computational complexity and memory consumption and reduces efficiency.

There currently needs to be a perfect solution to these problems. Most existing meth-
ods are based on deep learning, using convolutional neural networks (CNN) to extract
image features and combining different strategies [38] to improve the detection and seg-
mentation of small targets. For example, some methods capture targets of different sizes by
designing multi-scale or pyramid-structured networks; some methods enhance the feature
representation of small targets by introducing attention mechanisms or adaptive sampling;
and some methods use conditional random fields (CRF) or generative adversarial networks
(GAN) to optimize boundary details of small objects. However, these methods still have
some limitations, such as sensitivity to hyperparameters, needing to be more robust to noise
and illumination changes, and high demand for training data and computing resources.
Therefore, semantic segmentation of small objects is still an open and exciting research
direction worthy of further exploration and innovation.

3. Method

The input is N ×M first-view observations sampled from a spatial location in a 3D
environment, where N is different angles and M is different modalities (e.g., RGB images
and depth images). The output is a top-down view semantic map, which is a map captured
by a camera from a certain height from top to bottom, and each pixel is annotated with
a semantic label. What we define is cross-view semantic segmentation, i.e., given the
first-view observation as input, the algorithm must generate a semantic map from the top-
down view. From semantic segmentation, the categories, locations, shapes and attributes
of different objects in the environment, as well as the relationships between them, can be
obtained. There are 14 semantic categories in this experiment, including roads, sidewalks,
buildings, trees, cars, pedestrians, etc. At the same time, the relationship between the
plane and the BEV is obtained through the perspective transformation module (VTM). The
VTM transforms the feature map of the first perspective from the first perspective space to
the top-down perspective feature space and fuses them into. A final feature map is then
decoded by a decoder into a top-down semantic map.

3.1. Image Feature Translating

As shown in (1), Y represents the formulation scenario, ϕ represents the learning
neural network model trained to resolve semantic and positional uncertainties, and I
generates a semantic segmentation bird’s-eye view of Y, a matrix { ∈ R3×3 including the
input image I ∈ R3×H×W . Next, we predict a set of binary variables k ∈ K for each class,
transformations between planes PI and BEV surfaces PBEV . A representation that only
encodes semantics and depth is constructed in the image plane. We use an end-to-end
method to perform semantic segmentation on BEV to achieve transformation from PI to
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PBEV . I represents the image in intelligent transportation. Mapping the image to the BEV
surface requires a mapping to determine the relationship between the pixels and the BEV
aurora. There is a one-to-one correspondence between each random vertical scan line and
the relevant ray. As shown in the Figure 2, the discretized static depth of the element
on the vertical scan line of the image is at most r meters away from the camera. In the
image sequence SI ∈ RH , H here represents the height of the column. Find the BEV ray
Sφ(BEV) ∈ Rd, and d here represents the radial direction from the camera. Distance, Sφ(BEV)

i ,
represents radial elements.

P
(

Yk
∣∣∣I, c

)
= φ(I, c) (1)
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portation scenarios.

This mapping can be viewed as the process of assigning the semantic objects in PI to
their position slots on the BEV plane and on the ray. This includes learning the alignment
between input scan lines and output polar rays via an attention mechanism.

Semantically segmented image columns and their corresponding polar BEV ground
truths, the relationship between columns and ground truth rays mentioned here is hard
aligned (explicit assignment of each pixel to a unique semantic category, i.e., each pixel can
only belong to a class), i.e., each pixel in the ray corresponds to a single semantic class in
the image column, so we have to resolve the only uncertainty: the depth of each pixel.

However, we must assign features that help solve semantics and depth, so the chal-
lenging alignment task is unsuitable now. Instead, we need soft alignment (soft alignment
methods allow each pixel to be assigned to multiple semantic categories with a certain prob-
ability and, therefore, can produce richer segmentation results, reflecting the uncertainty of
the segmentation results), where each of the polar rays pixels is assigned a combination of
elements in the image column, a context vector.

