
Citation: Kim, J.; Park, G.; Kim, M.;

Park, S. Cluster-Based Secure

Aggregation for Federated Learning.

Electronics 2023, 12, 870. https://

doi.org/10.3390/electronics12040870

Academic Editors: Jiliang Zhang,

Zhaojun Lu, He Li and Zukun Lu

Received: 6 January 2023

Revised: 3 February 2023

Accepted: 7 February 2023

Published: 8 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Cluster-Based Secure Aggregation for Federated Learning
Jien Kim, Gunryeong Park, Miseung Kim and Soyoung Park *

Department of Computer Science and Engineering, Konkuk University, Seoul 05025, Republic of Korea
* Correspondence: soyoungpark@konkuk.ac.kr; Tel.: +82-2-450-0482

Abstract: In order to protect each node’s local learning parameters from model inversion attacks,
secure aggregation has become the essential technique for federated learning so that the federated
learning server knows only the combined result of all local parameters. In this paper, we introduced
a novel cluster-based secure aggregation model that effectively deals with dropout nodes while
reducing communicational and computational overheads. Specifically, we considered a federated
learning environment with heterogeneous devices deployed across the country. The computing
power of each node and the amount of training data can be heterogeneous. Because of this, each node
had a different local processing time, and the response time to the server is also different. To clearly
determine the dropout nodes in this environment, our model clusters nodes with similar response
times based on each node’s local processing time and location and then performs the aggregation on
a pre-cluster basis. In addition, we propose a new practical additive sharing-based masking protocol
to hide the actual local updates of nodes during aggregation. The new masking protocol makes it
easy to remove the share of dropout nodes from the aggregation without using a (t, n) threshold
scheme, and updates from dropout nodes are still secure even if they are delivered to the server
after the dropout shares have been revealed. In addition, our model provides mask verification for
reliable aggregation. Nodes can publicly verify the correctness and integrity of the masks received
from others using a discrete logarithm problem before the aggregation. As a result, the proposed
aggregation model is robust to dropout nodes and ensures the privacy of local updates if at least
three honest nodes are alive in each cluster. Since the masking process is performed on a cluster basis,
our model effectively reduces the overhead of generating and sharing the masking value. For an
average cluster size C and a total number of nodes N, the computation and communication cost of
each node is O(C), the computation cost of the server is O(N), and the communication cost is O(NC).
We analyzed the security and efficiency of our protocol by simulating diverse dropout scenarios. The
simulated results showed that our cluster-based secure aggregation outputs about a 91% learning
accuracy regardless of dropout rate with four clusters for one hundred nodes.

Keywords: secure aggregation; federated learning; clustering; pairwise mask; additive sharing;
dropout; efficiency

1. Introduction

Federated learning [1], which performs machine learning on the entire training data
distributed across multiple external nodes, has a great advantage in protecting user privacy
for the data used for training. Each node’s training data does not need to be collected
or exposed; instead, each node uses its own training data to perform the learning using
only the local training result. The federated learning server continuously interacts with
the node’s local learning parameters until the weight parameters converge. Here, secure
aggregation is necessary to hide the real learning parameters of nodes from the federated
server and the other nodes because the local learning model can be reconstructed with the
local parameters, which is known as a model inversion attack [2–4]. Secure aggregation
allows the federated server to obtain the total sum and average of all the local parameters
without knowing the actual local parameters.

Electronics 2023, 12, 870. https://doi.org/10.3390/electronics12040870 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12040870
https://doi.org/10.3390/electronics12040870
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6435-9416
https://doi.org/10.3390/electronics12040870
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12040870?type=check_update&version=2

Electronics 2023, 12, 870 2 of 23

Recently, many secure aggregation techniques for federated learning have been pro-
posed. Secure aggregation protocols based on secure multiparty computation [5,6], ho-
momorphic encryptions [7–10], and differential privacy [11,12] have been proposed, and
masking techniques to protect each node’s local result [13–18], methods to efficiently han-
dle dropout nodes [7,8] and reduce communication overhead [19–22], studies to detect
Byzantine users [23–25], and methods to validate aggregation results [26,27] have been
conducted. Many previous studies assumed that each node had the same size training data
distributed in an independent and identical distribution, as well as the same computing
power. However, in practice, the computing power of nodes is not the same, and the size of
training data held by each node is also different.

In this paper, we introduced a new simple and practical cluster-based secure aggrega-
tion (CSA) technique that is suitable for federated learning involving heterogeneous devices.
We considered the following federated learning environments: (1) a large number of nodes
participating in federated learning; (2) each node having a different computing power;
(3) the amount of training data held by each node being different; and (4) nodes being
widely distributed across the country. In this context, the proposed CSA model specifically
solves the following two problems: the local learning result of each node potentially not
being integrated at the same rate, and the response time of each node being different.

The CSA technique assigns different training weights to nodes according to the size
of training data each node has and performs secure aggregation based on the weights.
This solves the problem of training data size. The problem of differences in the response
time may affect the overall throughput of federated learning. Federated learning works
iteratively in a synchronized manner, so the server should wait for all responses from
all nodes in each iteration. Assuming all nodes respond to the server, the server waits
unconditionally until it receives responses from all nodes. However, dropout nodes can
occur for any reason (whether it is a problem with the node itself or a communication
problem). Therefore, the server cannot wait indefinitely for responses from nodes and
must determine an appropriate waiting time. If the server latency is too long, the overall
federated learning throughput will decrease, and if the latency is too short, there may too
many false positives for dropouts. Therefore, in situations where nodes have different
response times, the server can efficiently determine whether a message is dropped or a
non-response is due to a communication delay, and it can also reduce the number of false
positives that it leaves. To solve this problem, a cluster-based secure aggregation strategy
was proposed. The strategy is simple: it clusters nodes according to the response time.

Each node’s response time is determined by the node’s local processing time and
communication latency. The local processing time of each node is mainly affected by the
computing power and the size of training data, and this can be evaluated by each node.
On the other hand, communication latency depends on the network environment and
communication distance. Assessing the actual network environment from each node to the
server is not easy. Therefore, only the communication distance is considered to evaluate
the communication delay.

We defined a processing score that represents the processing time of each node. The
processing score is defined by the computational capacity of each node and the size of
training data. The proposed CSA technique first clusters nodes according to processing
scores and GPS information. We proposed a grid-based clustering algorithm for clustering
nodes, since all the nodes in a cluster have similar processing scores and communication
distances, and their response time to the server is also similar. Thus, the server can estimate
the maximum waiting time for a cluster, which can then be used to determine dropout. The
aggregated intermediate sums for each cluster are finally aggregated for all clusters.

In particular, we proposed a highly efficient mask-based aggregation algorithm that
does not use a (t, n) threshold secret sharing scheme to reduce the computational and com-
munication costs. Each node first generates and provides random masks to the other users
in the same cluster. The validity of the given masks can be verified publicly, and then the
masked updates of the nodes are aggregated. The random masks are finally removed after

Electronics 2023, 12, 870 3 of 23

the aggregation, and only the sum of local parameters can be computed. Recommended
aggregation is also robust for suspended dropout users. To deal with dropout nodes, Shamir’s
(t, n) threshold secret sharing scheme is commonly used to reconstruct the masks of dropout
users. However, the computation and communication overhead due to the use of the scheme
is very large. Moreover, a verifiable secret sharing scheme may be required to verify shares.
The proposed mask-based aggregation does not use a (t, n) threshold secret sharing scheme
to remove the random masks of dropout users, so all the overheads caused by using the
secret sharing scheme are eliminated. In Section 3, we will describe in detail how our method
generates a correct aggregated result for existing users.

The main contributions of this paper are summarized as follows:

• We proposed a new cluster-based secure aggregation (CSA) strategy for federated
learning with heterogeneous nodes that have different computing powers and different
sizes of training data.

• The CSA technique clusters with similar response times. We introduced a processing
score to represent the processing time of each node and proposed a new grid-based
clustering algorithm to cluster nodes with processing score and GPS information.
Consequently, since the server can determine a reasonable latency for a cluster, the
CSA technique improves the overall throughput of federated learning while reducing
false-positive dropouts.

• We proposed a novel additive sharing-based masking scheme robust to dropout nodes
without using a (t, n) threshold secret sharing scheme. In particular, it allows nodes to
verify the integrity and correctness of the masks received from other nodes for reliable
aggregation. It also keeps local parameters private if each cluster has at least three
nodes that are honest (no collusion with the server) nodes.

We briefly review the related work in Section 2 and explain a concrete description
of the proposed model in Section 3. The security of the suggested model is analyzed in
Section 4, and the simulated performance is analyzed in Section 5. Finally, we conclude the
paper in Section 6.

2. Related Work

The main goal of secure aggregation is to protect the privacy of each user’s private
data from the server’s aggregation under the context of a central server and multiple mobile
nodes. A classic approach for secure aggregation is to use secure multiparty computation
(MPC) protocols such as Yao’s garbled circuits [5], secret sharing [6], and homomorphic
encryption [7–10]. Protocols based on garbled circuits are suitable for a small number
of parties, whereas protocols based on secret sharing or homomorphic encryptions can
be applied to hundreds of users [14]. Secret sharing has been actively used in recently
proposed secure aggregation protocols since it can make the aggregation robust to dropout
users. However, secret-sharing-based protocols have the drawback of high communication
costs because each node creates n shares and shares them with other nodes. Homomorphic
encryption allows the aggregation to be performed on encrypted data in a public key
infrastructure. However, the main weakness of homomorphic encryption is that it is
computationally expensive and needs an additional trusted party. Protocols [7,8] based on
threshold additively homomorphic cryptosystems can handle dropout users but require
additional trust assumptions. Pairing-based schemes [10] also require a trusted dealer to
set up the keys. The protocol outlined in [9] computes the sum by sequentially performing
one round of interactions between the server and each client, but it does not deal with
dropout users.

In order to prevent information leakage divulged by analyzing the differences be-
tween uploaded parameters from clients, the concept of differential privacy (DP) has been
proposed [11,12]. K. Wei et al. [12] added artificial noises to parameters at the client side
before aggregating. However, there is a tradeoff between the convergence performance
and privacy protection levels, that is, a better convergence performance leads to a lower
protection level. Another approach, which is very related to our solution, is to use pairwise

Electronics 2023, 12, 870 4 of 23

masks to hide the local parameters from the server. The pairwise blinding approach has
been previously proposed in the studies in [15–18] and suggests different ways for dealing
with client failure. K. Bonawitz et al. [13,14] proposed notable additive masking-based
secure aggregation for federated learning. Users hide their local updates using paired per-
turbations, which will be canceled in the aggregation, so the server only obtains the correct
sum of all the local updates. In an improved study [14], they solved the tolerance problem
to dropout users using Shamir’s secret sharing scheme. Our proposed secret sharing is also
based on pairwise masking by additive secret sharing, but the way of dealing dropout users
is different. We did not exploit Sharmir’s secret sharing. In addition, our scheme clusters
mobile nodes by processing time and performs cluster-based aggregation for computation
and communication efficiency.