Specifically, when generating radial elements, we use convex combinations of elements
in image columns SI (they are used in many aspects such as weights, sparse representations,
mixture distributions, and optimization problems. By rationally using convex combinations,
we can better establish and solve problems in deep learning models.) and the radial
position ri of elements Sφ(BEV)

i along polar rays. h ∈ RH×C, where h represents the input
sequence, and H represents the height of the image column. yεRe×c represents a position
query encoding the relative position along a polar ray of length e, where c represents the
context. Generate context c based on input sequence h generates context based on input
sequence h and query y. The input sequence h and query y are projected through WQεRC×D
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and WkεRC×D to the corresponding representation of query Q and key K, as shown in
(2) and (3):

Q(yi)
= yi ×WQ (2)

K(hi)
= hi ×WK (3)

Generate unstandardized alignment scores after projection ei,j in (4).

ei,j =
< Q(yi), K(hi) >√

D
(4)

Then, as shown in (5), we use Softmax to normalize the energy scalar to generate a
probability distribution in memory:

αi,j=
exp

(
ei,j

)
∑H

k=1 exp(ei,k)
(5)

The weighted sum of the final context k is computed using the context phase volume:

ci = ∑H
j=1 αi,jK

(
hj
)

(6)

In this way, the generation context allows each radial groove ri to independently
collect information from the image column and represents the initial assignment from the
image to its BEV corresponding position group. This approach is similar to boosting pixels
based on depth. However, it is promoted to a depth distribution and is therefore able to
overcome the common pitfalls of sparsity and elongated object frustums. This means that
the image context available to each radial slot is decoupled from its camera distance.

Finally, in order to generate BEV features, Sφ(BEV)
m at radial position r performs a global

operation on the specified context for all radial positions c = {c1 . . . cm}.

3.2. Encoder and Decoder

From a spatial location in the 3D environment, we first sample N first-view obser-
vations from N angles and M and modalities (N = 6, M = 2) at even angles to capture
all-round information in intelligent transportation. N first view observations are encoded
by M encoders respectively for M corresponding modalities. The first view observations
are encoded by M encoders for M corresponding modalities. These CNN-based encoders
extract N spatial feature maps for the first graph input, and then all these feature maps are
fed into the view transformer module (VTM).

The view converter module converts these view features from the first view space
to the top-down view feature space and fuses them to obtain a final feature map, which
already contains sufficient spatial information. Finally, convolutional decoder alignment is
used for decoding to predict top-down view semantic maps.

However, the encoder-decoder architecture has succeeded in classic semantic segmen-
tation; our experiments show that it performs poorly in cross-view semantic segmentation
tasks. This is because the receptive field of view of the output spatial feature map is roughly
aligned with the input spatial feature map in standard semantic segmentation architectures.

However, in cross-view segmentation, each pixel painted in the top-down view should
consider all input first-view feature maps, not just the local receptive field region. After
considering the shortcomings of current semantic segmentation structures, we designed
the View Transformer Module (VTM) to learn the dependencies of all spatial positions
between the first view feature map and the top-down view feature map. VTM does not
change the shape of the input feature map so that it can be plugged into any existing
encoder-decoder-type network architecture for classical semantic segmentation. It consists
of the View Relationship Module (VRM) and View Fusion Module (VFM). The central plot
of Figure 2 illustrates the entire process: the first view feature map is flattened while the
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channel dimensions remain unchanged. Then, we use the view relationship module R to
learn the relationship between any two-pixel positions in the flattened first-view feature
map and the flattened top-down view feature map.

ft[m] = Rm( f [1], . . . , f [n], . . . f [HW]) (7)

where m, n ∈ [0, HW) are the indices along the flat dimension of the top-down view feature
map t∈ RHW×C and the first view feature map f∈ RHW×C, respectively, Ri models the
relationship between the m-th pixel on the top-down view feature map and each pixel on
the first-view feature map. Here, we simply use the multilayer perceptron (MLP) in the
view relation module R. Afterwards, the top-down view feature map is reshaped back to
H ×W × C. Each first view input has its own VRM to obtain the top-down view feature
map tm ∈ RH×W×C based on its own observations.

We use VFM to fuse these top-down view feature maps to aggregate information
from all observation inputs. View encoders and decoders. To balance efficiency and
performance, we use ResNet-18 as the encoder. We remove the last Residual Block and
Average Pool layers so that the resolution of the encoded feature map remains large, thus
better preserving the details of the view. We adopt the pyramid pooling module used
in [39] as the decoder. Regarding the view transformer module, for each view relationship
module, we simply use a two-layer MLP. We chose this because a two-layer MLP does not
bring much extra computation, so we can make our model follow the principle of being
lightweight and efficient. The input and output dimensions of VRM are both HIWI, where
HI and WI are the height and width of the intermediate feature map, respectively. As for
the view fusion module, we simply sum all features to keep the shape consistent.

Simulation to reality. For generator G, we use the architecture of a 4-view VPN.
We adopt the same architecture as in [40] for discriminator D. It has five convolutional
layers, each followed by a leaky ReLU with a parameter of 0.2 (except the last layer).
We extract semantic masks from real-world images using HRNet [41] pre-trained on the
nuScenes [42] dataset.

3.3. Loss Design

Since the training signal provided to the predicted occupancy grid must resolve
semantic and positional uncertainties, we use the same multi-scale Dice loss. The average
dice loss for K classes at each scale u is:

Lu = 1− 1
k ∑K

K=1

2∑N
m ŷk

l yk
m

∑N
m ŷk

l + yk
m + σ

(8)

where yk
m is the ground truth binary variable grid cell, and ŷk

l is the predicted sigmoid
output of the network and is a constant used to prevent division by zero.

During the training phase, we forward a set of input images from the source target
domain {Is} to ζ and optimize them with the commonly used segmentation loss ζseg.

Then, we use ζ to extract the feature map of the image after passing through the
Softmax layer from {It} and Fi also uses the discriminator to distinguish whether Ft
comes from the source domain. The loss function for optimizing ζ can be expressed as
shown in (9):

ζ({Is}, {It}) = ζseg( {Is}+ λadvζadv({It})) (9)

where ζseg is the cross-entropy loss of semantic segmentation, and ζadv is designed to train
ζ and interfere with the discriminator D. The loss function of the discriminator ζd is the
cross-entropy loss of the binary source.



Electronics 2023, 12, 5017 10 of 20

4. Experiments and Discussion
4.1. Experimental Settings and Dataset

We use the NuScenes dataset to evaluate the effectiveness of treating image-to-BEV
conversion as a translation problem. The dataset contains 1000 20 s video clips shot in
Boston and Singapore, annotated with 3D bounding boxes and vectorized road maps. Each
data sample in NuScenes contains first-view RGB images taken from six directions (front,
front right, back right, back, back left, front left), as well as different modalities. We selected
919 data samples without top-view masks for unsupervised training and 515 data samples
with binary top-view masks for evaluation. We conducted ablation experiments on the
lookback direction, the role of long-distance horizontal context, and the influence of polar
position information in monotonic attention. For the generator ζ, we use the architecture of
4-view VPN. It has five convolutional layers, and each convolutional layer except the last
layer is followed by a leaky ReLU with a parameter of 0.2.

Research in intelligent transportation has been pursuing more accurate vehicle, pedes-
trian, and road perception to improve the performance and safety of autonomous driving
systems. This article relies on multiple sensors onboard the vehicle, including six ring-
shaped RGB cameras. These cameras are mounted around the vehicle, providing an
all-round view. Specifically, these cameras can capture images around the road in real time,
forming a complete ring view to help vehicle systems perceive their surroundings. In order
to better understand and utilize these image data, metrics like “IOU” (Intersection over
Union) are often used to evaluate the performance of this BEV map generation algorithm.
IOU is a metric used to measure the degree of overlap between an algorithm-generated
map and a real map. In this case, IOU can measure the overlap between objects (such as
vehicles and pedestrians) in the algorithm-generated BEV map and objects in the real world.
A higher IOU value means that the map generated by the algorithm is closer and more
accurate to the real situation. Therefore, the goal of this research is to develop a high-quality
BEV map generation algorithm by utilizing the six ring-shaped RGB cameras on the vehicle
to perceive the main view of the road surface in real time and use evaluation indicators such
as IOU to measure its performance, thereby improving the performance of the autonomous
driving system and environmental awareness and path planning capabilities. These works
are significant to achieve safer and more efficient intelligent transportation systems.

The positioning accuracy can be measured by the overlap between the generated map
and the real map, the intersection-over-union (IOU) ratio.

The P–R curve is a two-dimensional curve with precision and recall as the vertical and
horizontal axis coordinates. The more convex and to the upper right, the better the effect.
The overall trend is drawn by selecting the corresponding precision and recall rates at
different thresholds. The higher the precision, the lower the recall. When the recall reaches
1, it corresponds to the positive sample with the lowest probability score. At this time, the
number of positive samples is divided by all those greater than or equal to the threshold.
The number of samples is the lowest precision value. The area enclosed by the P–R curve is
the AP value. The larger the area, the higher the recognition accuracy. The higher the AP
value, and vice versa.

In target detection, each category can draw a P–R curve based on recall and precision.
AP is the area under the curve, and mAP is the average AP of all categories.