In order to reduce the overheads of secure aggregation, J. So et al. [19] proposed turbo
aggregation that performs a circular aggregation for multiple groups. The group-based aggre-
gation can reduce communication overheads because the sharing of masks and other data for
secure aggregation is restricted to group members rather than to all the other nodes. It is similar
to our scheme in that the aggregation is carried out on a group basis, but the turbo aggregation
randomly partitions groups and operates the group aggregation in a circular way. On the
other hand, the cluster in the proposed model is determined according to the process time and
location of each node, and the cluster aggregation is independently performed in parallel. A.
R. Elkordy and A. S. Avestimehr [20] suggested another group-based aggregation method for
federated learning that allows the use of heterogeneous quantization according to communica-
tion resources in order to improve the communication performance. Networks are partitioned
into groups, and user updates are also partitioned into segments. In addition, different levels
of quantization are applied on segments during the aggregation. C. Hu et al. [21] proposed a
cluster-based distributed aggregation model to resolve the bottleneck of centralized aggregation.
The edge devices are grouped into clusters, and the aggregation is performed by some edge
devices selected as cluster heads. Then, they are finally aggregated by the server. The authors
proposed algorithms to find clusters that can minimize the maximum aggregation overhead.
This is similar to our method in terms of the cluster-based aggregation. However, in our model,
the server is trusted, so the aggregation is performed only on the server to assure the reliability
of the aggregation. We believe that additional verifiable aggregation techniques are required
to enable aggregation by edge devices. So, our model performs cluster-based aggregation to
reduce the overhead, but the aggregation is performed only on the server. Another approach to
reduce the overhead is to use a gradient sparsification method that sends only k parameters
from the local gradient to the server. S. Lu et al. [22] proposed a top-k sparsification method
for secure aggregation, which sends masked top-k parameters without exposing the coordinate
information of the top-k parameters in a user model. However, there is a tradeoff between the
accuracy of the training and communication efficiency.

Studies dealing with Byzantine users [23–25] in the learning model and studies on
verifiable aggregation model [26,27] have also been proposed. L. He et al. [23] proposed a
Byzantine robust secure gradient descent algorithm for a two-server model. It needs two
honest and non-colluded servers, each of which carries out a secure two-party interactive
protocol with mobile nodes. Z. Zhang et al. [25] proposed a lightweight Byzantine robust
model with two servers. Each local result of the nodes is uploaded to two servers using
a secret sharing method, so it achieves both local result protection and secure Byzantine
robustness. On the other hand, J. So et al. [24] proposed a distance-based outlier detection
approach for single-server federated learning, which can calculate the pairwise distance
between local updates by sharing the masked updates and pairwise distances between the
masked shares. This approach actually detects outliers and can work well if every node
generates similar local updates. We do not think that outliers are necessarily Byzantine
users. It is very challenging to detect Byzantine users who manipulate their updates in
masked updates aggregation. We did not consider Byzantine users in this paper and left
it for our future work. Regarding verifiable aggregation, Z. Yang et al. [26] provided a
verification method to validate the weighted average aggregation result using a homo-

Electronics 2023, 12, 870 5 of 23

morphic hash function under the assumption that the federated learning server cannot
be fully trusted. C. Hahn et al. [27] suggested a way to verify the correctness of local
updates under a cross-device federated learning model. Our model basically assumes that
all participants are honest-but-curious, so they do not manipulate the outputs. Instead,
our model provides a verification method to validate the correctness and integrity of mask
values shared between users. As mentioned above, verifying the correctness and validity
of user local updates was not covered in this paper and will be performed in future work.

3. A Cluster-Based Secure Aggregation Model

Now, we describe the proposed cluster-based security aggregation (CSA) model in de-
tail. First, the federated learning structure, system environment, and threat model assumed
in this paper are briefly explained. In addition, we present the security requirements and
define main functions constituting the CSA protocol, and then the detailed protocols for
node clustering and secure aggregation algorithms are provided.

3.1. Background and Configuration

In this section, we briefly present the federated learning architecture used in this paper
and describe our assumptions, system configuration, and notations. The federated learning
system consists of a single central federated learning server and N mobile users (or nodes).
In the rest of the paper, FS and U denote the federated learning server and a set of nodes,
respectively, and each node is denoted by ui. The local dataset (training data) of ui has the
property of non-IID and unbalanced distribution.

(1) Federated learning

The FS trains a global model w ∈ Rd with the dimension d using the data stored in
mobile devices. This training process is used to minimize a global objective function F(w):

argmin
w

F(w) (1)

where F(w) = ∑N
i=1

ni
n Fi(w).

Here, N is the total number of mobile nodes, Fi is the local objective function of ui, ni
is the private data size of ui, and n = ∑i ni. The local objective function Fi(w) of ui for the
global model w is defined as:

Fi(w) =
1
ni

∑ni
j=1 fi(w) (2)

where fi(w) = l(xi, yi; w).
fi(w) is the loss of the prediction on example (xi, yi) made with model parameters

w [1].
For a fixed learning rate η, the FS trains the global model by iteratively performing the

distributed stochastic gradient descent (SGD) method with currently available mobile nodes.
At iteration t, the server shares the current global algorithm state (e.g., the current model
parameters), wt, with the mobile nodes. Each ui then computes∇Fi

(
wt), which is the average

gradient on its local data at the current model wt and generates its local update wt+1
i :

wt+1
i := wt − η∇Fi

(
wt). (3)

ui iterates the local update multiple times before sending the update to the FS. Then,
the FS aggregates these gradients and updates the global model for the next iteration:

wt+1 := ∑N
i=1

ni
n wt+1

i
= wt − η ∑N

i=1
ni
n∇Fi

(
wt) = wt − η∇F

(
wt) (4)

Electronics 2023, 12, 870 6 of 23

Since the loss gradient ∇F
(
wt) can be rewritten as a weighted average across nodes,

∇F
(
wt) = ∑N

i=1
ni
n∇Fi

(
wt).

(2) Communication

We basically assumed that all communication goes through the FS. Thus, all messages
between nodes are first forwarded to the FS, and the FS sends them back to the corre-
sponding nodes. However, this can be directly extended to node-to-node communication
depending on the communication environment.

(3) System parameters

The FS generates a big prime number p, a public-key cryptosystem, and the server’s
private and public key pair, which are denoted as <KS

−, KS
+>. PKE(K+, M) represents a

public key encryption for a message M with a public key K+, and PKD(K−, C) denotes a
public key decryption algorithm for a ciphertext C with a private key K−.

(4) Registration

Before participating in federated learning, each node registers with the FS. The node
creates an ID and a pair of private and public keys, and then registers it with the FS. The
FS finally creates a shared symmetric key between the node and the FS, which is used for
efficient data encryption between them. The shared key can be generated by the Diffie–
Hellman key exchange protocol or randomly generated by the FS. In our model, the FS
generates a random key, encrypts it with the node’s public key, and sends it to the node.
The FS securely manages IDs, public keys, and shared keys.

Table 1 summarizes the notations used in the rest of paper.

Table 1. Notations.

Notation Description

ui, U The i-th node, where U is a set of all nodes

N The total number of mobile nodes

ni, n The private data size of ui , and n = ∑i ni

PSi The processing score of ui

wt The global model parameter at iteration t

wt+1
i The local update of the ui for wt

Gi ,j, G The grid of row i and column j, where G is a set of all grids.

Ui ,j A set of nodes mapped to the grid Gi ,j

Ci, C The i-th cluster, where C is a set of all clusters.

ri, Ri A random integer that the FL server assigns to Ci and Ri = gri mod p

mj ,k , Mj,k A random mask that uj generates for uk where Mj,k = gmj,k mod p

Si The share of ui for secure aggregation

ISi The intermediate sum of Ci

3.2. Problem Definition

The federated learning model protects the privacy of training data by letting the
private training data remain on the user’s mobile device. Instead, it requires only the
local model parameters trained by each mobile device. However, it has been recently
demonstrated that a server can still reconstruct the private data from local models using
a model inversion attack [2–4]. Thus, secure aggregation, which does not expose the
local model parameters during the server’s aggregation for the federated learning, is
necessary. The core of secure aggregation is for the federated learning server to know only
the aggregated sum S = ∑N

i=1 wi of the local model parameters wi without knowing any
information about wi. Another major issue to consider in secure aggregation is dropout
users. Users who initially participate in federated learning may be dropped out during the
federated learning due to network or device issues. Therefore, secure aggregation must
tolerate dropout users, that is, the aggregation should be able to correctly reconstruct the

Electronics 2023, 12, 870 7 of 23

aggregated sum of the currently available users, even if dropout users occur. In addition,
the decision on dropout can be erroneous, and a dropout user’s response is not actually
dropped out, but delayed, so it may be delivered to the server after the aggregation. Even
in this case, no one should know any information about the local model of the dropout
user from the delayed response. As mentioned earlier, it is not easy to distinguish between
message drop and delay during each round of aggregation. Federated learning requires
iterative aggregations, and the server cannot wait indefinitely for all responses from every
single aggregation. Therefore, the server must be able to determine a reasonable latency to
terminate a single aggregation, and this can be also used to distinguish between message
drop and delay. The proposed CSA solves this problem simply and practically. After all,
the communication latency to the server is mainly affected by the processing time of each
device and the network conditions. The processing time of each device is determined by
the size of the local dataset and the computational power required to train the dataset. On
the other hand, it is not easy to measure the actual communication conditions between each
mobile node and the server. Instead, we exploited two assumptions, i.e., (1) the processing
delay of each device dominates over the communication delay and (2) the communication
delay is proportional to the distance to the server. Accordingly, rather than measuring
the actual network state, the geographic location information of each device is simply
used to estimate the distance to the server. Based on this, the key strategy of the CSA
technique first clusters mobile devices according to their processing time and geographic
location and then performs the aggregation on a cluster basis. Since the processing time
and communication distance of each node in a cluster can be estimated, the server can
determine the appropriate latency for each cluster. In addition, the cluster-based strategy
reduces the computational and communicational overheads for the secure aggregation
because each node needs additional computation and communication to share random
masks only for the same cluster members.

We considered an honest-but-curious threat model. All participants, including the
FS and mobile nodes, act honestly in the communications. They do not deviate from the
defined protocol but attempt to learn all the possible information from legitimately received
messages. Under this threat model, the proposed aggregation is satisfied with the following
security requirements:

• Privacy of local datasets and updates: All the data that each node holds in its local
device and all the local learning parameters that are shared over the network must
be confidential not only to the other nodes but also to the FS. The FS only knows the
aggregated sum of all the local updates provided by all nodes. In addition, even if a
particular user’s update would be delivered to the FS after the aggregation, the FS and
the other users cannot reconstruct the corresponding user’s local parameters with the
delayed data.