4.2. Comparison Results and Discussion

In this paper, we evaluate the performance of different semantic segmentation models
in urban scenarios. We used three metrics: drivable (accuracy in drivable areas), car (accu-
racy in cars), and ped (accuracy in pedestrians). We compare four existing models: VPN,
PON, STA-ST, and TIIM-ST, as well as our proposed new model. Our model outperforms
other models on all metrics, indicating that our model is better able to capture detailed and
semantic information in urban scenes.

Specifically, as shown in Table 1, our model achieves 78.2% on drivable, which is 3.7%
higher than the best existing model TIIM-ST; 40% on car, which is 0.3% higher than TIIM-ST;
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and on ped, it reached 10.2%, 0.7% higher than TIIM-ST. These results illustrate that our
model has strong robustness and generalization ability when dealing with complex and
diverse urban scenes. At the same time, Figure 3 can more intuitively show the superiority
of our proposed method for small target prediction compared with existing methods.

Table 1. The implementation of accurate perception of vehicles, pedestrians, and roads in urban
roads under intelligent transportation relies on the six ring RGB cameras of the vehicle to perceive
the RGB main view of the road in real time, studies the BEV map generation algorithm, and evaluates
the index IOU.

Model Drivable Car Ped

VPN [43] 58.0 25.5 7.1
PON [44] 60.4 24.7 8.2

STA-ST [45] 70.7 36.0 8.6
TIIM-ST [46] 74.5 39.7 9.5

Our 78.2 40.0 10.2
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4.3. Qualitative Results and Discussion

As can be seen in Figures 4 and 5, from the day and night effect display pictures, our
model can generate clear and realistic scene images under different lighting conditions. Our
model can also mark the positions and trajectories of vehicles and pedestrians in images,
as well as information such as roads and lane lines, to provide drivers with more visual
references. In contrast, other models generated images that were either too blurry or had
obvious distortion or artifacts that did not reflect the real scene well. Our method can adapt
to different sensor configurations and data sources, such as lidar, cameras, radar, etc. Our
method does not rely on specific sensor types or data formats but utilizes multi-modal data
fusion technology to effectively integrate and represent data collected by different sensors.
This enables our method to be tested on the NuScenes dataset and has good generalization
ability and robustness.

Our method can handle complex traffic scenarios and multi-objective interaction
problems, such as avoidance, overtaking, lane changing, etc., between vehicles. Our method
not only considers the motion status and target of a single vehicle, but also considers the
influence and feedback of surrounding vehicles and pedestrians. Our method uses a model
based on attention mechanism and graph neural network to capture the relationships and
dependencies between different targets and generate more accurate and safer trajectory
predictions based on this information.
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4.4. Discussion

Our paper makes significant contributions in the following key areas:

1. We introduce a comprehensive framework featuring a View Parsing Network, which
incorporates three essential modules: the generation of BEV graphs from images, the
construction of constrained and data-efficient transformer networks based on physical
principles, and the integration of formulas with monotonic attention inspired by the
language domain. This framework excels in the accurate prediction of small objects at
a distance and proves highly beneficial for tasks like vehicle and pedestrian detection,
as well as traffic flow monitoring within intelligent transportation scenarios.

2. Leveraging the principles of physics, we develop an innovative transformer network
that exhibits convolutional characteristics concerning the horizontal x-axis, all while
maintaining exceptional spatial awareness. We seamlessly fuse our model with the
monotonic attention mechanism, drawn from the domain of natural language process-
ing. This combination facilitates more precise mapping by emphasizing information
situated below a specific point in the image. The synergistic effect of these components
yields optimal performance, substantially enhancing the capabilities of our model.

3. Our post-experimental results demonstrate our proficiency in generating BEV graphs
from images represented as a set of 1D sequence-to-sequence transformations. We
elucidate how axial attention significantly boosts performance by introducing tempo-
ral awareness and showcasing state-of-the-art results across an extensive dataset, the
NuScenes dataset. Additionally, we apply domain adaptation techniques to enable the
transfer of our model into real-world data without necessitating any supplementary
annotations. Overall, our experiments underscore the superior performance of our
model, particularly in the prediction of small objects.