• Tolerance to dropouts: User updates can be dropped out during the communication
due to network conditions and device issues. The FS should be able to compute a
correct aggregated sum of the current active users even if dropout users occur.

• Integrity of random masks: Users create random masks and share them with other
users to hide their actual local model parameters. In addition, these masks must be
correctly removed during the local update aggregation. Therefore, users should be
able to validate the correctness and integrity of given masks. In other words, users can
be sure that the masks are created to be necessarily removed during the aggregation
and that the masks are not modified during the communication.

We now describe the proposed CSA protocol and its main functions. The CSA protocol
consists of two main parts: node clustering and secure aggregation. The node clustering
is performed once at the beginning of the federated learning. It simply clusters nodes
according to their processing scores and GPS information. After the clustering, the FS
repeats the secure aggregation with nodes. The secure aggregation consists of the following
key functions:

Electronics 2023, 12, 870 8 of 23

(1) Quantization: The CSA exploits an additive secret sharing defined over a finite field
for a prime p. Thus, all operations in the CSA are carried out over Zp

*. Since the local
parameters are real numbers, the nodes need to quantize the real values to integers.
To achieve this, we exploited So et. al.’s stochastic quantization strategy [24].

(2) Masking with additive secret sharing: The FS selects a random nonce for each cluster.
Then, each node generates random masks for the other nodes in the same cluster and
shares the encrypted masks with them. The random masks are created by an additive
secret sharing method based on the cluster random nonce. Then, the nodes create
their updates masked with those shares.

(3) Aggregation: The updates of nodes are first aggregated on a cluster basis. When dropout
users occur in a cluster, the currently available nodes in the cluster perform a recovery
phase. They modify the cluster sum by removing the masks of dropout users from the
aggregated sum. After the recovery phase, the cluster sums are finally aggregated.

The detailed protocol for each function is described in the following sections.

3.3. Node Clustering

In this section, we describe the node clustering in detail. To achieve this, we first
defined a processing score representing the total processing time of each node. Based on
the size of dataset, the computation capacity CC and the processing score PS are defined as
per Equation (5):

CC = floating point operations/second,
PS = training data size (MB)/CC

(5)

Whenever a new federated learning starts, every node calculates PS and sends the PS,
training data size, and GPS information to the FS. The key strategies for node clustering are:

- Each cluster must contain at least four nodes (the minimum cluster size denoted as δ
is four).

- PS is divided into K levels (K is systemically predefined).
- The entire area where all nodes are distributed is divided into an a× b grid (a and b are

systemically predefined), and the nodes are mapped to the grid by GPS information.
- Node clustering starts with the nodes closest to the FS according to the PS level. This

repeats sequentially for the next neighbor nodes around the FS until all nodes are clustered.
- Clusters are finally rebalanced so that each cluster satisfies δ.

Let ui’s processing score be PSi. PSi’s PS level is simply determined by the following
Equation (6):

PSL(PSi) =

⌊
PSi·K

maxuj∈U
(

PSj
)
−minuj∈U

(
PSj
)⌋+ 1, (6)

where K is the number of PS levels.
With the PS level, FS generates a grid, G, for nodes. For the entire area containing all

nodes, the FS partitions the area into a × b cells for the predefined parameters a and b. Gi,j
denotes a cell at the i-th row and j-th column. The FS and nodes are mapped to the grid
cells based on their GPS information. Ui,j denotes a set of nodes mapped to Gi,j. Figure 1
shows an example of node distribution over a 6 × 5 grid. The number in a circle indicates
the PS level of each node.

The FS creates K clusters that are initially empty. Ci denotes the cluster of level i for
1 ≤ i ≤ K. The FS proceeds the node clustering by expanding the range of the neighbor
around the server. Suppose that the cell where the FS is located is Grf,cf . The initial neighbor
is Grf,cf itself. For all the nodes in the neighbor, each node is allocated to a cluster of the
same level as its own PS level. That is, if the PS level of a node is l, then the node is
assigned to Cl. After the first round of clustering is complete, the next neighbor is selected
with all the cells surrounding Grf,cf with an index difference of 1. These are Grf−1, cf−1,
Grf−1, cf , Grf−1, cf + 1, Grf, cf−1, Grf, cf +1, Grf+1, cf−1, Grf+1, cf , and Grf+1, cf +1. In this way, the next
neighbor is changed by increasing the index by 1, and the node clustering is repeated for

Electronics 2023, 12, 870 9 of 23

all nodes in the next neighbor. The blue dotted line in Figure 1 represents the neighbor in
each round. As shown in the figure, u1, u2, and u3 are clustered in the first round according
to the PS level, and then u4 is clustered in the second round. The rest of nodes are clustered
in the same way.

Electronics 2023, 12, 870 9 of 24

shows an example of node distribution over a 6 × 5 grid. The number in a circle indicates
the PS level of each node.

Figure 1. An example of node distribution over a grid.

The FS creates K clusters that are initially empty. Ci denotes the cluster of level i for 1
≤ i ≤ K. The FS proceeds the node clustering by expanding the range of the neighbor
around the server. Suppose that the cell where the FS is located is Grf,cf. The initial neighbor
is Grf,cf itself. For all the nodes in the neighbor, each node is allocated to a cluster of the
same level as its own PS level. That is, if the PS level of a node is l, then the node is assigned
to Cl. After the first round of clustering is complete, the next neighbor is selected with all
the cells surrounding Grf,cf with an index difference of 1. These are Grf−1, cf−1, Grf−1, cf, Grf−1, cf + 1,
Grf, cf−1, Grf, cf+1, Grf+1, cf−1, Grf+1, cf, and Grf+1, cf+1. In this way, the next neighbor is changed by
increasing the index by 1, and the node clustering is repeated for all nodes in the next
neighbor. The blue dotted line in Figure 1 represents the neighbor in each round. As
shown in the figure, u1, u2, and u3 are clustered in the first round according to the PS level,
and then u4 is clustered in the second round. The rest of nodes are clustered in the same
way.

Here, for each cluster, the nodes are hierarchically organized in the order in which
they were clustered. Although all the nodes belonging to the same cluster have the same
PS level, the distance to the FS is different, so hierarchical organization is required to clas-
sify the distance to the FS in the cluster. The detailed node clustering algorithm is shown
in Algorithm 1 below.
Algorithm 1: Node Clustering
Input: G: a grid of nodes,

mr: the maximum row index,
mc: the maximum column index,
rf: the row index of the server cell,
cf: the column index of the server cell,
U = {u1, …, uN} and each ui’s GPS information and PS level.

Output: K clusters C1, …,CK
create K empty clusters C1, …,CK, where each Ci is hierarchically structured with an ini-
tial bucket B = ∅;
for each node u in U

generate Ui,j using each u’s GPS information and G;
for (D = 0; (rf + D <= mr||cf + D <= mc); D++)

for each cluster Ci
if (the leaf bucket of Ci ≠ ∅)

Figure 1. An example of node distribution over a grid.

Here, for each cluster, the nodes are hierarchically organized in the order in which
they were clustered. Although all the nodes belonging to the same cluster have the same PS
level, the distance to the FS is different, so hierarchical organization is required to classify
the distance to the FS in the cluster. The detailed node clustering algorithm is shown in
Algorithm 1 below.

Algorithm 1: Node Clustering

Input: G: a grid of nodes,
mr: the maximum row index,
mc: the maximum column index,
rf : the row index of the server cell,
cf : the column index of the server cell,
U = {u1, . . . , uN} and each ui’s GPS information and PS level.

Output: K clusters C1, . . . , CK

create K empty clusters C1 , . . . , CK , where each Ci is hierarchically structured with an initial bucket B = ∅;
for each node u in U

generate Ui ,j using each u’s GPS information and G;
for (D = 0; (rf + D <= mr||cf + D <= mc); D++)

for each cluster Ci
if (the leaf bucket of Ci 6= ∅)

create a new bucket B = ∅ and add B to Ci as a leaf bucket;
r0 = max(rf – D, 1);
c0 = max(cf – D, 1);
r1 = min(rf + D, mr);
c1 = min(cf + D, mc);

for (r = r0; r <= r1; r++)
for (c = c0; c <= c1; c++)

if(|r − rf | == D|||c − cf | == D)
for each node u in Ur ,c

l = u’s PS level;
Bl = the leaf bucket of Cl;
Bl= Bl ∪ u;

return C1, . . . ,CK;

Figure 2 shows the results after clustering all nodes in Figure 1. Since the nodes of each
cluster are hierarchically structured in the order that they are clustered, the nodes of C1 have a
three-tiered structure, and the nodes of C2 have a two-tiered structure. On the other hand, C3,
C4, and C5 do not satisfy the minimum cluster size. Therefore, an additional cluster rebalancing
process is required for all the clusters to meet the minimum cluster size requirement.

Electronics 2023, 12, 870 10 of 23

Electronics 2023, 12, 870 10 of 24

create a new bucket B = ∅ and add B to Ci as a leaf bucket;
r0 = max(rf – D, 1);
c0 = max(cf – D, 1);
r1 = min(rf + D, mr);
c1 = min(cf + D, mc);
for (r = r0; r <= r1; r++)

for (c = c0; c <= c1; c++)
if(|r − rf| == D|||c − cf| == D)

for each node u in Ur,c

l = u’s PS level;
Bl = the leaf bucket of Cl;
Bl = Bl ∪ u;

return C1, …,CK;

Figure 2 shows the results after clustering all nodes in Figure 1. Since the nodes of
each cluster are hierarchically structured in the order that they are clustered, the nodes of
C1 have a three-tiered structure, and the nodes of C2 have a two-tiered structure. On the
other hand, C3, C4, and C5 do not satisfy the minimum cluster size. Therefore, an additional
cluster rebalancing process is required for all the clusters to meet the minimum cluster
size requirement.

Figure 2. Results after clustering.

Once the clustering is complete, the FS forms the final clusters by merging the clus-
ters whose size is smaller than 𝛿. The merge begins from the cluster level K and repeats
the following process. If CK does not satisfy 𝛿, and if CK−1 is sufficiently big, then some
nodes of CK−1 are merged to CK. Otherwise, CK is merged to CK−1. The detailed algorithm is
given below.
Algorithm 2: Merge Clusters
while K > 1

if |CK| < 𝛿
l = 𝛿 − |CK|;
if (|CK−1| − l) >= 𝛿

l nodes at the highest level in CK−1’s node structure are merged to CK;
else

CK−1 = CK−1 ∪ CK;
remove CK;

K = K − 1;
while |C1| < 𝛿

Cn = the next-order cluster of C1;
C1 = Cn ∪ C1;
remove Cn;

Figure 2. Results after clustering.

Once the clustering is complete, the FS forms the final clusters by merging the clusters
whose size is smaller than δ. The merge begins from the cluster level K and repeats the
following process. If CK does not satisfy δ, and if CK−1 is sufficiently big, then some nodes
of CK−1 are merged to CK. Otherwise, CK is merged to CK−1. The detailed Algorithm 2 is
given below.

Algorithm 2: Merge Clusters

while K > 1
if |CK| < δ

l= δ − |CK|;
if (|CK−1| − l) >= δ

l nodes at the highest level in CK−1’s node structure are merged to CK;
else

CK−1 = CK−1 ∪ CK;
remove CK;

K = K − 1;
while |C1| < δ

Cn = the next-order cluster of C1;
C1 = Cn ∪ C1;
remove Cn;

Figure 3 shows the final results after the cluster merging. First, |C5| is 1 and |C4|
is 1, so u11 is merged into C4. C5 is discarded. Next, |C4| is still 2 and less than 4. |C3|
is also 1, so u9 and u11 in C4 are merged into C3. C4 is discarded too. Now |C3| is 3, but
it lacks one node to meet the requirements. |C2| is sufficiently big, although one node is
moved to C3, so u13 with the longest distance to the FS is merged into C3. Since both C2
and C1 meet the requirements, the merge process is terminated. Consequently, C1, C2, and
C3 are finally created, and C1 contains nodes <u1, u3, u5, u10, u7>, C2 contains nodes <u2,
u4, u6, u12>, and C3 contains nodes <u2, u4, u6, u12>.

Electronics 2023, 12, 870 11 of 24

Figure 3 shows the final results after the cluster merging. First, |C5| is 1 and |C4| is
1, so u11 is merged into C4. C5 is discarded. Next, |C4| is still 2 and less than 4. |C3| is also
1, so u9 and u11 in C4 are merged into C3. C4 is discarded too. Now |C3| is 3, but it lacks one
node to meet the requirements. |C2| is sufficiently big, although one node is moved to C3,
so u13 with the longest distance to the FS is merged into C3. Since both C2 and C1 meet the
requirements, the merge process is terminated. Consequently, C1, C2, and C3 are finally
created, and C1 contains nodes <u1, u3, u5, u10, u7>, C2 contains nodes <u2, u4, u6, u12>, and C3
contains nodes <u2, u4, u6, u12>.

Figure 3. Final results after cluster merging.

After finishing the node clustering, the FS determines an appropriate latency (or la-
tency level) for the dropout decision for each cluster. This can be set to three times the
shortest response time in each cluster. The FS then sends the cluster ID and the list of the
nodes in the cluster to each node. The node list contains the node ID and the public key
pair of each node belonging to the same cluster.

3.4. BCSA: A Basic Cluster-Based Secure Aggregation Model
Next, we describe the basic cluster-based secure aggregation protocol in detail. This

protocol is denoted as BCSA in the rest of the paper. Aggregation of the local updates of
the nodes is conducted on a cluster basis, and the FS eventually aggregates all the inter-
mediate sums of the clusters. BCSA is defined by the following steps:

Step 1: Assignment of training weights and random nonce
Step 1 is performed only once before beginning the aggregation. The FS computes

training weights for nodes and chooses random nonces for clusters. Let Ci be the i-th clus-
ter and |Ci| be the size of Ci, which is the number of nodes belonging to Ci. Since each
node has a different training data size, the FS assigns training weights to the nodes ac-
cording to the training data size. Let 𝜆௝ be the training weight of uj in Ci. 𝜆௝ is determined
as follows: 𝜆௝ = 𝑛௝∑ 𝑛௞௨ೖ∈஼೔

where 𝑛௝ is the data size of 𝑢௝.
The FS also chooses a random integer ri mod p for Ci, which is later used to generate

random masks at each node. The FS delivers ri along with 𝜆௝ to uj in Ci as encrypted with
the public key of uj. The FS also publishes 𝑅௜ = 𝑔௥೔ mod 𝑝 to all nodes so that every node
can verify the validity of ri.

After Step 1 is finished, the following steps are repeated until the federated learning
ends.

Step 2: Quantization

Figure 3. Final results after cluster merging.

After finishing the node clustering, the FS determines an appropriate latency (or
latency level) for the dropout decision for each cluster. This can be set to three times the
shortest response time in each cluster. The FS then sends the cluster ID and the list of the

Electronics 2023, 12, 870 11 of 23

nodes in the cluster to each node. The node list contains the node ID and the public key
pair of each node belonging to the same cluster.

3.4. BCSA: A Basic Cluster-Based Secure Aggregation Model

Next, we describe the basic cluster-based secure aggregation protocol in detail. This
protocol is denoted as BCSA in the rest of the paper. Aggregation of the local updates of the
nodes is conducted on a cluster basis, and the FS eventually aggregates all the intermediate
sums of the clusters. BCSA is defined by the following steps:

Step 1: Assignment of training weights and random nonce
Step 1 is performed only once before beginning the aggregation. The FS computes

training weights for nodes and chooses random nonces for clusters. Let Ci be the i-th cluster
and |Ci| be the size of Ci, which is the number of nodes belonging to Ci. Since each node
has a different training data size, the FS assigns training weights to the nodes according to
the training data size. Let λj be the training weight of uj in Ci. λj is determined as follows:

λj =
nj

∑uk∈Ci
nk

where nj is the data size of uj.
The FS also chooses a random integer ri mod p for Ci, which is later used to generate

random masks at each node. The FS delivers ri along with λj to uj in Ci as encrypted with
the public key of uj. The FS also publishes Ri = gri mod p to all nodes so that every node
can verify the validity of ri.

After Step 1 is finished, the following steps are repeated until the federated learning
ends.

Step 2: Quantization
The local parameters, wj, of each node are converted to integers by the stochastic

rounding function proposed in [24]. For any integer q ≥ 1, the stochastic rounding function
is as follows:

Qq(x) =

{ qx
q , with prob. 1− (qx− [qx])

qx+1
q , with prob. qx− [qx]

(7)

where [x] is the largest integer less than or equal to x, and q is the number of quantization
levels. For a mapping function φ : R → Fp , the quantized model is defined as follows:

Wj := φ
(
q·Qq

(
λj·wj

))
, (8)

where φ(x) =
{

x, if x ≥ 0
p + x, if x < 0

(9)

Step 3: Random masks generation and distribution
Each uj in Ci generates random masks for all the other nodes in Ci. Let mj,k be a

random mask for uk where j and k are 1, . . . , |Ci|. uj chooses mj,k satisfying the following
Equation (10):

∑∀k 6=j mj,k mod p = ri mod p (10)

To achieve this, uj firstly chooses l − 1 random positive integers m1, . . . , ml−1 for
modular p where l = |Ci| − 1 and then determines the final random integer ml as
ml = (ri −∑l−1

i=1 mi). Here, ml is not a value for modular p and can be negative. Thus,
ml is represented in the form of x·(p − 1) + r for an integer x and a positive residue r.
Then, ml := r ≡ ml mod (p− 1). uj also generates a public mask Mj,k for mj,k’s validity
verification as follows:

Mj,k :=

{
gmj,k mod p if mj,k > 0,
gmj,k mod p if mj,k < 0,

(11)

Electronics 2023, 12, 870 12 of 23

where mj,k = mj,k mod (p− 1).
uj encrypts mj,k with uk’s public key and publishes all the encrypted masks and public

masks. The FS sends them back to nodes in the Ci. If mk,j < 0, uj sets mk,j = mk,j mod (p− 1).
Finally, uj accepts mk,j if the following equation holds:

Mk,j =

{
gmk,j mod p if mk,j > 0,
gmk,j mod p if mk,j < 0,

gri = ∏∀n 6=k Mk,n mod p for n = 1, ..., |Ci| –1
(12)

If any mask is invalid or dropped during the communication, Step 3 is repeated until
all the nodes share valid masks.

Step 4: Secure update generation
If all the masks are valid, uj generates its secure update Sj for its local weight Wj as

follows and sends Sj to the FS:

Sj = Wj + ri −∑∀k 6=j mk,j mod p (13)

Step 5: Cluster aggregation
For each cluster Ci, a different level of latency is determined to collect Sj. After

collecting Sj for Ci, the FS determines a list of currently available users. If all nodes in Ci
are available, the FS sends a message of “all available” to the nodes and computes the
intermediate sum ISi of Ci as follows:

TSi = ∑
|Ci |
j=1 Sj (mod p)

= ∑
|Ci |
j=1(Wj + ri −∑∀k 6=j mk,j) for 1 ≤ k ≤ |Ci|

= ∑
|Ci |
j=1 Wj + |Ci|·ri −∑

|Ci |
j=1 ∑∀k 6= j mk,j

= ∑
|Ci |
j=1 Wj + |Ci|·ri −∑

|Ci |
k=1 ∑∀j 6= k mk,j for 1 ≤ j ≤ |Ci|

= ∑
|Ci |
j=1 Wj + |Ci|·ri −∑

|Ci |
k=1 ri

= ∑
|Ci |
j=1 Wj + |Ci|·ri − |Ci|·ri

= ∑
|Ci |
j=1 Wj, and

ISi = φ−1(TSi),

where φ−1(·) is the dequantization function.
Eventually, ISi is the average of the local weights wj of all nodes.
Step 5-1: Recovery of aggregation: removing masks of dropout users
For each cluster Ci, if there are any dropout users, the FS determines a list of the

current available users denoted as Ai and sends it back to all nodes. Each uj in Ai replies
with its signed confirmation messages to the FS, and the FS broadcasts all the signatures to
all nodes. If all the signatures are valid, the currently available nodes carry out the recovery
phase by removing the masks of the dropout users.

For example, suppose that u1 ~ u4 belong to a cluster C1 and that u2 and u4 are dropout
users, thus, S2 and S4 are dropped in the process of Step 4. The sum of S1 and S3 is defined
as follows:

TS1 = S1 + S3 = W1 + W3 + r1 + r1 −m2, 1 −m3,1 −m4,1 −m1,3 −m2,3 −m4,3

In order to recover the sum of w1 and w2, additional values of m1,2, m1,4, m2,4, m3,2,
m3,4, and m4,2 are necessary. Here, m1,2, m1,4, m3,2, and m3,4 are created by u1 and u3, so
those values can be easily obtained from u1 and u3. However, m2,4 and m4,2 are created
by u2 and u4, respectively, and are delivered to u2 and u4, so u1 and u3 cannot know those
values. This can be solved without revealing m2,4 and m4,2 directly. For u2 and u4, u1 and

Electronics 2023, 12, 870 13 of 23

u3 compute their reconstruction values RS1 and RS3 using the masks shared with u2 and u4
as follows:

RS1 = m2,1 + m4,1 −m1,2 −m1,4,
RS3 = m2,3 + m4,3 −m3,2 −m3,4,

Consequently, a new TS1
′ represents the sum of W1 and W3 correctly as follows:

TS′1 = TS1 + RS1 + RS3

= W1 + W3 + r1 + r1 −m2, 1 −m3,1 −m4,1 −m1,3 −m2,3 −m4,3 + m2,1 + m4,1

−m1,2 −m1,4 + m2,3 + m4,3 −m3,2 −m3,4

= W1 + W3 + r1 + r1 −m1,2 −m1,3 −m1,4 −m3,1 −m3,2 −m3,4

= W1 + W3

We formalized the above. The nodes in Ci can be divided into two groups: active
user group Ai and dropout user group Di. If Di 6= ∅, the nodes in Ai compute their
reconstruction values RSj using Equation (14) and send them to the FS:

RSj = ∑uk ∈Di

(
mk,j −mj,k

)
(14)

Then, the sum of all the updates of the final active users is computed by the following
Equation (15):

TSi = ∑uj∈Ai
(Sj + RSj) mod p (15)

Here, the training weight of each active user is a value calculated by considering the
data of the dropout users, so it should be modified as a training weight for the data of
only active users. Thus, the final sum of the active users is determined by the following
Equation (16):

ISi =
∑uk∈Ci

nk

∑uj∈Ai
nj
·φ−1(TSi) (16)

Step 6: Final aggregation
Lastly, the FS obtains the S of all nodes by S = ∑

|C|
i=1

n_Ai

∑
|C|
j=1 n_Aj

ISi for all clusters, where

|C| is the number of clusters and n_Ai = ∑∀uj∈Ai
nj. S is the average of the local weights

wi of all active nodes.