4.5. Ablation Study

In this section, as shown in Table 2, we use ablation study to evaluate the effectiveness
and robustness of our proposed BEV (Bird’s Eye View) method for intelligent transportation
applications. We compare our method with four other methods, namely: 1 (looking up):
this method uses a simple perspective transformation to transform the image from front
view to top view, and then uses a pre-trained CNN to perform semantic segmentation
and object detection; 2 (looking both ways): this method uses a bi-directional perspective
transformation to transform the image from front view and side view to top view, and
then uses a pre-trained CNN to perform semantic segmentation and object detection;
3 (BEV-plane): this method uses a plane-based BEV generation method to transform the
image from front view to top view, and then uses a pre-trained CNN to perform semantic
segmentation and object detection; 4 (both-planes): this method uses a plane-and-curve-
based BEV generation method to transform the image from front view and side view
to top view, and then uses a pre-trained CNN to perform semantic segmentation and
object detection.

Table 2. IOU (%) for ablation studies.

Model Drivable Car Ped

1 69.2 31.7 6.5
2 73.3 34.6 7.9
3 74.8 35.9 8.4
4 76.9 38.4 10.5

Our 78.2 40 10.2

We use three metrics to evaluate the performance of different methods, namely the
accuracy of drivable area (Drivable), car (Car), and pedestrian (Ped). From the table, we can
see that our method achieves the highest accuracy for all three metrics, which are 78.2%,
40%, and 10.2%, respectively, while the other four methods have average accuracies of
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73.5%, 35.2%, and 8.3%, respectively. These results show that our method can effectively uti-
lize multimodal information, including image, radar, and laser, to generate high-resolution
BEV images, and use deep neural networks to perform semantic segmentation and object
detection. Our method can also adapt to different weather and lighting conditions, as well
as different road types and structures. Our method has strong advantages and robustness
for applying BEV in intelligent transportation systems.

4.6. Multiple-Object Prediction

Multiple-object prediction is the task of predicting the locations and categories of
multiple objects in a scene, such as cars, pedestrians, bikes, etc. This task is important for
intelligent transportation systems, as it can help to monitor and manage the traffic flow and
safety. Based on the results shown in the table, we can see that our method outperforms
the other four methods in this task. As shown in Table 3, our method achieves the highest
mean accuracy of 25.8%, while the other four methods have mean accuracies of 17.4%,
19.1%, 23.7%, and 25.7%, respectively. Our method also achieves the highest or second-
highest accuracy for most of the object categories, such as drivable, crossing, walkway,
carpark, car, bus, etc. These results demonstrate that our method can effectively detect and
classify multiple objects in various scenes and conditions, using a novel bird’s eye view
(BEV) representation.

Table 3. IOU (%) for multiple-object prediction.

Model Driv-
able

Cross-
ing

Walk-
way

Carp-
ark Car Truck Trailer Bus Con.

Veh Bike Motor-
bike Ped Cone Barrier Mean

VPN 58 27.3 29.4 12.3 25.5 17.3 16.6 20 4.9 4.4 5.6 7.1 4.6 10.8 17.4
PON 60.4 28 31 18.4 24.7 16.3 16.6 20.8 12.3 9.4 7 8.2 5.7 8.1 19.1

STA-ST 70.7 31.1 32.4 33.5 36 22.8 13.6 29.2 12.1 12.1 8 8.6 6.9 14.2 23.7
TIIM-ST 74.5 36.6 35.9 31.3 39.7 26.3 13.9 32.8 14.2 14.7 7.6 9.5 7.6 14.7 25.7

Our 78.2 36.1 35.7 30.9 40 27 14.2 33.5 13.4 14.8 6.7 10.2 7.8 13.3 25.8

4.7. Dynamic and Static Timing Prediction

As shown in Figure 6, the PR graphs for static (Drivable) and dynamic elements
(vehicle, Pedestrian, Large vehicle, Bicycle, Bus, Trailer, Motorcycle), which are obtained by
adjusting different confidence thresholds, and different points on the coordinate system
represent different recall and precision.
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The P–R curve is an important tool for evaluating the performance of a model, and
by finding a balance between recall and precision, a more comprehensive understanding
of the model’s performance can be obtained. In the context of intelligent transportation,
we are particularly interested in dynamic temporal prediction, the ability to accurately
predict targets in motion in a traffic scenario. For a given recall, a higher detection accuracy
means that the model is more accurate to the target while maintaining a high recall. In this
experimental comparative analysis, we can clearly observe the performance of our method
on the P–R curve. Our method is not only able to achieve a high recall, but also achieves
superior detection accuracy at the corresponding recall. This suggests that our algorithm
represents a better result for a given recall setting in terms of dynamic timing prediction.