3.5. FCSA: A Fully Secure Cluster-Based Aggregation Model

BCSA works correctly for dropout nodes. BCSA, however, allows the FS to know the
actual local parameters of false dropout nodes when the nodes are determined to dropouts,
but their updates are delivered to the FS after aggregation. For an example, suppose that ud
was determined as a dropout and ud’s update Sd is delivered to the FS after the other active
users perform the recovery phase. In this case, the FS can know the actual local parameter
Wd of ud just by adding the reconstruction values of the active users to Sd of ud. To solve
this vulnerability, a fully secure cluster-based secure aggregation protocol was proposed. It
is denoted as FCSA in the rest of the paper. FCSA uses another random secret chosen by a
user to generate the secure update.

During the masking generation stage (Step 3 in Section 3.4), uj in Ci chooses another
random value αj. At the secure update generation stage (Step 4 in Section 3.4), uj generates
its secure update Sj as follows:

Sj = Wj + ri −∑∀k 6=j mk,j + αj mod p (17)

Unlike BCSA, the recovery phase is always necessary for all nodes to eliminate αj,
regardless of dropouts. If there are no dropouts, all nodes send their αj to the FS. Otherwise,

Electronics 2023, 12, 870 14 of 23

each active user uj in Ai sends its reconstruction values for the dropout nodes along with αj.
Even if ud’s Sd is delivered to the FS after the recovery phase, the actual local parameter Wd
is still secure because it is hidden by ud’s random secret αd.

Here, additional dropouts can occur even in the recovery phase. Let such a node be
ux, that is, the Sx of ux is passed to the FS normally but the reconstruction value RSx and
secret αx of ux are dropped out in the recovery phase. If ux turns out to be a dropout, the
final active users send back the reconstruction values for all dropout users including ux
by Equation (14), and then the FS can compute the sum of the secure updates for the final
active users by the following Equation (18):

TSi = ∑∀uj∈Ai
(Sj + RSj − αj) mod p (18)

Even if a pair of RSx and αx of ux is delivered to the FS late, ux’s local data Wx is still
secure because Sx is still masked with the random values given from other nodes. We
summarized the operation of FCSA with a simple example. For a cluster C1 containing
five nodes denoted as u1, . . . , u5, suppose that u2 and u4 turned out to be a dropout in the
initial cluster aggregation phase. Thus, S1, S3, and S5 have been passed to FS. Then, u1,
u3, and u5 perform the recovery phase and should send their random secrets α1, α3, and
α5 and their reconstruction values RS1, RS3, and RS5 generated by Equation (14) to the FS.
RS1, RS3, and RS5 are determined as follows:

RS1 = m2,1 + m4,1 − m1,2 − m1,4

RS3 = m2,3 + m4,3 − m3,2 − m3,4

RS5 = m2,5 + m4,5 − m5,2 − m5,4

Here, suppose that α3 and R3 are not delivered to the FS normally. Another dropout
happens in the recovery phase. Then, the final active users u1 an u5 repeat the recovery
phase by sending the modified reconstruction values R1

(2) and R5
(2) for all the dropout

users u2, u4, and u3 to the FS.

RS1
(2) = RS1 + m3,1 − m1,3

RS5
(2) = RS5 + m3,5 − m5,3

Finally, the FS obtains the sum of w1 and w5 of the final active users by calculating
S1 + S5 + RS1

(2) + RS5
(2) − α1 − α5.

4. Security and Efficiency Analysis

In this section, we analyze the theoretical results of FCSA in terms of its robustness
for dropout nodes, privacy of local parameters, and computational and communication
efficiency of aggregation. This can be summarized as follows:

(1) Robustness to dropouts: FCSA is robust against dropout users. (There is no constraint
for the number of active users.)

(2) Privacy of local parameters: FCSA guarantees the privacy of local parameters on each
node if there are at least three honest active users in each cluster with a cluster size
greater than or equal to four.

(3) Efficiency of secure aggregation: Let C be the average cluster size. The computation
cost of a node is O(C), and the FS’s cost is O(N). The communication cost of node is
O(C), and the FS’s cost is O(NC).
Next, we will first show that FCSA is robust against dropout users. To prove this, we

will show that Equation (18) correctly derives the aggregated sum of the final active users.

Electronics 2023, 12, 870 15 of 23

For a cluster C and its random number r, let A be the group of final active users and D be
the group of dropout users.

TS = ∑
uj∈A

(Sj + RSj − αj)

= ∑
uj∈A

Wj + |A|·r− ∑
uj∈A

∑
uk∈U, k 6=j

mk,j + ∑
uj∈A

αj + ∑
uj∈A

∑
ud∈D

md,j − ∑
uj∈A

∑
ud∈D

mj,d − ∑
uj∈A

αj

= ∑
uj∈A

Wj + |A|·r− ∑
uj∈A

{
∑

uk∈U, k 6=j
mk,j − ∑

ud∈D
md,j + ∑

ud∈D
mj,d

}

= ∑
uj∈A

Wj + ∑
uj∈A

∑
uk∈U, k 6=j

mj,k − ∑
uj∈A

{
∑

ua∈A, a 6=j
ma,j + ∑

ud∈D
md,j − ∑

ud∈D
md,j + ∑

ud∈D
mj,d

}

= ∑
uj∈A

Wj + ∑
uj∈A

{
∑

uk∈U, k 6=j
mj,k − ∑

ua∈A, a 6=j
ma,j − ∑

ud∈D
mj,d

}

= ∑
uj∈A

Wj + ∑
uj∈A

{
∑

ua∈A, a 6=j
mj,a + ∑

ud∈D
mj,d − ∑

ua∈A, a 6=j
ma,j − ∑

ud∈D
mj,d

}
= ∑

uj∈A
Wj + ∑

uj∈A
∑

ua∈A, a 6=j
mj,a − ∑

uj∈A
∑

ua∈A, a 6=j
ma,j

= ∑
uj∈A

Wj

Next, we will show that FCSA guarantees privacy for each node’s local parameters.
We basically assumed honest-but-curious nodes and the FS. We assumed that they do not
manipulate or forge their data but that some of them can collude with the FS. Any collusion
node can provide its masking values to the FS.

Theorem 1. For each cluster C that satisfies |C| ≥ 4, if there are at least three honest (no collusion
with FS) active users, FCSA guarantees the privacy of each node’s local parameters.

Proof. Let the non-collusive active user group be H = {h1, h2, h3} and the collusion user
group be B = U − H. Let Si be the secure update of ni in A. Si be defined as follows:

Si = Wi + r− ∑
uj∈U, j 6=i

mj,i + αi

= Wi + ∑
uj∈U, j 6=i

mi,j − ∑
uj∈U, j 6=i

mj,i + αi

= Wi + ∑
uh∈H, h 6=i

mi,h + ∑
uc∈B∩ A, c 6=i

mi,c + ∑
uk∈D

mi,k − ∑
uh∈H, h 6=i

mh,i

− ∑
uc∈B∩ A, c 6=i

mc,i − ∑
uk∈D

mk,i + αi
All the nodes in A also provide RSi and αi. Any node in B can provide all the masking

values about the other nodes. Thus, the FS and the nodes in B can compute Si
′ as follows:

S′i = Si + RSi − αi − ∑
uc∈B∩ A, c 6=i

mi,c + ∑
uc∈B∩ A, c 6=i

mc,i

= Wi + ∑
uh∈H, h 6=i

mi,h − ∑
uh∈H, h 6=i

mh,i

Si
′ is still masked by the random secrets generated by honest nodes. mi,h and mh,i are

securely shared between only ni and nh. Suppose that the FS has published Si
′ to all the

nodes in U. Here, we can consider two cases: (1) ni belongs to B and nh belongs to H, and
(2) both ni and nh belong to H. For the first case, Si

′ is determined as follows:

S′i = Wi + mi,h1 + mi,h2 + mi,h3 −mh1,i −mh1,i −mh2,i −mh3,i

All the nodes in B except ni cannot know any masking value mi,h or mh,i because all
the honest nodes do not open their masking values. Any honest node nh in H can know
mi,h or mh,i that nh possesses but it cannot know the masking values of the other honest
nodes. Therefore, it is impossible to reveal the actual wi from all the opened information.

Electronics 2023, 12, 870 16 of 23

For the second case, let the three honest nodes be h, h1, and h2. The secure update of h is
denoted as Sh

′, which is defined as

S′h = Wh + mh,h1 + mh,h2 −mh1,h −mh2,h.

All the nodes in B cannot know the masking values mh,hj
that are shared between only

the honest nodes. Thus, it is secure against all the nodes in B. For the other honest nodes h1
and h2, h1 can know mh,h1 and mh1,h because h1 possesses them, but it cannot know mh,h2
and mh2,h. This is the same for h2. Therefore, for both cases, Wi is always secure to all other
nodes if there are at least three honest active nodes.

If the number of honest active nodes is less than three (e.g., two honest nodes marked
h and h1), Sh

′ is defines as S′h = Wh + mh,h1 −mh1,h. When Sh
′ is opened to h1, h1 can know

the value of Wh because h1 also possesses mh,h1 and mh1,h. Therefore, at least three honest
nodes are necessary to guarantee the privacy of the local parameters. �

Lastly, we analyzed the efficiency of FCSA. Table 2 summarizes the computation
and communication costs of the nodes and the FS for each main operation of FCSA. Node
clustering is performed only once by the FS at the beginning of the federated learning. After
mapping the nodes to a grid according to the GPS, the FS assigns clusters sequentially from
the nodes closest to the FS. The computational cost for the node clustering is O(N). During
the aggregation, the main computational operations of each node side are mask generation,
secure update generation, and reconstruction value generation. Since the aggregation is
performed on a cluster basis, the computation costs for all these operations are proportional
the size of the cluster (the number of nodes belonging the cluster). On the other hand,
the main computational operations of the FS are training weight computation and the
aggregation of local updates. In addition, all these operations are required for every node.
Thus, the computational cost of the FS is proportional to the number of nodes. Therefore,
the total computation costs of the nodes and the FS are O(C) and O(N), respectively, where
C represents the average cluster size.

Table 2. Computational costs and communicational overheads of FCSA.

Operation
Computational Costs Communicational

Overheads

Node Server Node to
FS

FS to
Nodes

Node clustering O(1) O(N) O(1) -

Setup for aggregation—random nonce & training
weight distribution to nodes - O(N) - O(N)

Local update
generation

Share of masks O(C) - O(C) O(NC)

Secure update
generation O(C) - O(1) -

Aggregation
All active nodes (no

dropouts) - O(N) O(1) -

Recovery phase O(C) O(N) O(1) -

Total cost for aggregation O(C) O(N) O(C) O(NC)
C: average cluster size; N: total number of nodes.

Next, in our model, all communications go through the FS. The most communica-
tionally expensive operation of the node side is to send masks to the FS. For a cluster C,
each node in C sends (|C| − 1) masks to the FS. Thus, the communication cost of a node
is proportional to the size of cluster and is O(C). On the side of the FS, the most com-
municationally expensive operation is to distribute the masks to all nodes. The FS sends
(|C| − 1) masks to each node in each cluster C. Since the FS must repeat this operation for
all clusters, the FS eventually sends (C − 1) masks to N nodes. Thus, the communication
cost of the FS is O(NC).

Electronics 2023, 12, 870 17 of 23

5. Experimental Results

In this section, we analyzed the simulated performance of the proposed CSA. We
particularly evaluated the accuracy and overall processing time of our model using the
MNIST [28] database for various federated learning situations. We compared the accuracy
of our cluster-based learning model with a single centralized learning model according
to quantization levels, training weights, and different dropout situations. In addition, we
analyzed the overall processing time under various dropout situations.

5.1. Simulation Setup

We used the MNIST database for our experiment. The MNIST database contains
28 × 28 grayscale images of 10 digits and consists of a training set of 60,000 images along
with a test set of 10,000 images. For an individual training run, a two-layer CNN model
with 5 × 5 convolution layers (the first with sixteen channels, the second with thirty-two
channels, each followed with 2 × 2 max pooling), ReLU activation, and a final softmax
output layer was used. We conducted our experiments using Python and implemented the
learning architecture using PyTorch framework.

The MNIST data were distributed into 100 nodes in a non-IID way. First, the nodes
were evenly divided into four clusters (twenty-five nodes per cluster) with different PS
levels. The PS level, denoted as PSL, had a value from 1 to 4. PSL 1 represents the group
with the shortest response time, and PSL 4 represents the group with the longest response
time. Accordingly, the nodes in the PSL 1 cluster were allocated a small amount of training
data, whereas the nodes in the PSL 4 cluster were assigned a relatively large amount of
training data. So, we assigned 100 randomly chosen examples to each node with PSL
1, 400 examples to each node with PSL 2, 700 examples to each node with PSL 3, and
1000 examples to each node with PSL 4. In total, 55,000 data items were used for the
training in the experiment.

The client nodes were implemented by creating 100 threads on a PC configured with
RTX 3080 GPU, Intel(R) i7-12700K 3.61GHZ CPU, 32 GB memory, and Windows 11. The
server PC was configured with an RTX 3080 GPU, Intel(R) i9-11900F 2.50GHZ CPU, 1TB
SSD, 64 GB memory, and Windows 11. Since the nodes were created as threads on the same
PC, the actual communication latency and computing power of the nodes were the same.
Only the actual local training times of the nodes were different due to the different sizes
of the training data. Therefore, the single round latency per cluster was arbitrarily set to
20 s for the PSL 1 cluster, 25 s for the PSL 2 cluster, 30 s for the PSL 3 cluster, and 35 s for
the PSL 4 cluster. This represented the maximum waiting time when dropout occurs. If
dropout did not occur, the next round was performed as soon as responses from all nodes
were collected. For the federated learning, the FS basically performed 100 iterations of local
weight updates with nodes. The main experimental parameters and values are summarized
in Table 3 below.

Table 3. Experimental parameters and values.

Parameters Values

The total number of nodes/
the number of nodes per each cluster

100/
25

The number of clusters (C) 1, 4

Quantization level (qLevel) 30, 100, 300

Dropout rate (dr) 0%, 30%, 50%

The size of prime p 15 bits

PS level (PSL) 1 ~ 4

Training data ratio according to PS level PSL1: 4.5%, PSL2: 18%, PSL3: 32%, PSL4: 45.5%

The number of iterations for federated learning 100

Electronics 2023, 12, 870 18 of 23

5.2. Simulated Performance

In the experiment, FCSA with four clusters (C = 4) was used as the cluster-based
federated learning model, while FCSA with a single cluster (C = 1) was used as the
single centralized learning model. Before analyzing the accuracy of FCSA, when we
simply performed the federated learning on 100 nodes without applying the proposed
CSA, the accuracy was about 90.5%. Since FCSA requires quantization for mask sharing
and validation, we first analyzed the accuracy of FCSA according to the quantization
level. Figure 4 shows the accuracy of the proposed FCSA according to different quanti-
zation levels (qLevel). The simulated results showed the best accuracy when qLevel was
300 for both situations, and FCSA with C = 4 showed better accuracy than FCSA with
C = 1. When no dropout occurred, the accuracy of FCSA with C = 4 was 91.08%, while that
of FCSA with C = 1 was 87%. On the other hand, when qLevel was 100, the accuracy of
FCSA with C = 4 was 88.3%, but the accuracy of FCSA with C = 1 was about 40%. From
the results, we can see that the quantization level greatly affected the learning accuracy.
However, using an appropriate quantization level could prevent the loss of accuracy due
to quantization, as shown by the results showing that the accuracy of FCSA with C = 4 at a
qLevel of 300 was better than that of the simple federated learning without quantization. In
the federated learning model, since the local data size of each device was small, relatively
small quantization values were sufficient to output accurate learning results. However, the
centralized learning model required large quantization values, as it worked with the full
data collected from the local devices.

Electronics 2023, 12, 870 19 of 24

Figure 4. Accuracy according to the quantization levels.

Table 4 shows the accuracy according to the dropout rate (dr). In this experiment, for
FCSA with C = 1, the nodes equal to the dropout rate among all the nodes were randomly
removed from the federated learning. On the other side, in the case of FCSA with C = 4,
the dropout nodes were selected per cluster. In other words, if dr = 30%, for each cluster,
30% of the nodes were randomly removed from the learning. It should be noted that the
accuracy of FCSA with C = 1 decreased as the dropout rate increased, whereas the accuracy
of FCSA with C = 4 was not significantly affected by the dropout rate. FCSA with C = 4
outputted similar accuracies regardless of the dropout rate. This result was meaningful.
In both cases, the actual amount of training data used for the federated learning was the
same, but the accuracy was different. In the case of FCSA with C = 4, the data size used for
local learning was different for each cluster. However, even if dr = 50%, it was noted that
the accuracy of the overall learning did not deteriorate because the remaining nodes still
produced good learning results in the C3 and C4 groups that performed local learning with
relatively large amounts of data.

Table 4. Accuracy according to different dropout rates.

Dropout
Rate (dr)

FCSA with C = 4 FCSA with C = 1
50 Round Accu-

racy (%)
100 Round Accu-

racy (%)
50 Round Accu-

racy (%)
100 Round Accu-

racy (%)
dr = 0% 86.22 91.08 80.13 87
dr = 30% 86.35 91.54 75.7 86.12
dr = 50% 85.02 91.25 72.08 79.7

Figure 5 shows the difference in the accuracy between applying and not applying the
training weights (𝜆) to FCSA with C = 4. When the training weights were not applied to
FCSA with C = 4, the accuracy dropped slightly to 90.01%. Since FCSA with C = 4 was not
affected by the dropout rate per cluster, the accuracy was compared when cluster-based
dropout occurred. Figure 6 shows the results. When all the nodes belonging to C1 were
dropped out, the accuracy was around 91.8%. From this, it can be seen that the local learn-
ing result of the nodes belonging to the C1 cluster had little effect on the overall learning,
and the overall learning accuracy was rather increased by the nodes belonging to the C3
and C4 clusters based on sufficient data. On the other hand, when C4 was dropped out, the
accuracy dropped to 89.4%. When the training weights were not applied and C4 was
dropped out, the accuracy decreased to 87.11%. From the experiment results, we can con-
clude that an accurate local model based on sufficient data was the most important factor
for increasing the accuracy of the overall federated learning.

Figure 4. Accuracy according to the quantization levels.

Table 4 shows the accuracy according to the dropout rate (dr). In this experiment, for
FCSA with C = 1, the nodes equal to the dropout rate among all the nodes were randomly
removed from the federated learning. On the other side, in the case of FCSA with C = 4,
the dropout nodes were selected per cluster. In other words, if dr = 30%, for each cluster,
30% of the nodes were randomly removed from the learning. It should be noted that the
accuracy of FCSA with C = 1 decreased as the dropout rate increased, whereas the accuracy
of FCSA with C = 4 was not significantly affected by the dropout rate. FCSA with C = 4
outputted similar accuracies regardless of the dropout rate. This result was meaningful.
In both cases, the actual amount of training data used for the federated learning was the
same, but the accuracy was different. In the case of FCSA with C = 4, the data size used for
local learning was different for each cluster. However, even if dr = 50%, it was noted that
the accuracy of the overall learning did not deteriorate because the remaining nodes still
produced good learning results in the C3 and C4 groups that performed local learning with
relatively large amounts of data.

Electronics 2023, 12, 870 19 of 23

Table 4. Accuracy according to different dropout rates.

Dropout Rate (dr)
FCSA with C = 4 FCSA with C = 1

50 Round
Accuracy (%)

100 Round
Accuracy (%)

50 Round
Accuracy (%)

100 Round
Accuracy (%)

dr = 0% 86.22 91.08 80.13 87

dr = 30% 86.35 91.54 75.7 86.12

dr = 50% 85.02 91.25 72.08 79.7

Figure 5 shows the difference in the accuracy between applying and not applying the
training weights (λ) to FCSA with C = 4. When the training weights were not applied to
FCSA with C = 4, the accuracy dropped slightly to 90.01%. Since FCSA with C = 4 was not
affected by the dropout rate per cluster, the accuracy was compared when cluster-based
dropout occurred. Figure 6 shows the results. When all the nodes belonging to C1 were
dropped out, the accuracy was around 91.8%. From this, it can be seen that the local
learning result of the nodes belonging to the C1 cluster had little effect on the overall
learning, and the overall learning accuracy was rather increased by the nodes belonging to
the C3 and C4 clusters based on sufficient data. On the other hand, when C4 was dropped
out, the accuracy dropped to 89.4%. When the training weights were not applied and C4
was dropped out, the accuracy decreased to 87.11%. From the experiment results, we can
conclude that an accurate local model based on sufficient data was the most important
factor for increasing the accuracy of the overall federated learning.