As shown in the figure, this result is crucial for practical applications of ITS. Highly
accurate dynamic timing prediction means that the motion trajectories of vehicles, pedes-
trians, bicycles, and other targets can be more accurately captured and predicted by the
model, thus improving the overall safety and efficiency of transportation systems. Through
comparative analysis, we are able to better understand the performance of different algo-
rithms on the dynamic timing prediction task, which provides a strong support for the
technological advancement in the field of intelligent transportation.

In BEV (Bird’s Eye View)-based intelligent transportation systems, continuous time
prediction of automotive elements in the scene is a key task. This prediction involves not
only the position and speed of the target car, but also an accurate estimation of its shape,
size and orientation. With the NuScenes dataset, we are able to validate and demonstrate
our prediction models in a real traffic environment. As shown in Figure 7, we demonstrate a
visual comparison of different models predicting car elements on 10 consecutive keyframes
in the NuScenes dataset. This comparison clearly shows the effectiveness and limitations
of different models in dealing with complex traffic scenarios. By integrating data from
multiple viewpoints, our network is able to more accurately capture the dynamics of cars,
including their trajectories and behavioral patterns.

In addition, our model makes it possible to take into account historical data and future
trends when predicting the dynamics of automotive elements. In ITS applications, this
approach not only improves prediction accuracy, but also generates smoother and more
coherent motion trajectories, which are critical for understanding complex traffic situations
and making accurate driving decisions. Accurate prediction not only improves the safety
of self-driving vehicles, but also optimizes traffic flow, reduces congestion, and improves
the efficiency of the entire transportation system. In conclusion, our approach provides
strong technical support for efficient and safe traffic management in BEV-based intelligent
transportation systems.
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5. Conclusions

In our research, we propose an innovative Transformer network application designed
to map images and video sequences into a bird’s-eye map or top view of the environment,
which is significant to intelligent transportation. Our approach adopts mathematical for-
mulations of physical constraints, validates these formulations through resection studies,
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and combines recent advances in monotonic attention to confirm our intuition about which
contextual information of points is more important in this map generation process. Experi-
mentally, we demonstrate that our novel approach achieves state-of-the-art performance
in instantly mapping a widely recognized dataset. This technology can be used in au-
tonomous vehicles in intelligent transportation to help them better understand the road
and environment around them.

Furthermore, we propose the concept of a cross-view semantic segmentation task
to enhance environment awareness, which has substantial application prospects in the
context of intelligent transportation. We introduce a neural architecture called View Parsing
Network (VPN) to solve this task. Through experimental results, we demonstrate that VPN
can be applied to mobile robots to enhance their perception of the surrounding environment
by providing a lightweight and efficient top-down perspective semantic map. In many
cases, object height information is unnecessary, so VPNs are lighter and more efficient
than traditional 3D-based methods, which are more expensive in terms of data storage and
computing requirements. This research provides more efficient and cost-effective solutions
for intelligent transportation systems and helps improve environmental understanding
and map generation, especially in autonomous vehicle technology.

To provide a basis for further work, we also plan to explore how to extend our
approach to other scenes and transitions between viewpoints. Furthermore, we would like
to investigate how to exploit multimodal information, such as sound or radar signals, to
improve the quality and robustness of map generation and semantic segmentation. Finally,
we would also like to explore how our approach can be combined with reinforcement
learning or planning algorithms to realize more intelligent and adaptive mobile robot
behavior in intelligent traffic scenarios.

The innovative prospects of applying Transformer networks in intelligent transporta-
tion systems offer great promise for shaping the future of autonomous vehicles and envi-
ronmental perception. Integrating our proposed mapping and segmentation techniques
into actual autonomous vehicle systems. This could lead to safer and more reliable trans-
portation, as vehicles equipped with our technology will have a greater ability to interpret
and adapt to complex environments. Furthermore, our approach can potentially be inte-
grated into smart city infrastructure, helping to develop more efficient and adaptive traffic
management systems. Future research can focus on extending the scope of our proposed
cross-view semantic segmentation task to a wider range of environmental elements. This
could include identifying dynamic objects such as pedestrians, cyclists, and other vehicles,
thereby improving the overall situational awareness of autonomous systems. By solving
real-world challenges and continually refining our approach based on feedback from field
deployments, we ensure our technology meets the evolving needs of intelligent transporta-
tion systems. Overall, our research not only proposes cutting-edge technologies in the
field of smart transportation, but also lays the foundation for a future in which advanced
mapping and sensing systems play a key role in creating safer, more efficient, and greener
transportation ecosystems.
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