Electronics 2023, 12, 870 20 of 24

Figure 5. Accuracy by dropout rate and training weights (𝜆)

Figure 6. Accuracy by cluster-based dropout and training weights (𝜆).

Lastly, we analyzed the total running time according to different dropout situations.
Figure 7 shows the overall running time (100 rounds run time) when cluster-based drop-
out occurred. When C1 was dropped out, the overall time was about 1796 s, and when C4
was dropped out, it was about 4588 s. This was because the latency was different depend-
ing on the cluster level, and the total execution time increased proportionally accordingly.
Figure 8 compares the total execution time of FCSA with C = 1 and FCSA with C = 4. When
dropout did not occur, the running time of FCSA with C = 1 was about 1878 s, and the
running time of FCSA with C = 4 was about 1815 s. The difference was negligible. When
dropout occurred, the running time of FCSA with C = 1 was about 4872 s, while the run-
ning time of FCSA with C = 4 was 4011 s. FCSA with C = 1 applied the longest latency to
all dropout nodes, whereas FCSA with C = 4 applied a different latency to dropout nodes
depending on the cluster, so the total execution time of FCSA with C = 4 was relatively
reduced.

Figure 7. Total running time by cluster-based dropout.

Figure 5. Accuracy by dropout rate and training weights (λ).

Electronics 2023, 12, 870 20 of 24

Figure 5. Accuracy by dropout rate and training weights (𝜆)

Figure 6. Accuracy by cluster-based dropout and training weights (𝜆).

Lastly, we analyzed the total running time according to different dropout situations.
Figure 7 shows the overall running time (100 rounds run time) when cluster-based drop-
out occurred. When C1 was dropped out, the overall time was about 1796 s, and when C4
was dropped out, it was about 4588 s. This was because the latency was different depend-
ing on the cluster level, and the total execution time increased proportionally accordingly.
Figure 8 compares the total execution time of FCSA with C = 1 and FCSA with C = 4. When
dropout did not occur, the running time of FCSA with C = 1 was about 1878 s, and the
running time of FCSA with C = 4 was about 1815 s. The difference was negligible. When
dropout occurred, the running time of FCSA with C = 1 was about 4872 s, while the run-
ning time of FCSA with C = 4 was 4011 s. FCSA with C = 1 applied the longest latency to
all dropout nodes, whereas FCSA with C = 4 applied a different latency to dropout nodes
depending on the cluster, so the total execution time of FCSA with C = 4 was relatively
reduced.

Figure 7. Total running time by cluster-based dropout.

Figure 6. Accuracy by cluster-based dropout and training weights (λ).

Lastly, we analyzed the total running time according to different dropout situations.
Figure 7 shows the overall running time (100 rounds run time) when cluster-based dropout
occurred. When C1 was dropped out, the overall time was about 1796 s, and when C4 was
dropped out, it was about 4588 s. This was because the latency was different depending on

Electronics 2023, 12, 870 20 of 23

the cluster level, and the total execution time increased proportionally accordingly. Figure 8
compares the total execution time of FCSA with C = 1 and FCSA with C = 4. When dropout
did not occur, the running time of FCSA with C = 1 was about 1878 s, and the running
time of FCSA with C = 4 was about 1815 s. The difference was negligible. When dropout
occurred, the running time of FCSA with C = 1 was about 4872 s, while the running time of
FCSA with C = 4 was 4011 s. FCSA with C = 1 applied the longest latency to all dropout
nodes, whereas FCSA with C = 4 applied a different latency to dropout nodes depending
on the cluster, so the total execution time of FCSA with C = 4 was relatively reduced.

Electronics 2023, 12, 870 20 of 24

Figure 5. Accuracy by dropout rate and training weights (𝜆)

Figure 6. Accuracy by cluster-based dropout and training weights (𝜆).

Lastly, we analyzed the total running time according to different dropout situations.
Figure 7 shows the overall running time (100 rounds run time) when cluster-based drop-
out occurred. When C1 was dropped out, the overall time was about 1796 s, and when C4
was dropped out, it was about 4588 s. This was because the latency was different depend-
ing on the cluster level, and the total execution time increased proportionally accordingly.
Figure 8 compares the total execution time of FCSA with C = 1 and FCSA with C = 4. When
dropout did not occur, the running time of FCSA with C = 1 was about 1878 s, and the
running time of FCSA with C = 4 was about 1815 s. The difference was negligible. When
dropout occurred, the running time of FCSA with C = 1 was about 4872 s, while the run-
ning time of FCSA with C = 4 was 4011 s. FCSA with C = 1 applied the longest latency to
all dropout nodes, whereas FCSA with C = 4 applied a different latency to dropout nodes
depending on the cluster, so the total execution time of FCSA with C = 4 was relatively
reduced.

Figure 7. Total running time by cluster-based dropout. Figure 7. Total running time by cluster-based dropout.

Electronics 2023, 12, 870 21 of 24

Figure 8. Total running time by dropout rate per cluster.

6. Conclusions and Future Work
The purpose of our study was to propose a practical secure aggregation model that

protects the privacy of local updates, is robust against dropouts, reduces computation and
communication costs, and reduces the overall running time in federated learning using
heterogeneous devices. To achieve this, we proposed a new cluster-based secure aggrega-
tion (CSA) strategy that effectively handles dropouts and reduces overhead in situations
where the size of the training data, the computing power, and the communication distance
of each node are different.

To deal with dropout nodes, the server should first be able to detect dropout occur-
rence. In other words, the server must determine within a reasonable amount of time
whether a non-response of some nodes is due to communication delay or message-drop.
Increasing the waiting time to receive responses from nodes can slow down the entire
federated learning time as it has to interact with nodes repeatedly.

The proposed CSA method clusters nodes with similar response times and performs
cluster-by-cluster aggregation of local updates on nodes. To achieve this, we suggested a
grid-based clustering algorithm that clusters nodes according to their processing levels
and locations. In the model, the server can estimate an appropriate latency based on the
response time of nodes per cluster and can treat unresponsive nodes as dropout nodes
after the latency period has elapsed. Therefore, the proposed CSA method provides a rea-
sonable solution that can reduce the overall federated learning time while increasing the
decision accuracy for dropout.

We also proposed a new additive sharing-based masking technique to securely ag-
gregate the local updates of nodes. It is robust to dropout users and protects the privacy
of local model parameters if each cluster has at least three honest nodes (not colluded with
the federated learning server). We theoretically proved the robustness and security of the
proposed aggregation algorithm. Specifically, the proposed masking scheme allows
nodes to publicly validate the correctness and integrity of masks created by others. The
masks that are randomly created on nodes must be removed during the aggregation at
the server for correct aggregation. Therefore, each node must be able to proactively check
that the given masks can be eliminated later before generating a secure update with the
masks. In the proposed masking scheme, nodes also publish public masks along with ran-
dom masks securely delivered to other nodes, so the integrity of the given masks can be
verified with the public masks based on a discrete logarithm problem. In addition, the
masks of each node are created based on a random nonce (cluster nonce) assigned to each
cluster. Thus, each node can easily and publicly validate the correctness of the masks cre-
ated by others by testing that the multiplication of the public masks is equal to the public
cluster nonce without knowing the actual masks delivered to others. The proposed mask-
ing technique effectively solves the mask verification problem using the discrete loga-
rithm problem to ensure reliable aggregation. Here, the quantization of local parameters
is required to use the discrete logarithm in the protocol, and the quantization greatly af-
fects the learning accuracy. However, our simulated results showed that the loss of

Figure 8. Total running time by dropout rate per cluster.

6. Conclusions and Future Work

The purpose of our study was to propose a practical secure aggregation model that
protects the privacy of local updates, is robust against dropouts, reduces computation
and communication costs, and reduces the overall running time in federated learning
using heterogeneous devices. To achieve this, we proposed a new cluster-based secure
aggregation (CSA) strategy that effectively handles dropouts and reduces overhead in
situations where the size of the training data, the computing power, and the communication
distance of each node are different.

To deal with dropout nodes, the server should first be able to detect dropout occurrence.
In other words, the server must determine within a reasonable amount of time whether a
non-response of some nodes is due to communication delay or message-drop. Increasing
the waiting time to receive responses from nodes can slow down the entire federated
learning time as it has to interact with nodes repeatedly.

The proposed CSA method clusters nodes with similar response times and performs
cluster-by-cluster aggregation of local updates on nodes. To achieve this, we suggested
a grid-based clustering algorithm that clusters nodes according to their processing levels
and locations. In the model, the server can estimate an appropriate latency based on the
response time of nodes per cluster and can treat unresponsive nodes as dropout nodes after
the latency period has elapsed. Therefore, the proposed CSA method provides a reasonable
solution that can reduce the overall federated learning time while increasing the decision
accuracy for dropout.

Electronics 2023, 12, 870 21 of 23

We also proposed a new additive sharing-based masking technique to securely aggre-
gate the local updates of nodes. It is robust to dropout users and protects the privacy of
local model parameters if each cluster has at least three honest nodes (not colluded with
the federated learning server). We theoretically proved the robustness and security of the
proposed aggregation algorithm. Specifically, the proposed masking scheme allows nodes
to publicly validate the correctness and integrity of masks created by others. The masks
that are randomly created on nodes must be removed during the aggregation at the server
for correct aggregation. Therefore, each node must be able to proactively check that the
given masks can be eliminated later before generating a secure update with the masks. In
the proposed masking scheme, nodes also publish public masks along with random masks
securely delivered to other nodes, so the integrity of the given masks can be verified with
the public masks based on a discrete logarithm problem. In addition, the masks of each
node are created based on a random nonce (cluster nonce) assigned to each cluster. Thus,
each node can easily and publicly validate the correctness of the masks created by others
by testing that the multiplication of the public masks is equal to the public cluster nonce
without knowing the actual masks delivered to others. The proposed masking technique
effectively solves the mask verification problem using the discrete logarithm problem to
ensure reliable aggregation. Here, the quantization of local parameters is required to use the
discrete logarithm in the protocol, and the quantization greatly affects the learning accuracy.
However, our simulated results showed that the loss of accuracy due to the quantization
could be prevented by using an appropriate quantization level. In our experiments, there
was no loss of accuracy when using a quantization level of 300 for FCSA with four clusters.

The proposed CSA method also reduces the computational and communication over-
head by allowing nodes to share aggregation-related data only with nodes belonging to the
same cluster. Supposing that C is the average cluster size and N is the number of nodes,
each node’s computational and communication costs are both O(C). On the other hand, the
server’s computational cost is O(N), while the communication cost is O(NC). We evaluated
the performance of the proposed model using with the MNIST dataset. In the simulation
for one hundred nodes, FCSA with four clusters outputted about a 91% learning accuracy
regardless of the dropout rate, whereas a centralized FCSA (with one cluster) outputted
about a 87% accuracy without dropout. For a dropout ratio of 50%, FCSA with one cluster
dropped to about a 79% accuracy. In a centralized federated learning model, the accuracy
is highly dependent on the dropout rate. However, in our model, a dropout rate of 50%
hardly changed the accuracy. This was because the remaining nodes in the high-PS-level
clusters still produced good learning results with relatively large amounts of data. The
results showed that the proposed CSA method was suitable for federated learning using
heterogeneous devices with different sizes of training data.

Our model basically assumes that all participants, including the federated learning
server and nodes, are honest, so it does not separately verify each user’s local updates and
the server’s aggregation result. However, the server and nodes cannot be fully trusted in
the real world, so the proposed CSA method is vulnerable to Byzantine users. The CSA
method also has a drawback in that a bottleneck can occur on the server. Therefore, we
will conduct further research on verifiable cluster-based aggregation that can validate user
results and aggregated results. With the verifiable aggregation, the proposed CSA method
can be extended to a cross-device federated learning model, in which reliable and powerful
nodes act like cluster heads that perform intermediate aggregation on behalf of the server.
So, the bottleneck of the server can be also resolved.

We ultimately aim to develop a federated learning platform for medical diagnosis. Since
medical data is the most-sensitive personal data, hospitals are extremely reluctant to expose it
to the outside, so federated learning through secure aggregation is suitable for developing
a medical diagnosis model based on medical data scattered across hospitals. In particular,
each hospital deals with different diseases, and the size of the hospital and the corresponding
patient data are different, and the diagnosis results are also different. Therefore, it is necessary
to cluster hospitals according to the type of disease, the size of the hospital, the size of patient

Electronics 2023, 12, 870 22 of 23

data, and the level of care, and to perform cluster-based federated learning. In the future,
we plan to apply the proposed model to actual medical data and propose an improved
cluster-based secure aggregation model suitable for medical data.

Author Contributions: Conceptualization, J.K., G.P., M.K. and S.P.; methodology, J.K., G.P., M.K. and
S.P.; software, J.K., G.P. and M.K.; validation, J.K., G.P. and S.P.; formal analysis, S.P.; writing—original
draft preparation, S.P.; writing—review and editing, S.P.; supervision, S.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1F1A1063172).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. McMahan, H.B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A. Communication-Efficient Learning of Deep Networks from

Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), Fort
Lauderdale, FL, USA, 9–11 May 2017; Volume 54. [CrossRef]

2. Zhu, L.; Liu, Z.; Han, S. Deep leakage from gradients. arXiv 2019, 14774–14784. [CrossRef]
3. Wang, Z.; Song, M.; Zhang, Z.; Song, Y.; Wang, Q.; Qi, H. Beyond inferring class representatives: User-level privacy leakage from

federated learning. In Proceedings of the IEEE INFOCOM, Paris, France, 29 April–2 May 2019; pp. 2512–2520. [CrossRef]
4. Geiping, J.; Bauermeister, H.; Dröge, H.; Moeller, M. Inverting gradients—How easy is it to break privacy in federated learning?

In Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Online, 6–12 December 2020.
[CrossRef]

5. Yao, A.C. Protocols for secure computations. In Proceedings of the 23rd IEEE Annual Symposium on Foundations of Computer
Sciecne (sfcs 1982), Chicago, IL, USA, 3–5 November 1982; pp. 160–164. [CrossRef]

6. Shamir, A. How to share a secret. Commun. ACM 1979, 22, 612–613. [CrossRef]
7. Leontiadis, I.; Elkhiyaoui, K.; Molva, R. Private and dynamic timeseries data aggregation with trust relaxation. In Proceedings of

the International Conferences on Cryptology and Network Security (CANS 2014), Seoul, Korea, 1–3 December 2010; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 305–320. [CrossRef]

8. Rastogi, V.; Nath, S. Differentially private aggregation of distributed time-series with transformation and encryption. In
Proceedings of the ACM SIGMOD International Conference on Management of data (SIGMOD 10), Indianapolis, IN, USA, 6–10
June 2010; pp. 735–746. [CrossRef]

9. Halevi, S.; Lindell, Y.; Pinkas, B. Secure computation on the Web: Computing without simultaneous interaction. In Advances in
Cryptology—CRYPTO 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 132–150. [CrossRef]

10. Leontiadis, I.; Elkhiyaoui, K.; Önen, M.; Molva, R. PUDA—Privacy and Unforgeability for Data Aggregation. In Cryptology and
Network Security. CANS 2015; Springer: Cham, Switzerland, 2015; pp. 3–18. [CrossRef]

11. Geyer, R.C.; Klein, T.; Nabi, M. Differentially private federated learning: A client level perspective. In Proceedings of the
NIPS 2017 Workshop: Machine Learning on the Phone and other Consumer Devices, Long Beach, CA, USA, 8 December 2017.
[CrossRef]

12. Wei, K.; Li, J.; Ding, M.; Ma, C.; Yang, H.H.; Farokhi, F.; Jin, S.; Quek, T.Q.S.; Poor, H.V. Federated Learning with Differential
Privacy: Algorithms and Performance Analysis. IEEE Trans. Inf. Forensics Secur. 2020, 15, 3454–3469. [CrossRef]

13. Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedoney, A.; McMahan, H.; Patel, S.; Ramage, D.; Segal, A.; Seth, K. Practical Secure
Aggregation for Federated Learning on User-Held Data. arXiv 2016. [CrossRef]

14. Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMahan, H.B.; Patel, S.; Ramage, D.; Segal, A.; Seth, K. Practical secure
aggregation for privacy-preserving machine learning. In Proceedings of the ACM SIGSAC Conferences on Computer and
Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 1175–1191. [CrossRef]

15. Ács, G.; Castelluccia, C. I have a DREAM! (DiffeRentially privatE smArt Metering). In Information Hiding. IH 2011; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 118–132. [CrossRef]

16. Goryczka, S.; Xiong, L. A comprehensive comparison of multiparty secure additions with differential privacy. IEEE Trans.
Dependable Secur. Comput. 2017, 14, 463–477. [CrossRef]

17. Elahi, T.; Danezis, G.; Goldberg, I. Privex: Private collection of traffic statistics for anonymous communication networks. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ, USA, 3–7
November 2014; pp. 1068–1079. [CrossRef]

18. Jansen, R.; Johnson, A. Safely Measuring Tor. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, Vienna, Austria, 24–28 October 2016; pp. 1553–1567. [CrossRef]

http://doi.org/10.48550/arXiv.1602.05629
http://doi.org/10.48550/arXiv.1906.08935
http://doi.org/10.1109/INFOCOM.2019.8737416
http://doi.org/10.48550/arXiv.2003.14053
http://doi.org/10.1109/SFCS.1982.38
http://doi.org/10.1145/359168.359176
http://doi.org/10.1007/978-3-319-12280-9_20
http://doi.org/10.1145/1807167.1807247
http://doi.org/10.1007/978-3-642-22792-9_8
http://doi.org/10.1007/978-3-319-26823-1_1
http://doi.org/10.48550/arXiv.1712.07557
http://doi.org/10.1109/TIFS.2020.2988575
http://doi.org/10.48550/arXiv.1611.04482
http://doi.org/10.1145/3133956.3133982
http://doi.org/10.1007/978-3-642-24178-9_9
http://doi.org/10.1109/TDSC.2015.2484326
http://doi.org/10.1145/2660267.2660280
http://doi.org/10.1145/2976749.2978310

Electronics 2023, 12, 870 23 of 23

19. So, J.; Güler, B.; Avestimehr, A.S. Turbo-Aggregate: Breaking the Quadratic Aggregation Barrier in Secure Federated Learning.
arXiv 2020, arXiv:2002.04156. [CrossRef]

20. Elkordy, A.R.; Avestimehr, A.S. HeteroSAg: Secure Aggregation with Heterogeneous Quantization in Federated Learning. IEEE
Trans. Commun. 2022, 70, 3151126. [CrossRef]

21. Hu, C.; Liang, H.; Han, X.; Liu, B.; Cheng, D.; Wang, D. Spread: Decentralized Model Aggregation for Scalable Federated
Learning. In Proceedings of the 51st International Conference on Parallel Processing (ICPP’22), Bordeaux, France, 29 August–1
September 2022; pp. 1–12. [CrossRef]

22. Lu, S.; Li, R.; Liu, W.; Guan, C.; Yang, X. Top-k sparsification with secure aggregation for privacy-preserving federated learning.
Comput. Secur. 2023, 124, 102993. [CrossRef]

23. He, L.; Karimireddy, S.; Jaggi, M. Secure byzantine robust machine learning. arXiv 2020, arXiv:2006.04747. [CrossRef]
24. So, J.; Güler, B.; Avestimehr, A.S. Byzantine-Resilient Secure Federated Learning. IEEE J. Sel. Areas Commun. 2021, 39, 2168–2181.

[CrossRef]
25. Zhang, Z.; Wu, L.; Ma, C.; Li, J.; Wang, J.; Wang, Q.; Yu, S. LSFL: A Lightweight and Secure Federated Learning Scheme for Edge

Computing. IEEE Trans. Inf. Forensics Secur. 2023, 18, 365–379. [CrossRef]
26. Yang, Z.; Zhou, M.; Yu, H.; Sinnott, R.O.; Liu, H. Efficient and Secure Federated Learning With Verifiable Weighted Average

Aggregation. IEEE Trans. Netw. Sci. Eng. 2023, 10, 205–222. [CrossRef]
27. Hahn, C.; Kim, H.; Kim, M.; Hur, J. VerSA: Verifiable Secure Aggregation for Cross-Device Federated Learning. IEEE Trans.

Dependable Secur. Comput. 2023, 20, 36–52. [CrossRef]
28. LeCun, Y.; Cortes, C.; Burges, C.J. MNIST Handwritten Digit Database. 2010. Available online: http://yann.lecun.com/exdb/

mnist (accessed on 6 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.48550/arXiv.2002.04156
http://doi.org/10.1109/TCOMM.2022.3151126
http://doi.org/10.1145/3545008.3545030
http://doi.org/10.1016/j.cose.2022.102993
http://doi.org/10.48550/arXiv.2006.04747
http://doi.org/10.1109/JSAC.2020.3041404
http://doi.org/10.1109/tifs.2022.3221899
http://doi.org/10.1109/tnse.2022.3206243
http://doi.org/10.1109/tdsc.2021.3126323
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist

	Introduction
	Related Work
	A Cluster-Based Secure Aggregation Model
	Background and Configuration
	Problem Definition
	Node Clustering
	BCSA: A Basic Cluster-Based Secure Aggregation Model
	FCSA: A Fully Secure Cluster-Based Aggregation Model

	Security and Efficiency Analysis
	Experimental Results
	Simulation Setup
	Simulated Performance

	Conclusions and Future Work
	References

